esp32-s2_dfu/src/portable/st/synopsys/dcd_synopsys.c

1069 lines
36 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2018 Scott Shawcroft, 2019 William D. Jones for Adafruit Industries
* Copyright (c) 2019 Ha Thach (tinyusb.org)
* Copyright (c) 2020 Jan Duempelmann
* Copyright (c) 2020 Reinhard Panhuber
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
// Since TinyUSB doesn't use SOF for now, and this interrupt too often (1ms interval)
// We disable SOF for now until needed later on
#define USE_SOF 0
#if defined (STM32F105x8) || defined (STM32F105xB) || defined (STM32F105xC) || \
defined (STM32F107xB) || defined (STM32F107xC)
#define STM32F1_SYNOPSYS
#endif
#if defined (STM32L475xx) || defined (STM32L476xx) || \
defined (STM32L485xx) || defined (STM32L486xx) || defined (STM32L496xx) || \
defined (STM32L4R5xx) || defined (STM32L4R7xx) || defined (STM32L4R9xx) || \
defined (STM32L4S5xx) || defined (STM32L4S7xx) || defined (STM32L4S9xx)
#define STM32L4_SYNOPSYS
#endif
#if TUSB_OPT_DEVICE_ENABLED && \
( (CFG_TUSB_MCU == OPT_MCU_STM32F1 && defined(STM32F1_SYNOPSYS)) || \
CFG_TUSB_MCU == OPT_MCU_STM32F2 || \
CFG_TUSB_MCU == OPT_MCU_STM32F4 || \
CFG_TUSB_MCU == OPT_MCU_STM32F7 || \
CFG_TUSB_MCU == OPT_MCU_STM32H7 || \
(CFG_TUSB_MCU == OPT_MCU_STM32L4 && defined(STM32L4_SYNOPSYS)) \
)
// EP_MAX : Max number of bi-directional endpoints including EP0
// EP_FIFO_SIZE : Size of dedicated USB SRAM
#if CFG_TUSB_MCU == OPT_MCU_STM32F1
#include "stm32f1xx.h"
#define EP_MAX_FS 4
#define EP_FIFO_SIZE_FS 1280
#elif CFG_TUSB_MCU == OPT_MCU_STM32F2
#include "stm32f2xx.h"
#define EP_MAX_FS USB_OTG_FS_MAX_IN_ENDPOINTS
#define EP_FIFO_SIZE_FS USB_OTG_FS_TOTAL_FIFO_SIZE
#elif CFG_TUSB_MCU == OPT_MCU_STM32F4
#include "stm32f4xx.h"
#define EP_MAX_FS USB_OTG_FS_MAX_IN_ENDPOINTS
#define EP_FIFO_SIZE_FS USB_OTG_FS_TOTAL_FIFO_SIZE
#define EP_MAX_HS USB_OTG_HS_MAX_IN_ENDPOINTS
#define EP_FIFO_SIZE_HS USB_OTG_HS_TOTAL_FIFO_SIZE
#elif CFG_TUSB_MCU == OPT_MCU_STM32H7
#include "stm32h7xx.h"
#define EP_MAX_FS 9
#define EP_FIFO_SIZE_FS 4096
#define EP_MAX_HS 9
#define EP_FIFO_SIZE_HS 4096
#elif CFG_TUSB_MCU == OPT_MCU_STM32F7
#include "stm32f7xx.h"
#define EP_MAX_FS 6
#define EP_FIFO_SIZE_FS 1280
#define EP_MAX_HS 9
#define EP_FIFO_SIZE_HS 4096
#elif CFG_TUSB_MCU == OPT_MCU_STM32L4
#include "stm32l4xx.h"
#define EP_MAX_FS 6
#define EP_FIFO_SIZE_FS 1280
#else
#error "Unsupported MCUs"
#endif
#include "device/dcd.h"
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM
//--------------------------------------------------------------------+
// On STM32 we associate Port0 to OTG_FS, and Port1 to OTG_HS
#if TUD_OPT_RHPORT == 0
#define EP_MAX EP_MAX_FS
#define EP_FIFO_SIZE EP_FIFO_SIZE_FS
#define RHPORT_REGS_BASE USB_OTG_FS_PERIPH_BASE
#define RHPORT_IRQn OTG_FS_IRQn
#else
#define EP_MAX EP_MAX_HS
#define EP_FIFO_SIZE EP_FIFO_SIZE_HS
#define RHPORT_REGS_BASE USB_OTG_HS_PERIPH_BASE
#define RHPORT_IRQn OTG_HS_IRQn
#endif
#define GLOBAL_BASE(_port) ((USB_OTG_GlobalTypeDef*) RHPORT_REGS_BASE)
#define DEVICE_BASE(_port) (USB_OTG_DeviceTypeDef *) (RHPORT_REGS_BASE + USB_OTG_DEVICE_BASE)
#define OUT_EP_BASE(_port) (USB_OTG_OUTEndpointTypeDef *) (RHPORT_REGS_BASE + USB_OTG_OUT_ENDPOINT_BASE)
#define IN_EP_BASE(_port) (USB_OTG_INEndpointTypeDef *) (RHPORT_REGS_BASE + USB_OTG_IN_ENDPOINT_BASE)
#define FIFO_BASE(_port, _x) ((volatile uint32_t *) (RHPORT_REGS_BASE + USB_OTG_FIFO_BASE + (_x) * USB_OTG_FIFO_SIZE))
enum
{
DCD_HIGH_SPEED = 0, // Highspeed mode
DCD_FULL_SPEED_USE_HS = 1, // Full speed in Highspeed port (probably with internal PHY)
DCD_FULL_SPEED = 3, // Full speed with internal PHY
};
static TU_ATTR_ALIGNED(4) uint32_t _setup_packet[2];
typedef struct {
uint8_t * buffer;
uint16_t total_len;
uint16_t max_size;
uint8_t interval;
} xfer_ctl_t;
// EP size and transfer type report
typedef struct TU_ATTR_PACKED {
// The following format may look complicated but it is the most elegant way of addressing the required fields: EP number, EP direction, and EP transfer type.
