esp32-s2_dfu/src/portable/mentor/musb/dcd_musb.c

909 lines
27 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2021 Koji KITAYAMA
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if CFG_TUD_ENABLED && \
TU_CHECK_MCU(OPT_MCU_MSP432E4, OPT_MCU_TM4C123, OPT_MCU_TM4C129)
#if __GNUC__ > 8 && defined(__ARM_FEATURE_UNALIGNED)
/* GCC warns that an address may be unaligned, even though
* the target CPU has the capability for unaligned memory access. */
_Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"");
#endif
#include "device/dcd.h"
#if TU_CHECK_MCU(OPT_MCU_MSP432E4)
#include "musb_msp432e.h"
#elif TU_CHECK_MCU(OPT_MCU_TM4C123, OPT_MCU_TM4C129)
#include "musb_tm4c.h"
// HACK generalize later
#include "musb_type.h"
#define FIFO0_WORD FIFO0
#define FIFO1_WORD FIFO1
#else
#error "Unsupported MCUs"
#endif
/*------------------------------------------------------------------
* MACRO TYPEDEF CONSTANT ENUM DECLARATION
*------------------------------------------------------------------*/
#define REQUEST_TYPE_INVALID (0xFFu)
typedef struct {
uint_fast16_t beg; /* offset of including first element */
uint_fast16_t end; /* offset of excluding the last element */
} free_block_t;
typedef struct TU_ATTR_PACKED {
uint16_t TXMAXP;
uint8_t TXCSRL;
uint8_t TXCSRH;
uint16_t RXMAXP;
uint8_t RXCSRL;
uint8_t RXCSRH;
uint16_t RXCOUNT;
uint16_t RESERVED[3];
} hw_endpoint_t;
typedef union {
uint8_t u8;
uint16_t u16;
uint32_t u32;
} hw_fifo_t;
typedef struct TU_ATTR_PACKED
{
void *buf; /* the start address of a transfer data buffer */
uint16_t length; /* the number of bytes in the buffer */
uint16_t remaining; /* the number of bytes remaining in the buffer */
} pipe_state_t;
typedef struct
{
tusb_control_request_t setup_packet;
uint16_t remaining_ctrl; /* The number of bytes remaining in data stage of control transfer. */
int8_t status_out;
pipe_state_t pipe0;
pipe_state_t pipe[2][7]; /* pipe[direction][endpoint number - 1] */
uint16_t pipe_buf_is_fifo[2]; /* Bitmap. Each bit means whether 1:TU_FIFO or 0:POD. */
} dcd_data_t;
/*------------------------------------------------------------------
* INTERNAL OBJECT & FUNCTION DECLARATION
*------------------------------------------------------------------*/
static dcd_data_t _dcd;
static inline free_block_t *find_containing_block(free_block_t *beg, free_block_t *end, uint_fast16_t addr)
{
free_block_t *cur = beg;
for (; cur < end && ((addr < cur->beg) || (cur->end <= addr)); ++cur) ;
return cur;
}
static inline int update_free_block_list(free_block_t *blks, unsigned num, uint_fast16_t addr, uint_fast16_t size)
{
free_block_t *p = find_containing_block(blks, blks + num, addr);
TU_ASSERT(p != blks + num, -2);
if (p->beg == addr) {
/* Shrink block */
p->beg = addr + size;
if (p->beg != p->end) return 0;
/* remove block */
free_block_t *end = blks + num;
while (p + 1 < end) {
*p = *(p + 1);
++p;
}
return -1;
} else {
/* Split into 2 blocks */
free_block_t tmp = {
.beg = addr + size,
.end = p->end
};
p->end = addr;
if (p->beg == p->end) {
if (tmp.beg != tmp.end) {
*p = tmp;
return 0;
}
/* remove block */
free_block_t *end = blks + num;
while (p + 1 < end) {
*p = *(p + 1);
++p;
}
return -1;
}
