esp32-s2_dfu/src/class/msc/msc_device.c

706 lines
23 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if (TUSB_OPT_DEVICE_ENABLED && CFG_TUD_MSC)
#include "device/usbd.h"
#include "device/usbd_pvt.h"
#include "device/dcd.h" // for faking dcd_event_xfer_complete
#include "msc_device.h"
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
// Can be selectively disabled to reduce logging when troubleshooting other driver
#define MSC_DEBUG 2
enum
{
MSC_STAGE_CMD = 0,
MSC_STAGE_DATA,
MSC_STAGE_STATUS,
MSC_STAGE_STATUS_SENT
};
typedef struct
{
// TODO optimize alignment
CFG_TUSB_MEM_ALIGN msc_cbw_t cbw;
CFG_TUSB_MEM_ALIGN msc_csw_t csw;
uint8_t itf_num;
uint8_t ep_in;
uint8_t ep_out;
// Bulk Only Transfer (BOT) Protocol
uint8_t stage;
uint32_t total_len;
uint32_t xferred_len; // numbered of bytes transferred so far in the Data Stage
// Sense Response Data
uint8_t sense_key;
uint8_t add_sense_code;
uint8_t add_sense_qualifier;
}mscd_interface_t;
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN static mscd_interface_t _mscd_itf;
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN static uint8_t _mscd_buf[CFG_TUD_MSC_EP_BUFSIZE];
//--------------------------------------------------------------------+
// INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+
static int32_t proc_builtin_scsi(uint8_t lun, uint8_t const scsi_cmd[16], uint8_t* buffer, uint32_t bufsize);
static void proc_read10_cmd(uint8_t rhport, mscd_interface_t* p_msc);
static void proc_write10_cmd(uint8_t rhport, mscd_interface_t* p_msc);
static inline uint32_t rdwr10_get_lba(uint8_t const command[])
{
// use offsetof to avoid pointer to the odd/unaligned address
uint32_t const lba = tu_unaligned_read32(command + offsetof(scsi_write10_t, lba));
// lba is in Big Endian
return tu_ntohl(lba);
}
static inline uint16_t rdwr10_get_blockcount(uint8_t const command[])
{
// use offsetof to avoid pointer to the odd/misaligned address
uint16_t const block_count = tu_unaligned_read16(command + offsetof(scsi_write10_t, block_count));
// block count is in Big Endian
return tu_ntohs(block_count);
}
//--------------------------------------------------------------------+
// Debug
//--------------------------------------------------------------------+
#if CFG_TUSB_DEBUG >= 2
TU_ATTR_UNUSED static tu_lookup_entry_t const _msc_scsi_cmd_lookup[] =
{
{ .key = SCSI_CMD_TEST_UNIT_READY , .data = "Test Unit Ready" },
{ .key = SCSI_CMD_INQUIRY , .data = "Inquiry" },
{ .key = SCSI_CMD_MODE_SELECT_6 , .data = "Mode_Select 6" },
{ .key = SCSI_CMD_MODE_SENSE_6 , .data = "Mode_Sense 6" },
{ .key = SCSI_CMD_START_STOP_UNIT , .data = "Start Stop Unit" },
{ .key = SCSI_CMD_PREVENT_ALLOW_MEDIUM_REMOVAL , .data = "Prevent Allow Medium Removal" },
{ .key = SCSI_CMD_READ_CAPACITY_10 , .data = "Read Capacity10" },
{ .key = SCSI_CMD_REQUEST_SENSE , .data = "Request Sense" },
{ .key = SCSI_CMD_READ_FORMAT_CAPACITY , .data = "Read Format Capacity" },
{ .key = SCSI_CMD_READ_10 , .data = "Read10" },
{ .key = SCSI_CMD_WRITE_10 , .data = "Write10" }
};
