esp32-s2_dfu/tinyusb/common/compiler/compiler_gcc.h

188 lines
13 KiB
C

/*
* compiler_gcc.h
*
* Created on: Nov 26, 2012
* Author: hathach
*/
/*
* Software License Agreement (BSD License)
* Copyright (c) 2013, hathach (tinyusb.net)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*
* This file is part of the tinyUSB stack.
*/
/** \file
* \brief GCC Header
*/
/** \ingroup Group_Compiler
* \defgroup Group_GCC GNU GCC
* @{
*/
#ifndef _TUSB_COMPILER_GCC_H_
#define _TUSB_COMPILER_GCC_H_
#ifdef __cplusplus
extern "C" {
#endif
/// Normally, the compiler places the objects it generates in sections like data or bss & function in text. Sometimes, however, you need additional sections, or you need certain particular variables to appear in special sections, for example to map to special hardware. The section attribute specifies that a variable (or function) lives in a particular section
#define ATTR_SECTION(section) __attribute__ ((#section))
/// If this attribute is used on a function declaration and a call to such a function is not eliminated through dead code elimination or other optimizations, an error that includes message is diagnosed. This is useful for compile-time checking
#define ATTR_ERROR(Message) __attribute__ ((error(Message)))
/// If this attribute is used on a function declaration and a call to such a function is not eliminated through dead code elimination or other optimizations, a warning that includes message is diagnosed. This is useful for compile-time checking
#define ATTR_WARNING(Message) __attribute__ ((warning(Message)))
/**
* \defgroup Group_VariableAttr Variable Attributes
* @{
*/
/// This attribute specifies a minimum alignment for the variable or structure field, measured in bytes
#define ATTR_ALIGNED(Bytes) __attribute__ ((aligned(Bytes)))
/// The packed attribute specifies that a variable or structure field should have the smallest possible alignment—one byte for a variable, and one bit for a field, unless you specify a larger value with the aligned attribute
#define ATTR_PACKED __attribute__ ((packed))
#define ATTR_PREPACKED
/** @} */
/**
* \defgroup Group_FuncAttr Function Attributes
* @{
*/
/// Generally, functions are not inlined unless optimization is specified. For functions declared inline, this attribute inlines the function even if no optimization level is specified
#define ATTR_ALWAYS_INLINE __attribute__ ((always_inline))
/// The nonnull attribute specifies that some function parameters should be non-null pointers. f the compiler determines that a null pointer is passed in an argument slot marked as non-null, and the -Wnonnull option is enabled, a warning is issued. All pointer arguments are marked as non-null
#define ATTR_NON_NULL __attribute__ ((nonull))
/// Many functions have no effects except the return value and their return value depends only on the parameters and/or global variables. Such a function can be subject to common subexpression elimination and loop optimization just as an arithmetic operator would be. These functions should be declared with the attribute pure
#define ATTR_PURE __attribute__ ((pure))
/// Many functions do not examine any values except their arguments, and have no effects except the return value. Basically this is just slightly more strict class than the pure attribute below, since function is not allowed to read global memory.
/// Note that a function that has pointer arguments and examines the data pointed to must not be declared const. Likewise, a function that calls a non-const function usually must not be const. It does not make sense for a const function to return void
#define ATTR_CONST __attribute__ ((const))
/// The deprecated attribute results in a warning if the function is used anywhere in the source file. This is useful when identifying functions that are expected to be removed in a future version of a program. The warning also includes the location of the declaration of the deprecated function, to enable users to easily find further information about why the function is deprecated, or what they should do instead. Note that the warnings only occurs for uses
#define ATTR_DEPRECATED __attribute__ ((deprecated))
/// Same as the deprecated attribute with optional message in the warning
#define ATTR_DEPRECATED_MESS(mess) __attribute__ ((deprecated(mess)))
/// The weak attribute causes the declaration to be emitted as a weak symbol rather than a global. This is primarily useful in defining library functions that can be overridden in user code
#define ATTR_WEAK __attribute__ ((weak))
/// The alias attribute causes the declaration to be emitted as an alias for another symbol, which must be specified
#define ATTR_ALIAS(func) __attribute__ ((alias(#func)))
/// The weakref attribute marks a declaration as a weak reference. It is equivalent with weak + alias attribute, but require function is static
#define ATTR_WEAKREF(func) __attribute__ ((weakref(#func)))
/// The warn_unused_result attribute causes a warning to be emitted if a caller of the function with this attribute does not use its return value. This is useful for functions where not checking the result is either a security problem or always a bug
#define ATTR_WARN_UNUSED_RESULT __attribute__ ((warn_unused_result))
/// This attribute, attached to a function, means that code must be emitted for the function even if it appears that the function is not referenced. This is useful, for example, when the function is referenced only in inline assembly.
