esp32-s2_dfu/src/class/midi/midi_device.c

357 lines
11 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if (TUSB_OPT_DEVICE_ENABLED && CFG_TUD_MIDI)
//--------------------------------------------------------------------+
// INCLUDE
//--------------------------------------------------------------------+
#include "midi_device.h"
#include "class/audio/audio.h"
#include "device/usbd_pvt.h"
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
typedef struct
{
uint8_t itf_num;
uint8_t ep_in;
uint8_t ep_out;
/*------------- From this point, data is not cleared by bus reset -------------*/
// FIFO
tu_fifo_t rx_ff;
tu_fifo_t tx_ff;
uint8_t rx_ff_buf[CFG_TUD_MIDI_RX_BUFSIZE];
uint8_t tx_ff_buf[CFG_TUD_MIDI_TX_BUFSIZE];
#if CFG_FIFO_MUTEX
osal_mutex_def_t rx_ff_mutex;
osal_mutex_def_t tx_ff_mutex;
#endif
// We need to pack messages into words before queueing their transmission so buffer across write
// calls.
uint8_t message_buffer[4];
uint8_t message_buffer_length;
uint8_t message_target_length;
// Endpoint Transfer buffer
CFG_TUSB_MEM_ALIGN uint8_t epout_buf[CFG_TUD_MIDI_EPSIZE];
CFG_TUSB_MEM_ALIGN uint8_t epin_buf[CFG_TUD_MIDI_EPSIZE];
} midid_interface_t;
#define ITF_MEM_RESET_SIZE offsetof(midid_interface_t, rx_ff)
//--------------------------------------------------------------------+
// INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+
CFG_TUSB_MEM_SECTION midid_interface_t _midid_itf[CFG_TUD_MIDI];
bool tud_midi_n_mounted (uint8_t itf)
{
midid_interface_t* midi = &_midid_itf[itf];
return midi->ep_in && midi->ep_out;
}
//--------------------------------------------------------------------+
// READ API
//--------------------------------------------------------------------+
uint32_t tud_midi_n_available(uint8_t itf, uint8_t jack_id)
{
(void) jack_id;
return tu_fifo_count(&_midid_itf[itf].rx_ff);
}
uint32_t tud_midi_n_read(uint8_t itf, uint8_t jack_id, void* buffer, uint32_t bufsize)
{
(void) jack_id;
return tu_fifo_read_n(&_midid_itf[itf].rx_ff, buffer, bufsize);
}
void tud_midi_n_read_flush (uint8_t itf, uint8_t jack_id)
{
(void) jack_id;
tu_fifo_clear(&_midid_itf[itf].rx_ff);
}
void midi_rx_done_cb(midid_interface_t* midi, uint8_t const* buffer, uint32_t bufsize) {
if (bufsize % 4 != 0) {
return;
}
for(uint32_t i=0; i<bufsize; i += 4) {
uint8_t header = buffer[i];
// uint8_t cable_number = (header & 0xf0) >> 4;
uint8_t code_index = header & 0x0f;
// We always copy over the first byte.
uint8_t count = 1;
// Ignore subsequent bytes based on the code.
if (code_index != 0x5 && code_index != 0xf) {
count = 2;
if (code_index != 0x2 && code_index != 0x6 && code_index != 0xc && code_index != 0xd) {
count = 3;
}
}
tu_fifo_write_n(&midi->rx_ff, &buffer[i + 1], count);
}
}
//--------------------------------------------------------------------+
// WRITE API
//--------------------------------------------------------------------+
static bool maybe_transmit(midid_interface_t* midi, uint8_t itf_index)
{
(void) itf_index;
// skip if previous transfer not complete
TU_VERIFY( !usbd_edpt_busy(TUD_OPT_RHPORT, midi->ep_in) );
uint16_t count = tu_fifo_read_n(&midi->tx_ff, midi->epin_buf, CFG_TUD_MIDI_EPSIZE);
if (count > 0)
{
TU_ASSERT( usbd_edpt_xfer(TUD_OPT_RHPORT, midi->ep_in, midi->epin_buf, count) );
}
return true;
}
uint32_t tud_midi_n_write(uint8_t itf, uint8_t jack_id, uint8_t const* buffer, uint32_t bufsize)
{
midid_interface_t* midi = &_midid_itf[itf];
if (midi->itf_num == 0) {
return 0;
}
uint32_t i = 0;
while (i < bufsize) {
uint8_t data = buffer[i];
if (midi->message_buffer_length == 0) {
uint8_t msg = data >> 4;
midi->message_buffer[1] = data;
midi->message_buffer_length = 2;
// Check to see if we're still in a SysEx transmit.
if (midi->message_buffer[0] == 0x4) {
if (data == 0xf7) {
midi->message_buffer[0] = 0x5;
} else {
midi->message_buffer_length = 4;
}
} else if ((msg >= 0x8 && msg <= 0xB) || msg == 0xE) {
midi->message_buffer[0] = jack_id << 4 | msg;
midi->message_target_length = 4;
} else if (msg == 0xC || msg == 0xD) {
midi->message_buffer[0] = jack_id << 4 | msg;
midi->message_target_length = 3;
} else if (msg == 0xf) {
if (data == 0xf0) {
midi->message_buffer[0] = 0x4;
midi->message_target_length = 4;
} else if (data == 0xf1 || data == 0xf3) {
midi->message_buffer[0] = 0x2;
midi->message_target_length = 3;
} else if (data == 0xf2) {
midi->message_buffer[0] = 0x3;
midi->message_target_length = 4;
} else {
midi->message_buffer[0] = 0x5;
midi->message_target_length = 2;
}
} else {
// Pack individual bytes if we don't support packing them into words.