TU_ATTR_UNUSED static tu_lookup_table_t const _msc_scsi_cmd_table =
{
.count = TU_ARRAY_SIZE(_msc_scsi_cmd_lookup),
.items = _msc_scsi_cmd_lookup
};
#endif
//--------------------------------------------------------------------+
// APPLICATION API
//--------------------------------------------------------------------+
bool tud_msc_set_sense(uint8_t lun, uint8_t sense_key, uint8_t add_sense_code, uint8_t add_sense_qualifier)
{
(void) lun;
_mscd_itf.sense_key = sense_key;
_mscd_itf.add_sense_code = add_sense_code;
_mscd_itf.add_sense_qualifier = add_sense_qualifier;
return true;
}
//--------------------------------------------------------------------+
// USBD Driver API
//--------------------------------------------------------------------+
void mscd_init(void)
{
tu_memclr(&_mscd_itf, sizeof(mscd_interface_t));
}
void mscd_reset(uint8_t rhport)
{
(void) rhport;
tu_memclr(&_mscd_itf, sizeof(mscd_interface_t));
}
uint16_t mscd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len)
{
// only support SCSI's BOT protocol
TU_VERIFY(TUSB_CLASS_MSC == itf_desc->bInterfaceClass &&
MSC_SUBCLASS_SCSI == itf_desc->bInterfaceSubClass &&
MSC_PROTOCOL_BOT == itf_desc->bInterfaceProtocol, 0);
// msc driver length is fixed
uint16_t const drv_len = sizeof(tusb_desc_interface_t) + 2*sizeof(tusb_desc_endpoint_t);
// Max length mus be at least 1 interface + 2 endpoints
TU_ASSERT(max_len >= drv_len, 0);
mscd_interface_t * p_msc = &_mscd_itf;
p_msc->itf_num = itf_desc->bInterfaceNumber;
// Open endpoint pair
TU_ASSERT( usbd_open_edpt_pair(rhport, tu_desc_next(itf_desc), 2, TUSB_XFER_BULK, &p_msc->ep_out, &p_msc->ep_in), 0 );
// Prepare for Command Block Wrapper
if ( !usbd_edpt_xfer(rhport, p_msc->ep_out, (uint8_t*) &p_msc->cbw, sizeof(msc_cbw_t)) )
{
TU_LOG_FAILED();
TU_BREAKPOINT();
}
return drv_len;
}
// Invoked when a control transfer occurred on an interface of this class
// Driver response accordingly to the request and the transfer stage (setup/data/ack)
// return false to stall control endpoint (e.g unsupported request)
bool mscd_control_xfer_cb(uint8_t rhport, uint8_t stage, tusb_control_request_t const * p_request)
{
// nothing to do with DATA & ACK stage
if (stage != CONTROL_STAGE_SETUP) return true;
// Handle class request only
TU_VERIFY(p_request->bmRequestType_bit.type == TUSB_REQ_TYPE_CLASS);
switch ( p_request->bRequest )
{
case MSC_REQ_RESET:
// TODO: Actually reset interface.
tud_control_status(rhport, p_request);
break;
case MSC_REQ_GET_MAX_LUN:
{
uint8_t maxlun = 1;
if (tud_msc_get_maxlun_cb) maxlun = tud_msc_get_maxlun_cb();
TU_VERIFY(maxlun);
// MAX LUN is minus 1 by specs
maxlun--;
tud_control_xfer(rhport, p_request, &maxlun, 1);
}
break;
default: return false; // stall unsupported request
}
return true;
}
bool mscd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes)
{
mscd_interface_t* p_msc = &_mscd_itf;
msc_cbw_t const * p_cbw = &p_msc->cbw;
msc_csw_t * p_csw = &p_msc->csw;
switch (p_msc->stage)
{
case MSC_STAGE_CMD:
//------------- new CBW received -------------//
