esp32-s2_dfu/src/host/usbh.c

1224 lines
36 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if CFG_TUH_ENABLED
#include "tusb.h"
#include "host/usbh.h"
#include "host/usbh_classdriver.h"
#include "hub.h"
//--------------------------------------------------------------------+
// USBH Configuration
//--------------------------------------------------------------------+
// TODO remove,update
#ifndef CFG_TUH_EP_MAX
#define CFG_TUH_EP_MAX 9
#endif
#ifndef CFG_TUH_TASK_QUEUE_SZ
#define CFG_TUH_TASK_QUEUE_SZ 16
#endif
// Debug level of USBD
#define USBH_DBG_LVL 2
//--------------------------------------------------------------------+
// USBH-HCD common data structure
//--------------------------------------------------------------------+
// device0 struct must be strictly a subset of normal device struct
typedef struct
{
// port
uint8_t rhport;
uint8_t hub_addr;
uint8_t hub_port;
uint8_t speed;
struct TU_ATTR_PACKED
{
volatile uint8_t connected : 1;
volatile uint8_t addressed : 1;
volatile uint8_t configured : 1;
volatile uint8_t suspended : 1;
};
} usbh_dev0_t;
typedef struct {
// port
uint8_t rhport;
uint8_t hub_addr;
uint8_t hub_port;
uint8_t speed;
struct TU_ATTR_PACKED
{
volatile uint8_t connected : 1;
volatile uint8_t addressed : 1;
volatile uint8_t configured : 1;
volatile uint8_t suspended : 1;
};
//------------- device descriptor -------------//
uint16_t vid;
uint16_t pid;
uint8_t ep0_size;
uint8_t i_manufacturer;
uint8_t i_product;
uint8_t i_serial;
//------------- configuration descriptor -------------//
// uint8_t interface_count; // bNumInterfaces alias
//------------- device -------------//
volatile uint8_t state; // device state, value from enum tusbh_device_state_t
uint8_t itf2drv[16]; // map interface number to driver (0xff is invalid)
uint8_t ep2drv[CFG_TUH_EP_MAX][2]; // map endpoint to driver ( 0xff is invalid )
struct TU_ATTR_PACKED
{
volatile bool busy : 1;
volatile bool stalled : 1;
volatile bool claimed : 1;
// TODO merge ep2drv here, 4-bit should be sufficient
}ep_status[CFG_TUH_EP_MAX][2];
// Mutex for claiming endpoint, only needed when using with preempted RTOS
#if CFG_TUSB_OS != OPT_OS_NONE
osal_mutex_def_t mutexdef;
osal_mutex_t mutex;
#endif
} usbh_device_t;
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
// Invalid driver ID in itf2drv[] ep2drv[][] mapping
enum { DRVID_INVALID = 0xFFu };
enum { ADDR_INVALID = 0xFFu };
#if CFG_TUSB_DEBUG >= 2
#define DRIVER_NAME(_name) .name = _name,
#else
#define DRIVER_NAME(_name)
#endif
static usbh_class_driver_t const usbh_class_drivers[] =
{
#if CFG_TUH_CDC
{
DRIVER_NAME("CDC")
.init = cdch_init,
.open = cdch_open,
.set_config = cdch_set_config,
.xfer_cb = cdch_xfer_cb,
.close = cdch_close
},
#endif
#if CFG_TUH_MSC
{
DRIVER_NAME("MSC")
.init = msch_init,
.open = msch_open,
.set_config = msch_set_config,
.xfer_cb = msch_xfer_cb,
.close = msch_close
},
#endif
#if CFG_TUH_HID
{
DRIVER_NAME("HID")
.init = hidh_init,
.open = hidh_open,
.set_config = hidh_set_config,
.xfer_cb = hidh_xfer_cb,
.close = hidh_close
},
#endif
#if CFG_TUH_HUB
{
DRIVER_NAME("HUB")
.init = hub_init,
.open = hub_open,
.set_config = hub_set_config,
.xfer_cb = hub_xfer_cb,
.close = hub_close
},
#endif
#if CFG_TUH_VENDOR
{
DRIVER_NAME("VENDOR")
.init = cush_init,
.open = cush_open_subtask,
.xfer_cb = cush_isr,
.close = cush_close
}
#endif
};
enum { USBH_CLASS_DRIVER_COUNT = TU_ARRAY_SIZE(usbh_class_drivers) };
enum { RESET_DELAY = 500 }; // 200 USB specs say only 50ms but many devices require much longer
enum { CONFIG_NUM = 1 }; // default to use configuration 1
//--------------------------------------------------------------------+
// INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+
static bool _usbh_initialized = false;
// Device with address = 0 for enumeration
static usbh_dev0_t _dev0;
// all devices excluding zero-address