// The codes assigned to those fields, according to the USB specification, can be neatly used as indices.
uint16_t ep_size[EP_MAX][2]; ///< dim 1: EP number, dim 2: EP direction denoted by TUSB_DIR_OUT (= 0) and TUSB_DIR_IN (= 1)
bool ep_transfer_type[EP_MAX][2][4]; ///< dim 1: EP number, dim 2: EP direction, dim 3: transfer type, where 0 = Control, 1 = Isochronous, 2 = Bulk, and 3 = Interrupt
///< I know very well that EP0 can only be used as control EP and we waste space here but for the sake of simplicity we accept that. It is used in a non-persistent way anyway!
} ep_sz_tt_report_t;
typedef volatile uint32_t * usb_fifo_t;
xfer_ctl_t xfer_status[EP_MAX][2];
#define XFER_CTL_BASE(_ep, _dir) &xfer_status[_ep][_dir]
// EP0 transfers are limited to 1 packet - larger sizes has to be split
static uint16_t ep0_pending[2]; // Index determines direction as tusb_dir_t type
// FIFO RAM allocation so far in words
static uint16_t _allocated_fifo_words;
// Setup the control endpoint 0.
static void bus_reset(uint8_t rhport)
{
(void) rhport;
USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport);
USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);
tu_memclr(xfer_status, sizeof(xfer_status));
for(uint8_t n = 0; n < EP_MAX; n++) {
out_ep[n].DOEPCTL |= USB_OTG_DOEPCTL_SNAK;
}
dev->DAINTMSK |= (1 << USB_OTG_DAINTMSK_OEPM_Pos) | (1 << USB_OTG_DAINTMSK_IEPM_Pos);
dev->DOEPMSK |= USB_OTG_DOEPMSK_STUPM | USB_OTG_DOEPMSK_XFRCM;
dev->DIEPMSK |= USB_OTG_DIEPMSK_TOM | USB_OTG_DIEPMSK_XFRCM;
// "USB Data FIFOs" section in reference manual
// Peripheral FIFO architecture
//
// --------------- 320 or 1024 ( 1280 or 4096 bytes )
// | IN FIFO MAX |
// ---------------
// | ... |
// --------------- y + x + 16 + GRXFSIZ
// | IN FIFO 2 |
// --------------- x + 16 + GRXFSIZ
// | IN FIFO 1 |
// --------------- 16 + GRXFSIZ
// | IN FIFO 0 |
// --------------- GRXFSIZ
// | OUT FIFO |
// | ( Shared ) |
// --------------- 0
//
// According to "FIFO RAM allocation" section in RM, FIFO RAM are allocated as follows (each word 32-bits):
// - Each EP IN needs at least max packet size, 16 words is sufficient for EP0 IN
//
// - All EP OUT shared a unique OUT FIFO which uses
// - 13 for setup packets + control words (up to 3 setup packets).
// - 1 for global NAK (not required/used here).
// - Largest-EPsize / 4 + 1. ( FS: 64 bytes, HS: 512 bytes). Recommended is "2 x (Largest-EPsize/4) + 1"
// - 2 for each used OUT endpoint
//
// Therefore GRXFSIZ = 13 + 1 + 1 + 2 x (Largest-EPsize/4) + 2 x EPOUTnum
// - FullSpeed (64 Bytes ): GRXFSIZ = 15 + 2 x 16 + 2 x EP_MAX = 47 + 2 x EP_MAX
// - Highspeed (512 bytes): GRXFSIZ = 15 + 2 x 128 + 2 x EP_MAX = 271 + 2 x EP_MAX
//
// NOTE: Largest-EPsize & EPOUTnum is actual used endpoints in configuration. Since DCD has no knowledge
// of the overall picture yet. We will use the worst scenario: largest possible + EP_MAX
//
// FIXME: for Isochronous, largest EP size can be 1023/1024 for FS/HS respectively. In addition if multiple ISO
// are enabled at least "2 x (Largest-EPsize/4) + 1" are recommended. Maybe provide a macro for application to
// overwrite this.