// Complete IN while waiting for CMD is usually Status of previous SCSI op, ignore it
if(ep_addr != p_msc->ep_out) return true;
TU_ASSERT( event == XFER_RESULT_SUCCESS &&
xferred_bytes == sizeof(msc_cbw_t) && p_cbw->signature == MSC_CBW_SIGNATURE );
TU_LOG(MSC_DEBUG, " SCSI Command: %s\r\n", tu_lookup_find(&_msc_scsi_cmd_table, p_cbw->command[0]));
// TU_LOG_MEM(MSC_DEBUG, p_cbw, xferred_bytes, 2);
p_csw->signature = MSC_CSW_SIGNATURE;
p_csw->tag = p_cbw->tag;
p_csw->data_residue = 0;
/*------------- Parse command and prepare DATA -------------*/
p_msc->stage = MSC_STAGE_DATA;
p_msc->total_len = p_cbw->total_bytes;
p_msc->xferred_len = 0;
if (SCSI_CMD_READ_10 == p_cbw->command[0])
{
proc_read10_cmd(rhport, p_msc);
}
else if (SCSI_CMD_WRITE_10 == p_cbw->command[0])
{
proc_write10_cmd(rhport, p_msc);
}
else
{
// For other SCSI commands
// 1. OUT : queue transfer (invoke app callback after done)
// 2. IN & Zero: Process if is built-in, else Invoke app callback. Skip DATA if zero length
if ( (p_cbw->total_bytes > 0 ) && !tu_bit_test(p_cbw->dir, 7) )
{
// queue transfer
TU_ASSERT( usbd_edpt_xfer(rhport, p_msc->ep_out, _mscd_buf, p_msc->total_len) );
}else
{
int32_t resplen;
// First process if it is a built-in commands
resplen = proc_builtin_scsi(p_cbw->lun, p_cbw->command, _mscd_buf, sizeof(_mscd_buf));
// Not built-in, invoke user callback
if ( (resplen < 0) && (p_msc->sense_key == 0) )
{
resplen = tud_msc_scsi_cb(p_cbw->lun, p_cbw->command, _mscd_buf, p_msc->total_len);
}
if ( resplen < 0 )
{
p_msc->total_len = 0;
p_csw->status = MSC_CSW_STATUS_FAILED;
p_msc->stage = MSC_STAGE_STATUS;
// failed but senskey is not set: default to Illegal Request
if ( p_msc->sense_key == 0 ) tud_msc_set_sense(p_cbw->lun, SCSI_SENSE_ILLEGAL_REQUEST, 0x20, 0x00);
// Stall bulk In if needed
if (p_cbw->total_bytes) usbd_edpt_stall(rhport, p_msc->ep_in);
}
else
{
p_msc->total_len = (uint32_t) resplen;
p_csw->status = MSC_CSW_STATUS_PASSED;
if (p_msc->total_len)
{
TU_ASSERT( p_cbw->total_bytes >= p_msc->total_len ); // cannot return more than host expect
TU_ASSERT( usbd_edpt_xfer(rhport, p_msc->ep_in, _mscd_buf, p_msc->total_len) );
}else
{
p_msc->stage = MSC_STAGE_STATUS;
}
}
}
}
break;
case MSC_STAGE_DATA:
TU_LOG(MSC_DEBUG, " SCSI Data\r\n");
//TU_LOG_MEM(MSC_DEBUG, _mscd_buf, xferred_bytes, 2);
// OUT transfer, invoke callback if needed
if ( !tu_bit_test(p_cbw->dir, 7) )
{
if ( SCSI_CMD_WRITE_10 != p_cbw->command[0] )
{
int32_t cb_result = tud_msc_scsi_cb(p_cbw->lun, p_cbw->command, _mscd_buf, p_msc->total_len);
if ( cb_result < 0 )
{
p_csw->status = MSC_CSW_STATUS_FAILED;
tud_msc_set_sense(p_cbw->lun, SCSI_SENSE_ILLEGAL_REQUEST, 0x20, 0x00); // Sense = Invalid Command Operation
}else
{
p_csw->status = MSC_CSW_STATUS_PASSED;
}
}
else
{
uint16_t const block_sz = p_cbw->total_bytes / rdwr10_get_blockcount(p_cbw->command);
// Adjust lba with transferred bytes
uint32_t const lba = rdwr10_get_lba(p_cbw->command) + (p_msc->xferred_len / block_sz);
// Application can consume smaller bytes
int32_t nbytes = tud_msc_write10_cb(p_cbw->lun, lba, p_msc->xferred_len % block_sz, _mscd_buf, xferred_bytes);