// hub address start from CFG_TUH_DEVICE_MAX+1
CFG_TUSB_MEM_SECTION usbh_device_t _usbh_devices[CFG_TUH_DEVICE_MAX + CFG_TUH_HUB];
// Event queue
// role device/host is used by OS NONE for mutex (disable usb isr)
OSAL_QUEUE_DEF(usbh_int_set, _usbh_qdef, CFG_TUH_TASK_QUEUE_SZ, hcd_event_t);
static osal_queue_t _usbh_q;
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN static uint8_t _usbh_ctrl_buf[CFG_TUH_ENUMERATION_BUFSIZE];
//------------- Helper Function -------------//
TU_ATTR_ALWAYS_INLINE
static inline usbh_device_t* get_device(uint8_t dev_addr)
{
TU_ASSERT(dev_addr, NULL);
return &_usbh_devices[dev_addr-1];
}
static bool enum_new_device(hcd_event_t* event);
static void process_device_unplugged(uint8_t rhport, uint8_t hub_addr, uint8_t hub_port);
static bool usbh_edpt_control_open(uint8_t dev_addr, uint8_t max_packet_size);
// from usbh_control.c
extern bool usbh_control_xfer_cb (uint8_t dev_addr, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes);
//--------------------------------------------------------------------+
// PUBLIC API (Parameter Verification is required)
//--------------------------------------------------------------------+
bool tuh_mounted(uint8_t dev_addr)
{
return get_device(dev_addr)->configured;
}
bool tuh_vid_pid_get(uint8_t dev_addr, uint16_t* vid, uint16_t* pid)
{
*vid = *pid = 0;
TU_VERIFY(tuh_mounted(dev_addr));
usbh_device_t const* dev = get_device(dev_addr);
*vid = dev->vid;
*pid = dev->pid;
return true;
}
tusb_speed_t tuh_speed_get (uint8_t dev_addr)
{
return (tusb_speed_t) (dev_addr ? get_device(dev_addr)->speed : _dev0.speed);
}
#if CFG_TUSB_OS == OPT_OS_NONE
void osal_task_delay(uint32_t msec)
{
(void) msec;
const uint32_t start = hcd_frame_number(TUH_OPT_RHPORT);
while ( ( hcd_frame_number(TUH_OPT_RHPORT) - start ) < msec ) {}
}
#endif
//--------------------------------------------------------------------+
// CLASS-USBD API (don't require to verify parameters)
//--------------------------------------------------------------------+
bool tuh_inited(void)
{
return _usbh_initialized;
}
bool tuh_init(uint8_t rhport)
{
// skip if already initialized
if (_usbh_initialized) return _usbh_initialized;
TU_LOG2("USBH init\r\n");
tu_memclr(_usbh_devices, sizeof(_usbh_devices));
tu_memclr(&_dev0, sizeof(_dev0));
//------------- Enumeration & Reporter Task init -------------//
_usbh_q = osal_queue_create( &_usbh_qdef );
TU_ASSERT(_usbh_q != NULL);
//------------- Semaphore, Mutex for Control Pipe -------------//
for(uint8_t i=0; i<TU_ARRAY_SIZE(_usbh_devices); i++)
{
usbh_device_t * dev = &_usbh_devices[i];
#if CFG_TUSB_OS != OPT_OS_NONE
dev->mutex = osal_mutex_create(&dev->mutexdef);
TU_ASSERT(dev->mutex);
#endif
memset(dev->itf2drv, DRVID_INVALID, sizeof(dev->itf2drv)); // invalid mapping
memset(dev->ep2drv , DRVID_INVALID, sizeof(dev->ep2drv )); // invalid mapping
}
// Class drivers init
for (uint8_t drv_id = 0; drv_id < USBH_CLASS_DRIVER_COUNT; drv_id++)
{
TU_LOG2("%s init\r\n", usbh_class_drivers[drv_id].name);
usbh_class_drivers[drv_id].init();
}
TU_ASSERT(hcd_init(rhport));
hcd_int_enable(rhport);
_usbh_initialized = true;
return true;
}
/* USB Host Driver task
* This top level thread manages all host controller event and delegates events to class-specific drivers.
* This should be called periodically within the mainloop or rtos thread.
*
@code
int main(void)
{
application_init();
tusb_init();
while(1) // the mainloop
{
application_code();
tuh_task(); // tinyusb host task
}
}
@endcode
*/
void tuh_task(void)
{
// Skip if stack is not initialized
if ( !tusb_inited() ) return;
// Loop until there is no more events in the queue
while (1)
{
hcd_event_t event;
if ( !osal_queue_receive(_usbh_q, &event) ) return;
switch (event.event_id)
{
case HCD_EVENT_DEVICE_ATTACH:
// TODO due to the shared _usbh_ctrl_buf, we must complete enumerating
// one device before enumerating another one.