#if TUD_OPT_HIGH_SPEED
_allocated_fifo_words = 271 + 2*EP_MAX;
#else
_allocated_fifo_words = 47 + 2*EP_MAX;
#endif
usb_otg->GRXFSIZ = _allocated_fifo_words;
// Control IN uses FIFO 0 with 64 bytes ( 16 32-bit word )
usb_otg->DIEPTXF0_HNPTXFSIZ = (16 << USB_OTG_TX0FD_Pos) | _allocated_fifo_words;
_allocated_fifo_words += 16;
// TU_LOG2_INT(_allocated_fifo_words);
// Fixed control EP0 size to 64 bytes
in_ep[0].DIEPCTL &= ~(0x03 << USB_OTG_DIEPCTL_MPSIZ_Pos);
xfer_status[0][TUSB_DIR_OUT].max_size = xfer_status[0][TUSB_DIR_IN].max_size = 64;
out_ep[0].DOEPTSIZ |= (3 << USB_OTG_DOEPTSIZ_STUPCNT_Pos);
usb_otg->GINTMSK |= USB_OTG_GINTMSK_OEPINT | USB_OTG_GINTMSK_IEPINT;
}
// Set turn-around timeout according to link speed
extern uint32_t SystemCoreClock;
static void set_turnaround(USB_OTG_GlobalTypeDef * usb_otg, tusb_speed_t speed)
{
usb_otg->GUSBCFG &= ~USB_OTG_GUSBCFG_TRDT;
if ( speed == TUSB_SPEED_HIGH )
{
// Use fixed 0x09 for Highspeed
usb_otg->GUSBCFG |= (0x09 << USB_OTG_GUSBCFG_TRDT_Pos);
}
else
{
// Turnaround timeout depends on the MCU clock
uint32_t turnaround;
if ( SystemCoreClock >= 32000000U )
turnaround = 0x6U;
else if ( SystemCoreClock >= 27500000U )
turnaround = 0x7U;
else if ( SystemCoreClock >= 24000000U )
turnaround = 0x8U;
else if ( SystemCoreClock >= 21800000U )
turnaround = 0x9U;
else if ( SystemCoreClock >= 20000000U )
turnaround = 0xAU;
else if ( SystemCoreClock >= 18500000U )
turnaround = 0xBU;
else if ( SystemCoreClock >= 17200000U )
turnaround = 0xCU;
else if ( SystemCoreClock >= 16000000U )
turnaround = 0xDU;
else if ( SystemCoreClock >= 15000000U )
turnaround = 0xEU;
else
turnaround = 0xFU;
// Fullspeed depends on MCU clocks, but we will use 0x06 for 32+ Mhz
usb_otg->GUSBCFG |= (turnaround << USB_OTG_GUSBCFG_TRDT_Pos);
}
}
static tusb_speed_t get_speed(uint8_t rhport)
{
(void) rhport;
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
uint32_t const enum_spd = (dev->DSTS & USB_OTG_DSTS_ENUMSPD_Msk) >> USB_OTG_DSTS_ENUMSPD_Pos;
return (enum_spd == DCD_HIGH_SPEED) ? TUSB_SPEED_HIGH : TUSB_SPEED_FULL;
}
static void set_speed(uint8_t rhport, tusb_speed_t speed)
{
uint32_t bitvalue;
if ( rhport == 1 )
{
bitvalue = ((TUSB_SPEED_HIGH == speed) ? DCD_HIGH_SPEED : DCD_FULL_SPEED_USE_HS);
}
else
{
bitvalue = DCD_FULL_SPEED;
}
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
// Clear and set speed bits
dev->DCFG &= ~(3 << USB_OTG_DCFG_DSPD_Pos);
dev->DCFG |= (bitvalue << USB_OTG_DCFG_DSPD_Pos);
}
#if defined(USB_HS_PHYC)
static bool USB_HS_PHYCInit(void)
{
USB_HS_PHYC_GlobalTypeDef *usb_hs_phyc = (USB_HS_PHYC_GlobalTypeDef*) USB_HS_PHYC_CONTROLLER_BASE;
// Enable LDO
usb_hs_phyc->USB_HS_PHYC_LDO |= USB_HS_PHYC_LDO_ENABLE;
// Wait until LDO ready
while ( 0 == (usb_hs_phyc->USB_HS_PHYC_LDO & USB_HS_PHYC_LDO_STATUS) ) {}
uint32_t phyc_pll = 0;
// TODO Try to get HSE_VALUE from registers instead of depending CFLAGS
switch ( HSE_VALUE )
{
case 12000000: phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_12MHZ ; break;
case 12500000: phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_12_5MHZ ; break;
case 16000000: phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_16MHZ ; break;
case 24000000: phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_24MHZ ; break;
case 25000000: phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_25MHZ ; break;
case 32000000: phyc_pll = USB_HS_PHYC_PLL1_PLLSEL_Msk ; break; // Value not defined in header
default:
TU_ASSERT(0);
}
usb_hs_phyc->USB_HS_PHYC_PLL = phyc_pll;
// Control the tuning interface of the High Speed PHY
// Use magic value (USB_HS_PHYC_TUNE_VALUE) from ST driver
usb_hs_phyc->USB_HS_PHYC_TUNE |= 0x00000F13U;
// Enable PLL internal PHY
usb_hs_phyc->USB_HS_PHYC_PLL |= USB_HS_PHYC_PLL_PLLEN;
// Original ST code has 2 ms delay for PLL stabilization.
// Primitive test shows that more than 10 USB un/replug cycle showed no error with enumeration
return true;
}
#endif
static void edpt_schedule_packets(uint8_t rhport, uint8_t const epnum, uint8_t const dir, uint16_t const num_packets, uint16_t total_bytes)
{
(void) rhport;
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport);
USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);
// EP0 is limited to one packet each xfer
// We use multiple transaction of xfer->max_size length to get a whole transfer done
if(epnum == 0) {
xfer_ctl_t * const xfer = XFER_CTL_BASE(epnum, dir);
total_bytes = tu_min16(ep0_pending[dir], xfer->max_size);
ep0_pending[dir] -= total_bytes;
}
// IN and OUT endpoint xfers are interrupt-driven, we just schedule them here.
if(dir == TUSB_DIR_IN) {
// A full IN transfer (multiple packets, possibly) triggers XFRC.
in_ep[epnum].DIEPTSIZ = (num_packets << USB_OTG_DIEPTSIZ_PKTCNT_Pos) |
((total_bytes << USB_OTG_DIEPTSIZ_XFRSIZ_Pos) & USB_OTG_DIEPTSIZ_XFRSIZ_Msk);
in_ep[epnum].DIEPCTL |= USB_OTG_DIEPCTL_EPENA | USB_OTG_DIEPCTL_CNAK;
// For ISO endpoint set correct odd/even bit for next frame.