midi->message_buffer[0] = jack_id << 4 | 0xf;
midi->message_buffer[2] = 0;
midi->message_buffer[3] = 0;
midi->message_buffer_length = 2;
midi->message_target_length = 2;
}
} else {
midi->message_buffer[midi->message_buffer_length] = data;
midi->message_buffer_length += 1;
// See if this byte ends a SysEx.
if (midi->message_buffer[0] == 0x4 && data == 0xf7) {
midi->message_buffer[0] = 0x4 + (midi->message_buffer_length - 1);
midi->message_target_length = midi->message_buffer_length;
}
}
if (midi->message_buffer_length == midi->message_target_length) {
uint16_t written = tu_fifo_write_n(&midi->tx_ff, midi->message_buffer, 4);
if (written < 4) {
TU_ASSERT( written == 0 );
break;
}
midi->message_buffer_length = 0;
}
i++;
}
maybe_transmit(midi, itf);
return i;
}
//--------------------------------------------------------------------+
// USBD Driver API
//--------------------------------------------------------------------+
void midid_init(void)
{
tu_memclr(_midid_itf, sizeof(_midid_itf));
for(uint8_t i=0; i<CFG_TUD_MIDI; i++)
{
midid_interface_t* midi = &_midid_itf[i];
// config fifo
tu_fifo_config(&midi->rx_ff, midi->rx_ff_buf, CFG_TUD_MIDI_RX_BUFSIZE, 1, true);
tu_fifo_config(&midi->tx_ff, midi->tx_ff_buf, CFG_TUD_MIDI_TX_BUFSIZE, 1, true);
#if CFG_FIFO_MUTEX
tu_fifo_config_mutex(&midi->rx_ff, osal_mutex_create(&midi->rx_ff_mutex));
tu_fifo_config_mutex(&midi->tx_ff, osal_mutex_create(&midi->tx_ff_mutex));
#endif
}
}
void midid_reset(uint8_t rhport)
{
(void) rhport;
for(uint8_t i=0; i<CFG_TUD_MIDI; i++)
{
midid_interface_t* midi = &_midid_itf[i];
tu_memclr(midi, ITF_MEM_RESET_SIZE);
tu_fifo_clear(&midi->rx_ff);
tu_fifo_clear(&midi->tx_ff);
}
}
bool midid_open(uint8_t rhport, tusb_desc_interface_t const * p_interface_desc, uint16_t *p_length)
{
// For now handle the audio control interface as well.
if ( AUDIO_SUBCLASS_CONTROL == p_interface_desc->bInterfaceSubClass) {
uint8_t const * p_desc = tu_desc_next ( (uint8_t const *) p_interface_desc );
(*p_length) = sizeof(tusb_desc_interface_t);
// Skip over the class specific descriptor.
(*p_length) += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
return true;
}
TU_VERIFY(AUDIO_SUBCLASS_MIDI_STREAMING == p_interface_desc->bInterfaceSubClass &&
AUDIO_PROTOCOL_V1 == p_interface_desc->bInterfaceProtocol );
// Find available interface
midid_interface_t * p_midi = NULL;
for(uint8_t i=0; i<CFG_TUD_MIDI; i++)
{
if ( _midid_itf[i].ep_in == 0 && _midid_itf[i].ep_out == 0 )
{
p_midi = &_midid_itf[i];
break;
}
}
p_midi->itf_num = p_interface_desc->bInterfaceNumber;
uint8_t const * p_desc = tu_desc_next( (uint8_t const *) p_interface_desc );
(*p_length) = sizeof(tusb_desc_interface_t);
uint8_t found_endpoints = 0;
while (found_endpoints < p_interface_desc->bNumEndpoints)
{
if ( TUSB_DESC_ENDPOINT == p_desc[DESC_OFFSET_TYPE])
{
TU_ASSERT( dcd_edpt_open(rhport, (tusb_desc_endpoint_t const *) p_desc), false);
uint8_t ep_addr = ((tusb_desc_endpoint_t const *) p_desc)->bEndpointAddress;
if (tu_edpt_dir(ep_addr) == TUSB_DIR_IN) {
p_midi->ep_in = ep_addr;
} else {
p_midi->ep_out = ep_addr;
}
(*p_length) += p_desc[DESC_OFFSET_LEN];
p_desc = tu_desc_next(p_desc);
found_endpoints += 1;
}
(*p_length) += p_desc[DESC_OFFSET_LEN];
p_desc = tu_desc_next(p_desc);
}
// Prepare for incoming data
TU_ASSERT( usbd_edpt_xfer(rhport, p_midi->ep_out, p_midi->epout_buf, CFG_TUD_MIDI_EPSIZE), false);
return true;
}
bool midid_control_complete(uint8_t rhport, tusb_control_request_t const * p_request)
{
(void) rhport;
(void) p_request;
return true;
}
bool midid_control_request(uint8_t rhport, tusb_control_request_t const * p_request)
{
(void) rhport;
//------------- Class Specific Request -------------//
if (p_request->bmRequestType_bit.type != TUSB_REQ_TYPE_CLASS) return false;
return false;
}
bool midid_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes)
{
(void) result;
// TODO Support multiple interfaces
uint8_t const itf = 0;
midid_interface_t* p_midi = &_midid_itf[itf];
// receive new data
if ( ep_addr == p_midi->ep_out )
{
midi_rx_done_cb(p_midi, p_midi->epout_buf, xferred_bytes);
// prepare for next
TU_ASSERT( usbd_edpt_xfer(rhport, p_midi->ep_out, p_midi->epout_buf, CFG_TUD_MIDI_EPSIZE), false );
} else if ( ep_addr == p_midi->ep_in ) {
maybe_transmit(p_midi, itf);
}
// nothing to do with in and notif endpoint
return TUSB_ERROR_NONE;
}
#endif