if ( nbytes < 0 )
{
// negative means error -> skip to status phase, status in CSW set to failed
p_csw->data_residue = p_cbw->total_bytes - p_msc->xferred_len;
p_csw->status = MSC_CSW_STATUS_FAILED;
p_msc->stage = MSC_STAGE_STATUS;
tud_msc_set_sense(p_cbw->lun, SCSI_SENSE_ILLEGAL_REQUEST, 0x20, 0x00); // Sense = Invalid Command Operation
break;
}else
{
// Application consume less than what we got (including zero)
if ( nbytes < (int32_t) xferred_bytes )
{
if ( nbytes > 0 )
{
p_msc->xferred_len += nbytes;
memmove(_mscd_buf, _mscd_buf+nbytes, xferred_bytes-nbytes);
}
// simulate an transfer complete with adjusted parameters --> this driver callback will fired again
dcd_event_xfer_complete(rhport, p_msc->ep_out, xferred_bytes-nbytes, XFER_RESULT_SUCCESS, false);
return true; // skip the rest
}
else
{
// Application consume all bytes in our buffer. Nothing to do, process with normal flow
}
}
}
}
// Accumulate data so far
p_msc->xferred_len += xferred_bytes;
if ( p_msc->xferred_len >= p_msc->total_len )
{
// Data Stage is complete
p_msc->stage = MSC_STAGE_STATUS;
}
else
{
// READ10 & WRITE10 Can be executed with large bulk of data e.g write 8K bytes (several flash write)
// We break it into multiple smaller command whose data size is up to CFG_TUD_MSC_EP_BUFSIZE
if (SCSI_CMD_READ_10 == p_cbw->command[0])
{
proc_read10_cmd(rhport, p_msc);
}
else if (SCSI_CMD_WRITE_10 == p_cbw->command[0])
{
proc_write10_cmd(rhport, p_msc);
}else
{
// No other command take more than one transfer yet -> unlikely error
TU_BREAKPOINT();
}
}
break;
case MSC_STAGE_STATUS:
// processed immediately after this switch, supposedly to be empty
break;
case MSC_STAGE_STATUS_SENT:
// Wait for the Status phase to complete
if( (ep_addr == p_msc->ep_in) && (xferred_bytes == sizeof(msc_csw_t)) )
{
TU_LOG(MSC_DEBUG, " SCSI Status: %u\r\n", p_csw->status);
// TU_LOG_MEM(MSC_DEBUG, p_csw, xferred_bytes, 2);
// Invoke complete callback if defined
// Note: There is racing issue with samd51 + qspi flash testing with arduino
// if complete_cb() is invoked after queuing the status.
switch(p_cbw->command[0])
{
case SCSI_CMD_READ_10:
if ( tud_msc_read10_complete_cb ) tud_msc_read10_complete_cb(p_cbw->lun);
break;
case SCSI_CMD_WRITE_10:
if ( tud_msc_write10_complete_cb ) tud_msc_write10_complete_cb(p_cbw->lun);
break;
default:
if ( tud_msc_scsi_complete_cb ) tud_msc_scsi_complete_cb(p_cbw->lun, p_cbw->command);
break;
}
// Move to default CMD stage
p_msc->stage = MSC_STAGE_CMD;
// Queue for the next CBW
TU_ASSERT( usbd_edpt_xfer(rhport, p_msc->ep_out, (uint8_t*) &p_msc->cbw, sizeof(msc_cbw_t)) );
}
break;
default : break;
}
if ( p_msc->stage == MSC_STAGE_STATUS )
{
// Either endpoints is stalled, need to wait until it is cleared by host
if ( usbd_edpt_stalled(rhport, p_msc->ep_in) || usbd_edpt_stalled(rhport, p_msc->ep_out) )
{
// simulate an transfer complete with adjusted parameters --> this driver callback will fired again
// and response with status phase after halted endpoints are cleared.