TU_LOG2("[rh%d] USBH DEVICE ATTACH\r\n", event.rhport);
enum_new_device(&event);
break;
case HCD_EVENT_DEVICE_REMOVE:
TU_LOG2("[rh%d] USBH DEVICE REMOVED\r\n", event.rhport);
process_device_unplugged(event.rhport, event.connection.hub_addr, event.connection.hub_port);
#if CFG_TUH_HUB
// TODO remove
if ( event.connection.hub_addr != 0)
{
// done with hub, waiting for next data on status pipe
(void) hub_status_pipe_queue( event.connection.hub_addr );
}
#endif
break;
case HCD_EVENT_XFER_COMPLETE:
{
uint8_t const ep_addr = event.xfer_complete.ep_addr;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const ep_dir = tu_edpt_dir(ep_addr);
TU_LOG2("on EP %02X with %u bytes\r\n", ep_addr, (unsigned int) event.xfer_complete.len);
if (event.dev_addr == 0)
{
// device 0 only has control endpoint
TU_ASSERT(epnum == 0, );
usbh_control_xfer_cb(event.dev_addr, ep_addr, event.xfer_complete.result, event.xfer_complete.len);
}
else
{
usbh_device_t* dev = get_device(event.dev_addr);
dev->ep_status[epnum][ep_dir].busy = false;
dev->ep_status[epnum][ep_dir].claimed = 0;
if ( 0 == epnum )
{
usbh_control_xfer_cb(event.dev_addr, ep_addr, event.xfer_complete.result, event.xfer_complete.len);
}else
{
uint8_t drv_id = dev->ep2drv[epnum][ep_dir];
TU_ASSERT(drv_id < USBH_CLASS_DRIVER_COUNT, );
TU_LOG2("%s xfer callback\r\n", usbh_class_drivers[drv_id].name);
usbh_class_drivers[drv_id].xfer_cb(event.dev_addr, ep_addr, event.xfer_complete.result, event.xfer_complete.len);
}
}
}
break;
case USBH_EVENT_FUNC_CALL:
if ( event.func_call.func ) event.func_call.func(event.func_call.param);
break;
default: break;
}
}
}
//--------------------------------------------------------------------+
// USBH API For Class Driver
//--------------------------------------------------------------------+
uint8_t usbh_get_rhport(uint8_t dev_addr)
{
return (dev_addr == 0) ? _dev0.rhport : get_device(dev_addr)->rhport;
}
uint8_t* usbh_get_enum_buf(void)
{
return _usbh_ctrl_buf;
}
void usbh_int_set(bool enabled)
{
// TODO all host controller
if (enabled)
{
hcd_int_enable(TUH_OPT_RHPORT);
}else
{
hcd_int_disable(TUH_OPT_RHPORT);
}
}
//--------------------------------------------------------------------+
// HCD Event Handler
//--------------------------------------------------------------------+
void hcd_devtree_get_info(uint8_t dev_addr, hcd_devtree_info_t* devtree_info)
{
if (dev_addr)
{
usbh_device_t const* dev = get_device(dev_addr);
devtree_info->rhport = dev->rhport;
devtree_info->hub_addr = dev->hub_addr;
devtree_info->hub_port = dev->hub_port;
devtree_info->speed = dev->speed;
}else
{
devtree_info->rhport = _dev0.rhport;
devtree_info->hub_addr = _dev0.hub_addr;
devtree_info->hub_port = _dev0.hub_port;
devtree_info->speed = _dev0.speed;
}
}
void hcd_event_handler(hcd_event_t const* event, bool in_isr)
{
switch (event->event_id)
{
default:
osal_queue_send(_usbh_q, event, in_isr);
break;
}
}
void hcd_event_xfer_complete(uint8_t dev_addr, uint8_t ep_addr, uint32_t xferred_bytes, xfer_result_t result, bool in_isr)
{
hcd_event_t event =
{
.rhport = 0, // TODO correct rhport
.event_id = HCD_EVENT_XFER_COMPLETE,
.dev_addr = dev_addr,
.xfer_complete =
{
.ep_addr = ep_addr,
.result = result,
.len = xferred_bytes
}
};
hcd_event_handler(&event, in_isr);
}
void hcd_event_device_attach(uint8_t rhport, bool in_isr)
{
hcd_event_t event =
{
.rhport = rhport,
.event_id = HCD_EVENT_DEVICE_ATTACH
};
event.connection.hub_addr = 0;
event.connection.hub_port = 0;
hcd_event_handler(&event, in_isr);
}
void hcd_event_device_remove(uint8_t hostid, bool in_isr)
{
hcd_event_t event =
{
.rhport = hostid,
.event_id = HCD_EVENT_DEVICE_REMOVE
};
event.connection.hub_addr = 0;
event.connection.hub_port = 0;
hcd_event_handler(&event, in_isr);
}
// a device unplugged on hostid, hub_addr, hub_port
// return true if found and unmounted device, false if cannot find
void process_device_unplugged(uint8_t rhport, uint8_t hub_addr, uint8_t hub_port)
{
//------------- find the all devices (star-network) under port that is unplugged -------------//
// TODO mark as disconnected in ISR, also handle dev0
for ( uint8_t dev_id = 0; dev_id < TU_ARRAY_SIZE(_usbh_devices); dev_id++ )
{
usbh_device_t* dev = &_usbh_devices[dev_id];
uint8_t const dev_addr = dev_id+1;
// TODO Hub multiple level