if ((in_ep[epnum].DIEPCTL & USB_OTG_DIEPCTL_EPTYP) == USB_OTG_DIEPCTL_EPTYP_0 && (XFER_CTL_BASE(epnum, dir))->interval == 1)
{
// Take odd/even bit from frame counter.
uint32_t const odd_frame_now = (dev->DSTS & (1u << USB_OTG_DSTS_FNSOF_Pos));
in_ep[epnum].DIEPCTL |= (odd_frame_now ? USB_OTG_DIEPCTL_SD0PID_SEVNFRM_Msk : USB_OTG_DIEPCTL_SODDFRM_Msk);
}
// Enable fifo empty interrupt only if there are something to put in the fifo.
if(total_bytes != 0) {
dev->DIEPEMPMSK |= (1 << epnum);
}
} else {
// A full OUT transfer (multiple packets, possibly) triggers XFRC.
out_ep[epnum].DOEPTSIZ &= ~(USB_OTG_DOEPTSIZ_PKTCNT_Msk | USB_OTG_DOEPTSIZ_XFRSIZ);
out_ep[epnum].DOEPTSIZ |= (num_packets << USB_OTG_DOEPTSIZ_PKTCNT_Pos) |
((total_bytes << USB_OTG_DOEPTSIZ_XFRSIZ_Pos) & USB_OTG_DOEPTSIZ_XFRSIZ_Msk);
out_ep[epnum].DOEPCTL |= USB_OTG_DOEPCTL_EPENA | USB_OTG_DOEPCTL_CNAK;
if ((out_ep[epnum].DOEPCTL & USB_OTG_DOEPCTL_EPTYP) == USB_OTG_DOEPCTL_EPTYP_0 && (XFER_CTL_BASE(epnum, dir))->interval == 1)
{
// Take odd/even bit from frame counter.
uint32_t const odd_frame_now = (dev->DSTS & (1u << USB_OTG_DSTS_FNSOF_Pos));
out_ep[epnum].DOEPCTL |= (odd_frame_now ? USB_OTG_DOEPCTL_SD0PID_SEVNFRM_Msk : USB_OTG_DOEPCTL_SODDFRM_Msk);
}
}
}
/*------------------------------------------------------------------*/
/* Controller API
*------------------------------------------------------------------*/
void dcd_init (uint8_t rhport)
{
// Programming model begins in the last section of the chapter on the USB
// peripheral in each Reference Manual.
USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);
// No HNP/SRP (no OTG support), program timeout later.
if ( rhport == 1 )
{
// On selected MCUs HS port1 can be used with external PHY via ULPI interface
// deactivate internal PHY
usb_otg->GCCFG &= ~USB_OTG_GCCFG_PWRDWN;
// Init The UTMI Interface
usb_otg->GUSBCFG &= ~(USB_OTG_GUSBCFG_TSDPS | USB_OTG_GUSBCFG_ULPIFSLS | USB_OTG_GUSBCFG_PHYSEL);
// Select default internal VBUS Indicator and Drive for ULPI
usb_otg->GUSBCFG &= ~(USB_OTG_GUSBCFG_ULPIEVBUSD | USB_OTG_GUSBCFG_ULPIEVBUSI);
#if defined(USB_HS_PHYC)
// Highspeed with embedded UTMI PHYC
// Select UTMI Interface
usb_otg->GUSBCFG &= ~USB_OTG_GUSBCFG_ULPI_UTMI_SEL;
usb_otg->GCCFG |= USB_OTG_GCCFG_PHYHSEN;
// Enables control of a High Speed USB PHY
USB_HS_PHYCInit();
#endif
} else
{
// Enable internal PHY
usb_otg->GUSBCFG |= USB_OTG_GUSBCFG_PHYSEL;
}
// Reset core after selecting PHY
// Wait AHB IDLE, reset then wait until it is cleared
while ((usb_otg->GRSTCTL & USB_OTG_GRSTCTL_AHBIDL) == 0U) {}
usb_otg->GRSTCTL |= USB_OTG_GRSTCTL_CSRST;
while ((usb_otg->GRSTCTL & USB_OTG_GRSTCTL_CSRST) == USB_OTG_GRSTCTL_CSRST) {}
// Restart PHY clock
*((volatile uint32_t *)(RHPORT_REGS_BASE + USB_OTG_PCGCCTL_BASE)) = 0;
// Clear all interrupts
usb_otg->GINTSTS |= usb_otg->GINTSTS;
// Required as part of core initialization.
// TODO: How should mode mismatch be handled? It will cause
// the core to stop working/require reset.
usb_otg->GINTMSK |= USB_OTG_GINTMSK_OTGINT | USB_OTG_GINTMSK_MMISM;
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
// If USB host misbehaves during status portion of control xfer
// (non zero-length packet), send STALL back and discard.
dev->DCFG |= USB_OTG_DCFG_NZLSOHSK;
set_speed(rhport, TUD_OPT_HIGH_SPEED ? TUSB_SPEED_HIGH : TUSB_SPEED_FULL);
// Enable internal USB transceiver.