// note: use ep_out to prevent confusing with STATUS complete
dcd_event_xfer_complete(rhport, p_msc->ep_out, 0, XFER_RESULT_SUCCESS, false);
}
else
{
// Move to Status Sent stage
p_msc->stage = MSC_STAGE_STATUS_SENT;
// Send SCSI Status
TU_ASSERT(usbd_edpt_xfer(rhport, p_msc->ep_in , (uint8_t*) &p_msc->csw, sizeof(msc_csw_t)));
}
}
return true;
}
/*------------------------------------------------------------------*/
/* SCSI Command Process
*------------------------------------------------------------------*/
// return response's length (copied to buffer). Negative if it is not an built-in command or indicate Failed status (CSW)
// In case of a failed status, sense key must be set for reason of failure
static int32_t proc_builtin_scsi(uint8_t lun, uint8_t const scsi_cmd[16], uint8_t* buffer, uint32_t bufsize)
{
(void) bufsize; // TODO refractor later
int32_t resplen;
switch ( scsi_cmd[0] )
{
case SCSI_CMD_TEST_UNIT_READY:
resplen = 0;
if ( !tud_msc_test_unit_ready_cb(lun) )
{
// Failed status response
resplen = - 1;
// If sense key is not set by callback, default to Logical Unit Not Ready, Cause Not Reportable
if ( _mscd_itf.sense_key == 0 ) tud_msc_set_sense(lun, SCSI_SENSE_NOT_READY, 0x04, 0x00);
}
break;
case SCSI_CMD_START_STOP_UNIT:
resplen = 0;
if (tud_msc_start_stop_cb)
{
scsi_start_stop_unit_t const * start_stop = (scsi_start_stop_unit_t const *) scsi_cmd;
if ( !tud_msc_start_stop_cb(lun, start_stop->power_condition, start_stop->start, start_stop->load_eject) )
{
// Failed status response
resplen = - 1;
// If sense key is not set by callback, default to Logical Unit Not Ready, Cause Not Reportable
if ( _mscd_itf.sense_key == 0 ) tud_msc_set_sense(lun, SCSI_SENSE_NOT_READY, 0x04, 0x00);
}
}
break;
case SCSI_CMD_READ_CAPACITY_10:
{
uint32_t block_count;
uint32_t block_size;
uint16_t block_size_u16;
tud_msc_capacity_cb(lun, &block_count, &block_size_u16);
block_size = (uint32_t) block_size_u16;
// Invalid block size/count from callback, possibly unit is not ready
// stall this request, set sense key to NOT READY
if (block_count == 0 || block_size == 0)
{
resplen = -1;
// If sense key is not set by callback, default to Logical Unit Not Ready, Cause Not Reportable
if ( _mscd_itf.sense_key == 0 ) tud_msc_set_sense(lun, SCSI_SENSE_NOT_READY, 0x04, 0x00);
}else
{
scsi_read_capacity10_resp_t read_capa10;
read_capa10.last_lba = tu_htonl(block_count-1);
read_capa10.block_size = tu_htonl(block_size);
resplen = sizeof(read_capa10);
memcpy(buffer, &read_capa10, resplen);
}
}
break;
case SCSI_CMD_READ_FORMAT_CAPACITY:
{
scsi_read_format_capacity_data_t read_fmt_capa =
{
.list_length = 8,
.block_num = 0,
.descriptor_type = 2, // formatted media
.block_size_u16 = 0
};
uint32_t block_count;
uint16_t block_size;
tud_msc_capacity_cb(lun, &block_count, &block_size);
// Invalid block size/count from callback, possibly unit is not ready
// stall this request, set sense key to NOT READY
if (block_count == 0 || block_size == 0)
{
resplen = -1;
// If sense key is not set by callback, default to Logical Unit Not Ready, Cause Not Reportable
if ( _mscd_itf.sense_key == 0 ) tud_msc_set_sense(lun, SCSI_SENSE_NOT_READY, 0x04, 0x00);
}else
{
read_fmt_capa.block_num = tu_htonl(block_count);
read_fmt_capa.block_size_u16 = tu_htons(block_size);
resplen = sizeof(read_fmt_capa);
memcpy(buffer, &read_fmt_capa, resplen);
}
}
break;
case SCSI_CMD_INQUIRY:
{
scsi_inquiry_resp_t inquiry_rsp =
{
.is_removable = 1,
.version = 2,
.response_data_format = 2,
};
// vendor_id, product_id, product_rev is space padded string