if (dev->rhport == rhport &&
(hub_addr == 0 || dev->hub_addr == hub_addr) && // hub_addr == 0 & hub_port == 0 means roothub
(hub_port == 0 || dev->hub_port == hub_port) &&
dev->state != TUSB_DEVICE_STATE_UNPLUG)
{
// Invoke callback before close driver
if (tuh_umount_cb) tuh_umount_cb(dev_addr);
// Close class driver
for (uint8_t drv_id = 0; drv_id < USBH_CLASS_DRIVER_COUNT; drv_id++)
{
TU_LOG2("%s close\r\n", usbh_class_drivers[drv_id].name);
usbh_class_drivers[drv_id].close(dev_addr);
}
hcd_device_close(rhport, dev_addr);
// release all endpoints associated with the device
memset(dev->itf2drv, DRVID_INVALID, sizeof(dev->itf2drv)); // invalid mapping
memset(dev->ep2drv , DRVID_INVALID, sizeof(dev->ep2drv )); // invalid mapping
tu_memclr(dev->ep_status, sizeof(dev->ep_status));
dev->state = TUSB_DEVICE_STATE_UNPLUG;
}
}
}
//--------------------------------------------------------------------+
// INTERNAL HELPER
//--------------------------------------------------------------------+
static uint8_t get_new_address(bool is_hub)
{
uint8_t const start = (is_hub ? CFG_TUH_DEVICE_MAX : 0) + 1;
uint8_t const count = (is_hub ? CFG_TUH_HUB : CFG_TUH_DEVICE_MAX);
for (uint8_t i=0; i < count; i++)
{
uint8_t const addr = start + i;
if (get_device(addr)->state == TUSB_DEVICE_STATE_UNPLUG) return addr;
}
return ADDR_INVALID;
}
void usbh_driver_set_config_complete(uint8_t dev_addr, uint8_t itf_num)
{
usbh_device_t* dev = get_device(dev_addr);
for(itf_num++; itf_num < sizeof(dev->itf2drv); itf_num++)
{
// continue with next valid interface
// TODO skip IAD binding interface such as CDCs
uint8_t const drv_id = dev->itf2drv[itf_num];
if (drv_id != DRVID_INVALID)
{
usbh_class_driver_t const * driver = &usbh_class_drivers[drv_id];
TU_LOG2("%s set config: itf = %u\r\n", driver->name, itf_num);
driver->set_config(dev_addr, itf_num);
break;
}
}
// all interface are configured
if (itf_num == sizeof(dev->itf2drv))
{
// Invoke callback if available
if (tuh_mount_cb) tuh_mount_cb(dev_addr);
}
}
//--------------------------------------------------------------------+
// Enumeration Process
// is a lengthy process with a seires of control transfer to configure
// newly attached device. Each step is handled by a function in this
// section
// TODO due to the shared _usbh_ctrl_buf, we must complete enumerating
// one device before enumerating another one.
//--------------------------------------------------------------------+
static bool enum_request_addr0_device_desc(void);
static bool enum_request_set_addr(void);
static bool enum_get_addr0_device_desc_complete (uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result);
static bool enum_set_address_complete (uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result);
static bool enum_get_device_desc_complete (uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result);
static bool enum_get_9byte_config_desc_complete (uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result);
static bool enum_get_config_desc_complete (uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result);
static bool enum_set_config_complete (uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result);
static bool parse_configuration_descriptor (uint8_t dev_addr, tusb_desc_configuration_t const* desc_cfg);
#if CFG_TUH_HUB
static bool enum_hub_clear_reset0_complete(uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result)
{
(void) dev_addr; (void) request;
TU_ASSERT(XFER_RESULT_SUCCESS == result);
enum_request_addr0_device_desc();
return true;
}
static bool enum_hub_clear_reset1_complete(uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result)
{
(void) dev_addr; (void) request;
TU_ASSERT(XFER_RESULT_SUCCESS == result);
enum_request_set_addr();
// done with hub, waiting for next data on status pipe
(void) hub_status_pipe_queue( _dev0.hub_addr );
return true;
}
static bool enum_hub_get_status1_complete(uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result)
{
(void) dev_addr; (void) request;
TU_ASSERT(XFER_RESULT_SUCCESS == result);
hub_port_status_response_t port_status;
memcpy(&port_status, _usbh_ctrl_buf, sizeof(hub_port_status_response_t));
// Acknowledge Port Reset Change if Reset Successful
if (port_status.change.reset)
{