if ( rhport == 0 ) usb_otg->GCCFG |= USB_OTG_GCCFG_PWRDWN;
usb_otg->GINTMSK |= USB_OTG_GINTMSK_USBRST | USB_OTG_GINTMSK_ENUMDNEM |
USB_OTG_GINTMSK_USBSUSPM | USB_OTG_GINTMSK_WUIM |
USB_OTG_GINTMSK_RXFLVLM | (USE_SOF ? USB_OTG_GINTMSK_SOFM : 0);
// Enable global interrupt
usb_otg->GAHBCFG |= USB_OTG_GAHBCFG_GINT;
dcd_connect(rhport);
}
void dcd_int_enable (uint8_t rhport)
{
(void) rhport;
NVIC_EnableIRQ(RHPORT_IRQn);
}
void dcd_int_disable (uint8_t rhport)
{
(void) rhport;
NVIC_DisableIRQ(RHPORT_IRQn);
}
void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
{
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
dev->DCFG |= (dev_addr << USB_OTG_DCFG_DAD_Pos) & USB_OTG_DCFG_DAD_Msk;
// Response with status after changing device address
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
}
void dcd_remote_wakeup(uint8_t rhport)
{
(void) rhport;
}
void dcd_connect(uint8_t rhport)
{
(void) rhport;
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
dev->DCTL &= ~USB_OTG_DCTL_SDIS;
}
void dcd_disconnect(uint8_t rhport)
{
(void) rhport;
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
dev->DCTL |= USB_OTG_DCTL_SDIS;
}
/*------------------------------------------------------------------*/
/* DCD Endpoint port
*------------------------------------------------------------------*/
bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
{
USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport);
USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);
uint8_t const epnum = tu_edpt_number(desc_edpt->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(desc_edpt->bEndpointAddress);
TU_ASSERT(epnum < EP_MAX);
if (desc_edpt->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS)
{
TU_ASSERT(desc_edpt->wMaxPacketSize.size <= (get_speed(rhport) == TUSB_SPEED_HIGH ? 1024 : 1023));
}
else
{
TU_ASSERT(desc_edpt->wMaxPacketSize.size <= (get_speed(rhport) == TUSB_SPEED_HIGH ? 512 : 64));
}
xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, dir);
xfer->max_size = desc_edpt->wMaxPacketSize.size;
xfer->interval = desc_edpt->bInterval;
if(dir == TUSB_DIR_OUT)
{
out_ep[epnum].DOEPCTL |= (1 << USB_OTG_DOEPCTL_USBAEP_Pos) |
(desc_edpt->bmAttributes.xfer << USB_OTG_DOEPCTL_EPTYP_Pos) |
(desc_edpt->wMaxPacketSize.size << USB_OTG_DOEPCTL_MPSIZ_Pos);
dev->DAINTMSK |= (1 << (USB_OTG_DAINTMSK_OEPM_Pos + epnum));
}
else
{
// "USB Data FIFOs" section in reference manual
// Peripheral FIFO architecture
//
// --------------- 320 or 1024 ( 1280 or 4096 bytes )
// | IN FIFO MAX |
// ---------------
// | ... |
// --------------- y + x + 16 + GRXFSIZ
// | IN FIFO 2 |
// --------------- x + 16 + GRXFSIZ
// | IN FIFO 1 |
// --------------- 16 + GRXFSIZ
// | IN FIFO 0 |
// --------------- GRXFSIZ
// | OUT FIFO |
// | ( Shared ) |
// --------------- 0
//
// In FIFO is allocated by following rules:
// - IN EP 1 gets FIFO 1, IN EP "n" gets FIFO "n".
// - Offset: allocated so far
// - Size
// - Interrupt is EPSize
// - Bulk/ISO is max(EPSize, remaining-fifo / non-opened-EPIN)
uint16_t const fifo_remaining = EP_FIFO_SIZE/4 - _allocated_fifo_words;
uint16_t fifo_size = (desc_edpt->wMaxPacketSize.size + 3) / 4; // +3 for rounding up to next full word
if ( desc_edpt->bmAttributes.xfer != TUSB_XFER_INTERRUPT )
{
uint8_t opened = 0;
for(uint8_t i = 0; i < EP_MAX; i++)
{
if ( (i != epnum) && (xfer_status[i][TUSB_DIR_IN].max_size > 0) ) opened++;
}
// EP Size or equally divided of remaining whichever is larger
fifo_size = tu_max16(fifo_size, fifo_remaining / (EP_MAX - opened));
}
// FIFO overflows, we probably need a better allocating scheme
TU_ASSERT(fifo_size <= fifo_remaining);
// DIEPTXF starts at FIFO #1.
// Both TXFD and TXSA are in unit of 32-bit words.
usb_otg->DIEPTXF[epnum - 1] = (fifo_size << USB_OTG_DIEPTXF_INEPTXFD_Pos) | _allocated_fifo_words;
_allocated_fifo_words += fifo_size;
in_ep[epnum].DIEPCTL |= (1 << USB_OTG_DIEPCTL_USBAEP_Pos) |
(epnum << USB_OTG_DIEPCTL_TXFNUM_Pos) |
(desc_edpt->bmAttributes.xfer << USB_OTG_DIEPCTL_EPTYP_Pos) |
(desc_edpt->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS ? USB_OTG_DOEPCTL_SD0PID_SEVNFRM : 0) |
(desc_edpt->wMaxPacketSize.size << USB_OTG_DIEPCTL_MPSIZ_Pos);
dev->DAINTMSK |= (1 << (USB_OTG_DAINTMSK_IEPM_Pos + epnum));
}
return true;
}
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, dir);
xfer->buffer = buffer;
xfer->total_len = total_bytes;
// EP0 can only handle one packet
if(epnum == 0) {
ep0_pending[dir] = total_bytes;
// Schedule the first transaction for EP0 transfer
edpt_schedule_packets(rhport, epnum, dir, 1, ep0_pending[dir]);
return true;
}
uint16_t num_packets = (total_bytes / xfer->max_size);
uint8_t const short_packet_size = total_bytes % xfer->max_size;
// Zero-size packet is special case.