memset(inquiry_rsp.vendor_id , ' ', sizeof(inquiry_rsp.vendor_id));
memset(inquiry_rsp.product_id , ' ', sizeof(inquiry_rsp.product_id));
memset(inquiry_rsp.product_rev, ' ', sizeof(inquiry_rsp.product_rev));
tud_msc_inquiry_cb(lun, inquiry_rsp.vendor_id, inquiry_rsp.product_id, inquiry_rsp.product_rev);
resplen = sizeof(inquiry_rsp);
memcpy(buffer, &inquiry_rsp, resplen);
}
break;
case SCSI_CMD_MODE_SENSE_6:
{
scsi_mode_sense6_resp_t mode_resp =
{
.data_len = 3,
.medium_type = 0,
.write_protected = false,
.reserved = 0,
.block_descriptor_len = 0 // no block descriptor are included
};
bool writable = true;
if (tud_msc_is_writable_cb) {
writable = tud_msc_is_writable_cb(lun);
}
mode_resp.write_protected = !writable;
resplen = sizeof(mode_resp);
memcpy(buffer, &mode_resp, resplen);
}
break;
case SCSI_CMD_REQUEST_SENSE:
{
scsi_sense_fixed_resp_t sense_rsp =
{
.response_code = 0x70,
.valid = 1
};
sense_rsp.add_sense_len = sizeof(scsi_sense_fixed_resp_t) - 8;
sense_rsp.sense_key = _mscd_itf.sense_key;
sense_rsp.add_sense_code = _mscd_itf.add_sense_code;
sense_rsp.add_sense_qualifier = _mscd_itf.add_sense_qualifier;
resplen = sizeof(sense_rsp);
memcpy(buffer, &sense_rsp, resplen);
// Clear sense data after copy
tud_msc_set_sense(lun, 0, 0, 0);
}
break;
default: resplen = -1; break;
}
return resplen;
}
static void proc_read10_cmd(uint8_t rhport, mscd_interface_t* p_msc)
{
msc_cbw_t const * p_cbw = &p_msc->cbw;
msc_csw_t * p_csw = &p_msc->csw;
uint16_t const block_cnt = rdwr10_get_blockcount(p_cbw->command);
TU_ASSERT(block_cnt, ); // prevent div by zero
uint16_t const block_sz = p_cbw->total_bytes / block_cnt;
TU_ASSERT(block_sz, ); // prevent div by zero
// Adjust lba with transferred bytes
uint32_t const lba = rdwr10_get_lba(p_cbw->command) + (p_msc->xferred_len / block_sz);
// remaining bytes capped at class buffer
int32_t nbytes = (int32_t) tu_min32(sizeof(_mscd_buf), p_cbw->total_bytes-p_msc->xferred_len);
// Application can consume smaller bytes
nbytes = tud_msc_read10_cb(p_cbw->lun, lba, p_msc->xferred_len % block_sz, _mscd_buf, (uint32_t) nbytes);
if ( nbytes < 0 )
{
// negative means error -> pipe is stalled & status in CSW set to failed
p_csw->data_residue = p_cbw->total_bytes - p_msc->xferred_len;
p_csw->status = MSC_CSW_STATUS_FAILED;
tud_msc_set_sense(p_cbw->lun, SCSI_SENSE_ILLEGAL_REQUEST, 0x20, 0x00); // Sense = Invalid Command Operation
usbd_edpt_stall(rhport, p_msc->ep_in);
}
else if ( nbytes == 0 )
{
// zero means not ready -> simulate an transfer complete so that this driver callback will fired again
dcd_event_xfer_complete(rhport, p_msc->ep_in, 0, XFER_RESULT_SUCCESS, false);
}
else
{
TU_ASSERT( usbd_edpt_xfer(rhport, p_msc->ep_in, _mscd_buf, nbytes), );
}
}
static void proc_write10_cmd(uint8_t rhport, mscd_interface_t* p_msc)
{
msc_cbw_t const * p_cbw = &p_msc->cbw;
bool writable = true;
if (tud_msc_is_writable_cb) {
writable = tud_msc_is_writable_cb(p_cbw->lun);
}
if (!writable) {
msc_csw_t* p_csw = &p_msc->csw;
p_csw->data_residue = p_cbw->total_bytes;
p_csw->status = MSC_CSW_STATUS_FAILED;
tud_msc_set_sense(p_cbw->lun, SCSI_SENSE_DATA_PROTECT, 0x27, 0x00); // Sense = Write protected
usbd_edpt_stall(rhport, p_msc->ep_out);
return;
}
// remaining bytes capped at class buffer
int32_t nbytes = (int32_t) tu_min32(sizeof(_mscd_buf), p_cbw->total_bytes-p_msc->xferred_len);
// Write10 callback will be called later when usb transfer complete
TU_ASSERT( usbd_edpt_xfer(rhport, p_msc->ep_out, _mscd_buf, nbytes), );
}
#endif