TU_ASSERT( hub_port_clear_feature(_dev0.hub_addr, _dev0.hub_port, HUB_FEATURE_PORT_RESET_CHANGE, enum_hub_clear_reset1_complete) );
}
return true;
}
static bool enum_hub_get_status0_complete(uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result)
{
(void) dev_addr; (void) request;
TU_ASSERT(XFER_RESULT_SUCCESS == result);
hub_port_status_response_t port_status;
memcpy(&port_status, _usbh_ctrl_buf, sizeof(hub_port_status_response_t));
if ( !port_status.status.connection )
{
// device unplugged while delaying, nothing else to do, queue hub status
return hub_status_pipe_queue(dev_addr);
}
_dev0.speed = (port_status.status.high_speed) ? TUSB_SPEED_HIGH :
(port_status.status.low_speed ) ? TUSB_SPEED_LOW : TUSB_SPEED_FULL;
// Acknowledge Port Reset Change
if (port_status.change.reset)
{
hub_port_clear_feature(_dev0.hub_addr, _dev0.hub_port, HUB_FEATURE_PORT_RESET_CHANGE, enum_hub_clear_reset0_complete);
}
return true;
}
#endif
static bool enum_new_device(hcd_event_t* event)
{
_dev0.rhport = event->rhport; // TODO refractor integrate to device_pool
_dev0.hub_addr = event->connection.hub_addr;
_dev0.hub_port = event->connection.hub_port;
//------------- connected/disconnected directly with roothub -------------//
if (_dev0.hub_addr == 0)
{
// wait until device is stable TODO non blocking
hcd_port_reset(_dev0.rhport);
osal_task_delay(RESET_DELAY);
hcd_port_reset_end( _dev0.rhport);
// device unplugged while delaying
if ( !hcd_port_connect_status(_dev0.rhport) ) return true;
_dev0.speed = hcd_port_speed_get(_dev0.rhport );
TU_LOG2("%s Speed\r\n", tusb_speed_str[_dev0.speed]);
enum_request_addr0_device_desc();
}
#if CFG_TUH_HUB
//------------- connected/disconnected via hub -------------//
else
{
// wait until device is stable
osal_task_delay(RESET_DELAY);
TU_ASSERT( hub_port_get_status(_dev0.hub_addr, _dev0.hub_port, _usbh_ctrl_buf, enum_hub_get_status0_complete) );
}
#endif // CFG_TUH_HUB
return true;
}
static bool enum_request_addr0_device_desc(void)
{
// TODO probably doesn't need to open/close each enumeration
uint8_t const addr0 = 0;
TU_ASSERT( usbh_edpt_control_open(addr0, 8) );
//------------- Get first 8 bytes of device descriptor to get Control Endpoint Size -------------//
TU_LOG2("Get 8 byte of Device Descriptor\r\n");
tusb_control_request_t const request =
{
.bmRequestType_bit =
{
.recipient = TUSB_REQ_RCPT_DEVICE,
.type = TUSB_REQ_TYPE_STANDARD,
.direction = TUSB_DIR_IN
},
.bRequest = TUSB_REQ_GET_DESCRIPTOR,
.wValue = TUSB_DESC_DEVICE << 8,
.wIndex = 0,
.wLength = 8
};
TU_ASSERT( tuh_control_xfer(addr0, &request, _usbh_ctrl_buf, enum_get_addr0_device_desc_complete) );
return true;
}
// After Get Device Descriptor of Address 0
static bool enum_get_addr0_device_desc_complete(uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result)
{
(void) request;
TU_ASSERT(0 == dev_addr);
if (XFER_RESULT_SUCCESS != result)
{
#if CFG_TUH_HUB
// TODO remove, waiting for next data on status pipe
if (_dev0.hub_addr != 0) hub_status_pipe_queue(_dev0.hub_addr);
#endif
return false;
}
tusb_desc_device_t const * desc_device = (tusb_desc_device_t const*) _usbh_ctrl_buf;
TU_ASSERT( tu_desc_type(desc_device) == TUSB_DESC_DEVICE );
// Reset device again before Set Address
// reset port after 8 byte descriptor
TU_LOG2("Port reset \r\n");
if (_dev0.hub_addr == 0)
{
#if !CFG_TUH_RPI_PIO // skip this reset for pio-usb
// connected directly to roothub
hcd_port_reset(_dev0.rhport);
osal_task_delay(RESET_DELAY);
hcd_port_reset_end(_dev0.rhport);
#endif
enum_request_set_addr();
}
#if CFG_TUH_HUB
else
{
// after RESET_DELAY the hub_port_reset() already complete
TU_ASSERT( hub_port_reset(_dev0.hub_addr, _dev0.hub_port, NULL) );
osal_task_delay(RESET_DELAY);
tuh_task(); // FIXME temporarily to clean up port_reset control transfer
TU_ASSERT( hub_port_get_status(_dev0.hub_addr, _dev0.hub_port, _usbh_ctrl_buf, enum_hub_get_status1_complete) );
}
#endif
return true;
}
static bool enum_request_set_addr(void)
{
uint8_t const addr0 = 0;
tusb_desc_device_t const * desc_device = (tusb_desc_device_t const*) _usbh_ctrl_buf;
// Get new address
uint8_t const new_addr = get_new_address(desc_device->bDeviceClass == TUSB_CLASS_HUB);
TU_ASSERT(new_addr != ADDR_INVALID);
TU_LOG2("Set Address = %d\r\n", new_addr);
usbh_device_t* new_dev = get_device(new_addr);