if(short_packet_size > 0 || (total_bytes == 0)) {
num_packets++;
}
// Schedule packets to be sent within interrupt
edpt_schedule_packets(rhport, epnum, dir, num_packets, total_bytes);
return true;
}
static void dcd_edpt_disable (uint8_t rhport, uint8_t ep_addr, bool stall)
{
(void) rhport;
USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport);
USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
if(dir == TUSB_DIR_IN) {
// Only disable currently enabled non-control endpoint
if ( (epnum == 0) || !(in_ep[epnum].DIEPCTL & USB_OTG_DIEPCTL_EPENA) ){
in_ep[epnum].DIEPCTL |= USB_OTG_DIEPCTL_SNAK | (stall ? USB_OTG_DIEPCTL_STALL : 0);
} else {
// Stop transmitting packets and NAK IN xfers.
in_ep[epnum].DIEPCTL |= USB_OTG_DIEPCTL_SNAK;
while((in_ep[epnum].DIEPINT & USB_OTG_DIEPINT_INEPNE) == 0);
// Disable the endpoint.
in_ep[epnum].DIEPCTL |= USB_OTG_DIEPCTL_EPDIS | (stall ? USB_OTG_DIEPCTL_STALL : 0);
while((in_ep[epnum].DIEPINT & USB_OTG_DIEPINT_EPDISD_Msk) == 0);
in_ep[epnum].DIEPINT = USB_OTG_DIEPINT_EPDISD;
}
// Flush the FIFO, and wait until we have confirmed it cleared.
usb_otg->GRSTCTL |= (epnum << USB_OTG_GRSTCTL_TXFNUM_Pos);
usb_otg->GRSTCTL |= USB_OTG_GRSTCTL_TXFFLSH;
while((usb_otg->GRSTCTL & USB_OTG_GRSTCTL_TXFFLSH_Msk) != 0);
} else {
// Only disable currently enabled non-control endpoint
if ( (epnum == 0) || !(out_ep[epnum].DOEPCTL & USB_OTG_DOEPCTL_EPENA) ){
out_ep[epnum].DOEPCTL |= stall ? USB_OTG_DOEPCTL_STALL : 0;
} else {
// Asserting GONAK is required to STALL an OUT endpoint.
// Simpler to use polling here, we don't use the "B"OUTNAKEFF interrupt
// anyway, and it can't be cleared by user code. If this while loop never
// finishes, we have bigger problems than just the stack.
dev->DCTL |= USB_OTG_DCTL_SGONAK;
while((usb_otg->GINTSTS & USB_OTG_GINTSTS_BOUTNAKEFF_Msk) == 0);
// Ditto here- disable the endpoint.
out_ep[epnum].DOEPCTL |= USB_OTG_DOEPCTL_EPDIS | (stall ? USB_OTG_DOEPCTL_STALL : 0);
while((out_ep[epnum].DOEPINT & USB_OTG_DOEPINT_EPDISD_Msk) == 0);
out_ep[epnum].DOEPINT = USB_OTG_DOEPINT_EPDISD;
// Allow other OUT endpoints to keep receiving.
dev->DCTL |= USB_OTG_DCTL_CGONAK;
}
}
}
/**
* Close an endpoint.
*/
void dcd_edpt_close (uint8_t rhport, uint8_t ep_addr)
{
USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
dcd_edpt_disable(rhport, ep_addr, false);
if (dir == TUSB_DIR_IN)
{
uint16_t const fifo_size = (usb_otg->DIEPTXF[epnum - 1] & USB_OTG_DIEPTXF_INEPTXFD_Msk) >> USB_OTG_DIEPTXF_INEPTXFD_Pos;
uint16_t const fifo_start = (usb_otg->DIEPTXF[epnum - 1] & USB_OTG_DIEPTXF_INEPTXSA_Msk) >> USB_OTG_DIEPTXF_INEPTXSA_Pos;
// For now only endpoint that has FIFO at the end of FIFO memory can be closed without fuss.
TU_ASSERT(fifo_start + fifo_size == _allocated_fifo_words,);
_allocated_fifo_words -= fifo_size;
}
}
void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
{
dcd_edpt_disable(rhport, ep_addr, true);
}
void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport);
USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
if(dir == TUSB_DIR_IN) {
in_ep[epnum].DIEPCTL &= ~USB_OTG_DIEPCTL_STALL;
uint8_t eptype = (in_ep[epnum].DIEPCTL & USB_OTG_DIEPCTL_EPTYP_Msk) >> USB_OTG_DIEPCTL_EPTYP_Pos;
// Required by USB spec to reset DATA toggle bit to DATA0 on interrupt and bulk endpoints.
if(eptype == 2 || eptype == 3) {
in_ep[epnum].DIEPCTL |= USB_OTG_DIEPCTL_SD0PID_SEVNFRM;
}
} else {
out_ep[epnum].DOEPCTL &= ~USB_OTG_DOEPCTL_STALL;
uint8_t eptype = (out_ep[epnum].DOEPCTL & USB_OTG_DOEPCTL_EPTYP_Msk) >> USB_OTG_DOEPCTL_EPTYP_Pos;
// Required by USB spec to reset DATA toggle bit to DATA0 on interrupt and bulk endpoints.