#define ATTR_USED __attribute__ ((used))
/// This attribute, attached to a function, means that the function is meant to be possibly unused. GCC does not produce a warning for this function.
#define ATTR_UNUSED __attribute__ ((unused))
/** @} */
/**
* \defgroup Group_BuiltinFunc Built-in Functions
* @{
*/
/** You can use the built-in function \b __builtin_constant_p to determine if a value is known to be constant at compile time and hence that GCC can perform constant-folding on expressions involving that value. The argument of the function is the value to test. The function returns the integer 1 if the argument is known to be a compile-time constant and 0 if it is not known to be a compile-time constant. A return of 0 does not indicate that the value is not a constant, but merely that GCC cannot prove it is a constant with the specified value of the -O option.
You typically use this function in an embedded application where memory is a critical resource. If you have some complex calculation, you may want it to be folded if it involves constants, but need to call a function if it does not. For example:
\code
#define Scale_Value(X) \
(__builtin_constant_p (X) ? ((X) * SCALE + OFFSET) : Scale (X))
\endcode
You may use this built-in function in either a macro or an inline function. However, if you use it in an inlined function and pass an argument of the function as the argument to the built-in, GCC never returns 1 when you call the inline function with a string constant or compound literal (see Compound Literals) and does not return 1 when you pass a constant numeric value to the inline function unless you specify the -O option.
You may also use __builtin_constant_p in initializers for static data. For instance, you can write
static const int table[] = { __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1, };
This is an acceptable initializer even if EXPRESSION is not a constant expression, including the case where __builtin_constant_p returns 1 because EXPRESSION can be folded to a constant but EXPRESSION contains operands that are not otherwise permitted in a static initializer (for example, 0 && foo ()). GCC must be more conservative about evaluating the built-in in this case, because it has no opportunity to perform optimization.
*/
#define BUILTIN_CONSTANT(exp) __builtin_constant_p(exp)
/** You can use the built-in function \b __builtin_types_compatible_p to determine whether two types are the same. This built-in function returns 1 if the unqualified versions of the types type1 and type2 (which are types, not expressions) are compatible, 0 otherwise. The result of this built-in function can be used in integer constant expressions.
This built-in function ignores top level qualifiers (e.g., const, volatile). For example, int is equivalent to const int. The type int[] and int[5] are compatible. On the other hand, int and char * are not compatible, even if the size of their types, on the particular architecture are the same. Also, the amount of pointer indirection is taken into account when determining similarity. Consequently, short * is not similar to short **. Furthermore, two types that are typedefed are considered compatible if their underlying types are compatible.
An enum type is not considered to be compatible with another enum type even if both are compatible with the same integer type; this is what the C standard specifies. For example, enum {foo, bar} is not similar to enum {hot, dog}.
You typically use this function in code whose execution varies depending on the arguments' types. For example:
\code
#define foo(x) \
({ \
typeof (x) tmp = (x); \
if (__builtin_types_compatible_p (typeof (x), long double)) \
tmp = foo_long_double (tmp); \
else if (__builtin_types_compatible_p (typeof (x), double)) \
tmp = foo_double (tmp); \
else if (__builtin_types_compatible_p (typeof (x), float)) \
tmp = foo_float (tmp); \
else \
abort (); \
tmp; \
})
\endcode
*/
#define BUILTIN_TYPE_COMPATIBLE(type1, type2) __builtin_types_compatible_p(type1, type2)
/** You can use the built-in function \b __builtin_choose_expr to evaluate code depending on the value of a constant expression. This built-in function returns exp1 if const_exp, which is an integer constant expression, is nonzero. Otherwise it returns exp2.
This built-in function is analogous to the `? :' operator in C, except that the expression returned has its type unaltered by promotion rules. Also, the built-in function does not evaluate the expression that is not chosen. For example, if const_exp evaluates to true, exp2 is not evaluated even if it has side-effects.
This built-in function can return an lvalue if the chosen argument is an lvalue. If exp1 is returned, the return type is the same as exp1's type. Similarly, if exp2 is returned, its return type is the same as exp2.
Example:
\code
#define foo(x) \
__builtin_choose_expr ( \
__builtin_types_compatible_p (typeof (x), double), \
foo_double (x), \
__builtin_choose_expr ( \
__builtin_types_compatible_p (typeof (x), float), \
foo_float (x), \
\\The void expression results in a compile-time error when assigning the result to something. \
(void)0))\
\endcode
*/
#define BUILTIN_CHOOSE_EXPR(const_exp, exp1, exp2) __builtin_choose_expr (const_exp, exp1, exp2)
/** @} */
#ifdef __cplusplus
}
#endif
#endif /* _TUSB_COMPILER_GCC_H_ */
/// @}