new_dev->rhport = _dev0.rhport;
new_dev->hub_addr = _dev0.hub_addr;
new_dev->hub_port = _dev0.hub_port;
new_dev->speed = _dev0.speed;
new_dev->connected = 1;
new_dev->ep0_size = desc_device->bMaxPacketSize0;
tusb_control_request_t const new_request =
{
.bmRequestType_bit =
{
.recipient = TUSB_REQ_RCPT_DEVICE,
.type = TUSB_REQ_TYPE_STANDARD,
.direction = TUSB_DIR_OUT
},
.bRequest = TUSB_REQ_SET_ADDRESS,
.wValue = new_addr,
.wIndex = 0,
.wLength = 0
};
TU_ASSERT( tuh_control_xfer(addr0, &new_request, NULL, enum_set_address_complete) );
return true;
}
// After SET_ADDRESS is complete
static bool enum_set_address_complete(uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result)
{
TU_ASSERT(0 == dev_addr);
TU_ASSERT(XFER_RESULT_SUCCESS == result);
uint8_t const new_addr = (uint8_t const) request->wValue;
usbh_device_t* new_dev = get_device(new_addr);
new_dev->addressed = 1;
// TODO close device 0, may not be needed
hcd_device_close(_dev0.rhport, 0);
// open control pipe for new address
TU_ASSERT( usbh_edpt_control_open(new_addr, new_dev->ep0_size) );
// Get full device descriptor
TU_LOG2("Get Device Descriptor\r\n");
tusb_control_request_t const new_request =
{
.bmRequestType_bit =
{
.recipient = TUSB_REQ_RCPT_DEVICE,
.type = TUSB_REQ_TYPE_STANDARD,
.direction = TUSB_DIR_IN
},
.bRequest = TUSB_REQ_GET_DESCRIPTOR,
.wValue = TUSB_DESC_DEVICE << 8,
.wIndex = 0,
.wLength = sizeof(tusb_desc_device_t)
};
TU_ASSERT(tuh_control_xfer(new_addr, &new_request, _usbh_ctrl_buf, enum_get_device_desc_complete));
return true;
}
static bool enum_get_device_desc_complete(uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result)
{
(void) request;
TU_ASSERT(XFER_RESULT_SUCCESS == result);
tusb_desc_device_t const * desc_device = (tusb_desc_device_t const*) _usbh_ctrl_buf;
usbh_device_t* dev = get_device(dev_addr);
dev->vid = desc_device->idVendor;
dev->pid = desc_device->idProduct;
dev->i_manufacturer = desc_device->iManufacturer;
dev->i_product = desc_device->iProduct;
dev->i_serial = desc_device->iSerialNumber;
// if (tuh_attach_cb) tuh_attach_cb((tusb_desc_device_t*) _usbh_ctrl_buf);
TU_LOG2("Get 9 bytes of Configuration Descriptor\r\n");
tusb_control_request_t const new_request =
{
.bmRequestType_bit =
{
.recipient = TUSB_REQ_RCPT_DEVICE,
.type = TUSB_REQ_TYPE_STANDARD,
.direction = TUSB_DIR_IN
},
.bRequest = TUSB_REQ_GET_DESCRIPTOR,
.wValue = (TUSB_DESC_CONFIGURATION << 8) | (CONFIG_NUM - 1),
.wIndex = 0,
.wLength = 9
};
TU_ASSERT( tuh_control_xfer(dev_addr, &new_request, _usbh_ctrl_buf, enum_get_9byte_config_desc_complete) );
return true;
}
static bool enum_get_9byte_config_desc_complete(uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result)
{
(void) request;
TU_ASSERT(XFER_RESULT_SUCCESS == result);
// TODO not enough buffer to hold configuration descriptor
uint8_t const * desc_config = _usbh_ctrl_buf;
// Use offsetof to avoid pointer to the odd/misaligned address
uint16_t const total_len = tu_le16toh( tu_unaligned_read16(desc_config + offsetof(tusb_desc_configuration_t, wTotalLength)) );
TU_ASSERT(total_len <= CFG_TUH_ENUMERATION_BUFSIZE);
// Get full configuration descriptor
TU_LOG2("Get Configuration Descriptor\r\n");
tusb_control_request_t const new_request =
{
.bmRequestType_bit =
{
.recipient = TUSB_REQ_RCPT_DEVICE,
.type = TUSB_REQ_TYPE_STANDARD,
.direction = TUSB_DIR_IN
},
.bRequest = TUSB_REQ_GET_DESCRIPTOR,
.wValue = (TUSB_DESC_CONFIGURATION << 8) | (CONFIG_NUM - 1),
.wIndex = 0,
.wLength = total_len
};
TU_ASSERT( tuh_control_xfer(dev_addr, &new_request, _usbh_ctrl_buf, enum_get_config_desc_complete) );
return true;
}
static bool enum_get_config_desc_complete(uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result)
{
(void) request;
TU_ASSERT(XFER_RESULT_SUCCESS == result);
// Parse configuration & set up drivers
// Driver open aren't allowed to make any usb transfer yet
TU_ASSERT( parse_configuration_descriptor(dev_addr, (tusb_desc_configuration_t*) _usbh_ctrl_buf) );
TU_LOG2("Set Configuration = %d\r\n", CONFIG_NUM);
tusb_control_request_t const new_request =
{
.bmRequestType_bit =
{
.recipient = TUSB_REQ_RCPT_DEVICE,
.type = TUSB_REQ_TYPE_STANDARD,
.direction = TUSB_DIR_OUT
},
.bRequest = TUSB_REQ_SET_CONFIGURATION,
.wValue = CONFIG_NUM,
.wIndex = 0,
.wLength = 0
};