if(eptype == 2 || eptype == 3) {
out_ep[epnum].DOEPCTL |= USB_OTG_DOEPCTL_SD0PID_SEVNFRM;
}
}
}
/*------------------------------------------------------------------*/
// Read a single data packet from receive FIFO
static void read_fifo_packet(uint8_t rhport, uint8_t * dst, uint16_t len)
{
(void) rhport;
usb_fifo_t rx_fifo = FIFO_BASE(rhport, 0);
// Reading full available 32 bit words from fifo
uint16_t full_words = len >> 2;
for(uint16_t i = 0; i < full_words; i++) {
uint32_t tmp = *rx_fifo;
dst[0] = tmp & 0x000000FF;
dst[1] = (tmp & 0x0000FF00) >> 8;
dst[2] = (tmp & 0x00FF0000) >> 16;
dst[3] = (tmp & 0xFF000000) >> 24;
dst += 4;
}
// Read the remaining 1-3 bytes from fifo
uint8_t bytes_rem = len & 0x03;
if(bytes_rem != 0) {
uint32_t tmp = *rx_fifo;
dst[0] = tmp & 0x000000FF;
if(bytes_rem > 1) {
dst[1] = (tmp & 0x0000FF00) >> 8;
}
if(bytes_rem > 2) {
dst[2] = (tmp & 0x00FF0000) >> 16;
}
}
}
// Write a single data packet to EPIN FIFO
static void write_fifo_packet(uint8_t rhport, uint8_t fifo_num, uint8_t * src, uint16_t len)
{
(void) rhport;
usb_fifo_t tx_fifo = FIFO_BASE(rhport, fifo_num);
// Pushing full available 32 bit words to fifo
uint16_t full_words = len >> 2;
for(uint16_t i = 0; i < full_words; i++){
*tx_fifo = (src[3] << 24) | (src[2] << 16) | (src[1] << 8) | src[0];
src += 4;
}
// Write the remaining 1-3 bytes into fifo
uint8_t bytes_rem = len & 0x03;
if(bytes_rem){
uint32_t tmp_word = 0;
tmp_word |= src[0];
if(bytes_rem > 1){
tmp_word |= src[1] << 8;
}
if(bytes_rem > 2){
tmp_word |= src[2] << 16;
}
*tx_fifo = tmp_word;
}
}
static void handle_rxflvl_ints(uint8_t rhport, USB_OTG_OUTEndpointTypeDef * out_ep) {
USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);
usb_fifo_t rx_fifo = FIFO_BASE(rhport, 0);
// Pop control word off FIFO
uint32_t ctl_word = usb_otg->GRXSTSP;
uint8_t pktsts = (ctl_word & USB_OTG_GRXSTSP_PKTSTS_Msk) >> USB_OTG_GRXSTSP_PKTSTS_Pos;
uint8_t epnum = (ctl_word & USB_OTG_GRXSTSP_EPNUM_Msk) >> USB_OTG_GRXSTSP_EPNUM_Pos;
uint16_t bcnt = (ctl_word & USB_OTG_GRXSTSP_BCNT_Msk) >> USB_OTG_GRXSTSP_BCNT_Pos;
switch(pktsts) {
case 0x01: // Global OUT NAK (Interrupt)
break;
case 0x02: // Out packet recvd
{
xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, TUSB_DIR_OUT);
// Read packet off RxFIFO
read_fifo_packet(rhport, xfer->buffer, bcnt);
// Increment pointer to xfer data
xfer->buffer += bcnt;
// Truncate transfer length in case of short packet
if(bcnt < xfer->max_size) {
xfer->total_len -= (out_ep[epnum].DOEPTSIZ & USB_OTG_DOEPTSIZ_XFRSIZ_Msk) >> USB_OTG_DOEPTSIZ_XFRSIZ_Pos;
if(epnum == 0) {
xfer->total_len -= ep0_pending[TUSB_DIR_OUT];
ep0_pending[TUSB_DIR_OUT] = 0;
}
}
}
break;
case 0x03: // Out packet done (Interrupt)
break;
case 0x04: // Setup packet done (Interrupt)
out_ep[epnum].DOEPTSIZ |= (3 << USB_OTG_DOEPTSIZ_STUPCNT_Pos);
break;
case 0x06: // Setup packet recvd
// We can receive up to three setup packets in succession, but
// only the last one is valid.
_setup_packet[0] = (* rx_fifo);
_setup_packet[1] = (* rx_fifo);
break;
default: // Invalid
TU_BREAKPOINT();
break;
}
}
static void handle_epout_ints(uint8_t rhport, USB_OTG_DeviceTypeDef * dev, USB_OTG_OUTEndpointTypeDef * out_ep) {
// DAINT for a given EP clears when DOEPINTx is cleared.
// OEPINT will be cleared when DAINT's out bits are cleared.
for(uint8_t n = 0; n < EP_MAX; n++) {
xfer_ctl_t * xfer = XFER_CTL_BASE(n, TUSB_DIR_OUT);
if(dev->DAINT & (1 << (USB_OTG_DAINT_OEPINT_Pos + n))) {
// SETUP packet Setup Phase done.
if(out_ep[n].DOEPINT & USB_OTG_DOEPINT_STUP) {
out_ep[n].DOEPINT = USB_OTG_DOEPINT_STUP;
dcd_event_setup_received(rhport, (uint8_t*) &_setup_packet[0], true);
}
// OUT XFER complete
if(out_ep[n].DOEPINT & USB_OTG_DOEPINT_XFRC) {
out_ep[n].DOEPINT = USB_OTG_DOEPINT_XFRC;
// EP0 can only handle one packet
if((n == 0) && ep0_pending[TUSB_DIR_OUT]) {
// Schedule another packet to be received.
edpt_schedule_packets(rhport, n, TUSB_DIR_OUT, 1, ep0_pending[TUSB_DIR_OUT]);
} else {
dcd_event_xfer_complete(rhport, n, xfer->total_len, XFER_RESULT_SUCCESS, true);
}
}
}
}
}
static void handle_epin_ints(uint8_t rhport, USB_OTG_DeviceTypeDef * dev, USB_OTG_INEndpointTypeDef * in_ep) {
// DAINT for a given EP clears when DIEPINTx is cleared.