TU_ASSERT( tuh_control_xfer(dev_addr, &new_request, NULL, enum_set_config_complete) );
return true;
}
static bool enum_set_config_complete(uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result)
{
(void) request;
TU_ASSERT(XFER_RESULT_SUCCESS == result);
TU_LOG2("Device configured\r\n");
usbh_device_t* dev = get_device(dev_addr);
dev->configured = 1;
dev->state = TUSB_DEVICE_STATE_CONFIGURED;
// Start the Set Configuration process for interfaces (itf = DRVID_INVALID)
// Since driver can perform control transfer within its set_config, this is done asynchronously.
// The process continue with next interface when class driver complete its sequence with usbh_driver_set_config_complete()
// TODO use separated API instead of using DRVID_INVALID
usbh_driver_set_config_complete(dev_addr, DRVID_INVALID);
return true;
}
static bool parse_configuration_descriptor(uint8_t dev_addr, tusb_desc_configuration_t const* desc_cfg)
{
usbh_device_t* dev = get_device(dev_addr);
uint8_t const* desc_end = ((uint8_t const*) desc_cfg) + tu_le16toh(desc_cfg->wTotalLength);
uint8_t const* p_desc = tu_desc_next(desc_cfg);
// parse each interfaces
while( p_desc < desc_end )
{
uint8_t assoc_itf_count = 1;
// Class will always starts with Interface Association (if any) and then Interface descriptor
if ( TUSB_DESC_INTERFACE_ASSOCIATION == tu_desc_type(p_desc) )
{
tusb_desc_interface_assoc_t const * desc_iad = (tusb_desc_interface_assoc_t const *) p_desc;
assoc_itf_count = desc_iad->bInterfaceCount;
p_desc = tu_desc_next(p_desc); // next to Interface
// IAD's first interface number and class should match with opened interface
//TU_ASSERT(desc_iad->bFirstInterface == desc_itf->bInterfaceNumber &&
// desc_iad->bFunctionClass == desc_itf->bInterfaceClass);
}
TU_ASSERT( TUSB_DESC_INTERFACE == tu_desc_type(p_desc) );
tusb_desc_interface_t const* desc_itf = (tusb_desc_interface_t const*) p_desc;
#if CFG_TUH_MIDI
// MIDI has 2 interfaces (Audio Control v1 + MIDIStreaming) but does not have IAD
// manually increase the associated count
if (1 == assoc_itf_count &&
TUSB_CLASS_AUDIO == desc_itf->bInterfaceClass &&
AUDIO_SUBCLASS_CONTROL == desc_itf->bInterfaceSubClass &&
AUDIO_FUNC_PROTOCOL_CODE_UNDEF == desc_itf->bInterfaceProtocol)
{
assoc_itf_count = 2;
}
#endif
uint16_t const drv_len = tu_desc_get_interface_total_len(desc_itf, assoc_itf_count, desc_end-p_desc);
TU_ASSERT(drv_len >= sizeof(tusb_desc_interface_t));
if (desc_itf->bInterfaceClass == TUSB_CLASS_HUB && dev->hub_addr != 0)
{
// TODO Attach hub to Hub is not currently supported
// skip this interface
TU_LOG(USBH_DBG_LVL, "Only 1 level of HUB is supported\r\n");
}
else
{
// Find driver for this interface
uint8_t drv_id;
for (drv_id = 0; drv_id < USBH_CLASS_DRIVER_COUNT; drv_id++)
{
usbh_class_driver_t const * driver = &usbh_class_drivers[drv_id];
if ( driver->open(dev->rhport, dev_addr, desc_itf, drv_len) )
{
// open successfully
TU_LOG2(" %s opened\r\n", driver->name);
// bind (associated) interfaces to found driver
for(uint8_t i=0; i<assoc_itf_count; i++)
{
uint8_t const itf_num = desc_itf->bInterfaceNumber+i;
// Interface number must not be used already
TU_ASSERT( DRVID_INVALID == dev->itf2drv[itf_num] );
dev->itf2drv[itf_num] = drv_id;
}
// bind all endpoints to found driver
tu_edpt_bind_driver(dev->ep2drv, desc_itf, drv_len, drv_id);
break; // exit driver find loop
}
}
if( drv_id >= USBH_CLASS_DRIVER_COUNT )
{
TU_LOG(USBH_DBG_LVL, "Interface %u: class = %u subclass = %u protocol = %u is not supported\r\n",
desc_itf->bInterfaceNumber, desc_itf->bInterfaceClass, desc_itf->bInterfaceSubClass, desc_itf->bInterfaceProtocol);
}
}
// next Interface or IAD descriptor
p_desc += drv_len;
}
return true;
}
//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+
// TODO has some duplication code with device, refactor later
bool usbh_edpt_claim(uint8_t dev_addr, uint8_t ep_addr)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
usbh_device_t* dev = get_device(dev_addr);
#if CFG_TUSB_OS != OPT_OS_NONE
// pre-check to help reducing mutex lock
TU_VERIFY((dev->ep_status[epnum][dir].busy == 0) && (dev->ep_status[epnum][dir].claimed == 0));
osal_mutex_lock(dev->mutex, OSAL_TIMEOUT_WAIT_FOREVER);
#endif
// can only claim the endpoint if it is not busy and not claimed yet.