// IEPINT will be cleared when DAINT's out bits are cleared.
for ( uint8_t n = 0; n < EP_MAX; n++ )
{
xfer_ctl_t *xfer = XFER_CTL_BASE(n, TUSB_DIR_IN);
if ( dev->DAINT & (1 << (USB_OTG_DAINT_IEPINT_Pos + n)) )
{
// IN XFER complete (entire xfer).
if ( in_ep[n].DIEPINT & USB_OTG_DIEPINT_XFRC )
{
in_ep[n].DIEPINT = USB_OTG_DIEPINT_XFRC;
// EP0 can only handle one packet
if((n == 0) && ep0_pending[TUSB_DIR_IN]) {
// Schedule another packet to be transmitted.
edpt_schedule_packets(rhport, n, TUSB_DIR_IN, 1, ep0_pending[TUSB_DIR_IN]);
} else {
dcd_event_xfer_complete(rhport, n | TUSB_DIR_IN_MASK, xfer->total_len, XFER_RESULT_SUCCESS, true);
}
}
// XFER FIFO empty
if ( (in_ep[n].DIEPINT & USB_OTG_DIEPINT_TXFE) && (dev->DIEPEMPMSK & (1 << n)) )
{
// DIEPINT's TXFE bit is read-only, software cannot clear it.
// It will only be cleared by hardware when written bytes is more than
// - 64 bytes or
// - Half of TX FIFO size (configured by DIEPTXF)
uint16_t remaining_packets = (in_ep[n].DIEPTSIZ & USB_OTG_DIEPTSIZ_PKTCNT_Msk) >> USB_OTG_DIEPTSIZ_PKTCNT_Pos;
// Process every single packet (only whole packets can be written to fifo)
for(uint16_t i = 0; i < remaining_packets; i++){
uint16_t remaining_bytes = (in_ep[n].DIEPTSIZ & USB_OTG_DIEPTSIZ_XFRSIZ_Msk) >> USB_OTG_DIEPTSIZ_XFRSIZ_Pos;
// Packet can not be larger than ep max size
uint16_t packet_size = tu_min16(remaining_bytes, xfer->max_size);
// It's only possible to write full packets into FIFO. Therefore DTXFSTS register of current
// EP has to be checked if the buffer can take another WHOLE packet
if(packet_size > ((in_ep[n].DTXFSTS & USB_OTG_DTXFSTS_INEPTFSAV_Msk) << 2)){
break;
}
// Push packet to Tx-FIFO
write_fifo_packet(rhport, n, xfer->buffer, packet_size);
// Increment pointer to xfer data
xfer->buffer += packet_size;
}
// Turn off TXFE if all bytes are written.
if (((in_ep[n].DIEPTSIZ & USB_OTG_DIEPTSIZ_XFRSIZ_Msk) >> USB_OTG_DIEPTSIZ_XFRSIZ_Pos) == 0)
{
dev->DIEPEMPMSK &= ~(1 << n);
}
}
}
}
}
void dcd_int_handler(uint8_t rhport)
{
USB_OTG_GlobalTypeDef * usb_otg = GLOBAL_BASE(rhport);
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport);
USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);
uint32_t int_status = usb_otg->GINTSTS;
if(int_status & USB_OTG_GINTSTS_USBRST) {
// USBRST is start of reset.
usb_otg->GINTSTS = USB_OTG_GINTSTS_USBRST;
bus_reset(rhport);
}
if(int_status & USB_OTG_GINTSTS_ENUMDNE) {
// ENUMDNE is the end of reset where speed of the link is detected
usb_otg->GINTSTS = USB_OTG_GINTSTS_ENUMDNE;
tusb_speed_t const speed = get_speed(rhport);
set_turnaround(usb_otg, speed);
dcd_event_bus_reset(rhport, speed, true);
}
if(int_status & USB_OTG_GINTSTS_USBSUSP)
{
usb_otg->GINTSTS = USB_OTG_GINTSTS_USBSUSP;
dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
}
if(int_status & USB_OTG_GINTSTS_WKUINT)
{
usb_otg->GINTSTS = USB_OTG_GINTSTS_WKUINT;
dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
}
if(int_status & USB_OTG_GINTSTS_OTGINT)
{
// OTG INT bit is read-only
uint32_t const otg_int = usb_otg->GOTGINT;
if (otg_int & USB_OTG_GOTGINT_SEDET)
{
dcd_event_bus_signal(rhport, DCD_EVENT_UNPLUGGED, true);
}
usb_otg->GOTGINT = otg_int;
}
#if USE_SOF
if(int_status & USB_OTG_GINTSTS_SOF) {
usb_otg->GINTSTS = USB_OTG_GINTSTS_SOF;
dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true);
}
#endif
// RxFIFO non-empty interrupt handling.
if(int_status & USB_OTG_GINTSTS_RXFLVL) {
// RXFLVL bit is read-only
// Mask out RXFLVL while reading data from FIFO
usb_otg->GINTMSK &= ~USB_OTG_GINTMSK_RXFLVLM;
// Loop until all available packets were handled
do {
handle_rxflvl_ints(rhport, out_ep);
int_status = usb_otg->GINTSTS;
} while(int_status & USB_OTG_GINTSTS_RXFLVL);
usb_otg->GINTMSK |= USB_OTG_GINTMSK_RXFLVLM;
}
// OUT endpoint interrupt handling.
if(int_status & USB_OTG_GINTSTS_OEPINT) {
// OEPINT is read-only
handle_epout_ints(rhport, dev, out_ep);
}
// IN endpoint interrupt handling.
if(int_status & USB_OTG_GINTSTS_IEPINT) {
// IEPINT bit read-only
handle_epin_ints(rhport, dev, in_ep);
}
// // Check for Incomplete isochronous IN transfer
// if(int_status & USB_OTG_GINTSTS_IISOIXFR) {
// printf(" IISOIXFR!\r\n");
//// TU_LOG2(" IISOIXFR!\r\n");
// }
}
#endif