bool const ret = (dev->ep_status[epnum][dir].busy == 0) && (dev->ep_status[epnum][dir].claimed == 0);
if (ret)
{
dev->ep_status[epnum][dir].claimed = 1;
}
#if CFG_TUSB_OS != OPT_OS_NONE
osal_mutex_unlock(dev->mutex);
#endif
return ret;
}
// TODO has some duplication code with device, refactor later
bool usbh_edpt_release(uint8_t dev_addr, uint8_t ep_addr)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
usbh_device_t* dev = get_device(dev_addr);
#if CFG_TUSB_OS != OPT_OS_NONE
osal_mutex_lock(dev->mutex, OSAL_TIMEOUT_WAIT_FOREVER);
#endif
// can only release the endpoint if it is claimed and not busy
bool const ret = (dev->ep_status[epnum][dir].busy == 0) && (dev->ep_status[epnum][dir].claimed == 1);
if (ret)
{
dev->ep_status[epnum][dir].claimed = 0;
}
#if CFG_TUSB_OS != OPT_OS_NONE
osal_mutex_unlock(dev->mutex);
#endif
return ret;
}
// TODO has some duplication code with device, refactor later
bool usbh_edpt_xfer(uint8_t dev_addr, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
usbh_device_t* dev = get_device(dev_addr);
TU_LOG2(" Queue EP %02X with %u bytes ... ", ep_addr, total_bytes);
// Attempt to transfer on a busy endpoint, sound like an race condition !
TU_ASSERT(dev->ep_status[epnum][dir].busy == 0);
// Set busy first since the actual transfer can be complete before hcd_edpt_xfer()
// could return and USBH task can preempt and clear the busy
dev->ep_status[epnum][dir].busy = true;
if ( hcd_edpt_xfer(dev->rhport, dev_addr, ep_addr, buffer, total_bytes) )
{
TU_LOG2("OK\r\n");
return true;
}else
{
// HCD error, mark endpoint as ready to allow next transfer
dev->ep_status[epnum][dir].busy = false;
dev->ep_status[epnum][dir].claimed = 0;
TU_LOG2("failed\r\n");
TU_BREAKPOINT();
return false;
}
}
static bool usbh_edpt_control_open(uint8_t dev_addr, uint8_t max_packet_size)
{
TU_LOG2("Open EP0 with Size = %u (addr = %u)\r\n", max_packet_size, dev_addr);
tusb_desc_endpoint_t ep0_desc =
{
.bLength = sizeof(tusb_desc_endpoint_t),
.bDescriptorType = TUSB_DESC_ENDPOINT,
.bEndpointAddress = 0,
.bmAttributes = { .xfer = TUSB_XFER_CONTROL },
.wMaxPacketSize = max_packet_size,
.bInterval = 0
};
return hcd_edpt_open(usbh_get_rhport(dev_addr), dev_addr, &ep0_desc);
}
bool usbh_edpt_open(uint8_t rhport, uint8_t dev_addr, tusb_desc_endpoint_t const * desc_ep)
{
usbh_device_t* dev = get_device(dev_addr);
TU_ASSERT(tu_edpt_validate(desc_ep, (tusb_speed_t) dev->speed));
return hcd_edpt_open(rhport, dev_addr, desc_ep);
}
bool usbh_edpt_busy(uint8_t dev_addr, uint8_t ep_addr)
{
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
usbh_device_t* dev = get_device(dev_addr);
return dev->ep_status[epnum][dir].busy;
}
#endif