if (tmp.beg == tmp.end) return 0;
blks[num] = tmp;
return 1;
}
}
static inline unsigned free_block_size(free_block_t const *blk)
{
return blk->end - blk->beg;
}
#if 0
static inline void print_block_list(free_block_t const *blk, unsigned num)
{
TU_LOG1("*************\n");
for (unsigned i = 0; i < num; ++i) {
TU_LOG1(" Blk%u %u %u\n", i, blk->beg, blk->end);
++blk;
}
}
#else
#define print_block_list(a,b)
#endif
static unsigned find_free_memory(uint_fast16_t size_in_log2_minus3)
{
free_block_t free_blocks[2 * (TUP_DCD_ENDPOINT_MAX - 1)];
unsigned num_blocks = 1;
/* Initialize free memory block list */
free_blocks[0].beg = 64 / 8;
free_blocks[0].end = (4 << 10) / 8; /* 4KiB / 8 bytes */
for (int i = 1; i < TUP_DCD_ENDPOINT_MAX; ++i) {
uint_fast16_t addr;
int num;
USB0->EPIDX = i;
addr = USB0->TXFIFOADD;
if (addr) {
unsigned sz = USB0->TXFIFOSZ;
unsigned sft = (sz & USB_TXFIFOSZ_SIZE_M) + ((sz & USB_TXFIFOSZ_DPB) ? 1: 0);
num = update_free_block_list(free_blocks, num_blocks, addr, 1 << sft);
TU_ASSERT(-2 < num, 0);
num_blocks += num;
print_block_list(free_blocks, num_blocks);
}
addr = USB0->RXFIFOADD;
if (addr) {
unsigned sz = USB0->RXFIFOSZ;
unsigned sft = (sz & USB_RXFIFOSZ_SIZE_M) + ((sz & USB_RXFIFOSZ_DPB) ? 1: 0);
num = update_free_block_list(free_blocks, num_blocks, addr, 1 << sft);
TU_ASSERT(-2 < num, 0);
num_blocks += num;
print_block_list(free_blocks, num_blocks);
}
}
print_block_list(free_blocks, num_blocks);
/* Find the best fit memory block */
uint_fast16_t size_in_8byte_unit = 1 << size_in_log2_minus3;
free_block_t const *min = NULL;
uint_fast16_t min_sz = 0xFFFFu;
free_block_t const *end = &free_blocks[num_blocks];
for (free_block_t const *cur = &free_blocks[0]; cur < end; ++cur) {
uint_fast16_t sz = free_block_size(cur);
if (sz < size_in_8byte_unit) continue;
if (size_in_8byte_unit == sz) return cur->beg;
if (sz < min_sz) min = cur;
}
TU_ASSERT(min, 0);
return min->beg;
}
static inline volatile hw_endpoint_t* edpt_regs(unsigned epnum_minus1)
{
volatile hw_endpoint_t *regs = (volatile hw_endpoint_t*)((uintptr_t)&USB0->TXMAXP1);
return regs + epnum_minus1;
}
static void pipe_write_packet(void *buf, volatile void *fifo, unsigned len)
{
volatile hw_fifo_t *reg = (volatile hw_fifo_t*)fifo;
uintptr_t addr = (uintptr_t)buf;
while (len >= 4) {
reg->u32 = *(uint32_t const *)addr;
addr += 4;
len -= 4;
}
if (len >= 2) {
reg->u16 = *(uint16_t const *)addr;
addr += 2;
len -= 2;
}
if (len) {
reg->u8 = *(uint8_t const *)addr;
}
}
static void pipe_read_packet(void *buf, volatile void *fifo, unsigned len)
{
volatile hw_fifo_t *reg = (volatile hw_fifo_t*)fifo;
uintptr_t addr = (uintptr_t)buf;
while (len >= 4) {
*(uint32_t *)addr = reg->u32;
addr += 4;
len -= 4;
}
if (len >= 2) {
*(uint16_t *)addr = reg->u16;
addr += 2;
len -= 2;
}
if (len) {
*(uint8_t *)addr = reg->u8;
}
}
static void pipe_read_write_packet_ff(tu_fifo_t *f, volatile void *fifo, unsigned len, unsigned dir)
{
static const struct {
void (*tu_fifo_get_info)(tu_fifo_t *f, tu_fifo_buffer_info_t *info);
void (*tu_fifo_advance)(tu_fifo_t *f, uint16_t n);
void (*pipe_read_write)(void *buf, volatile void *fifo, unsigned len);
} ops[] = {
/* OUT */ {tu_fifo_get_write_info,tu_fifo_advance_write_pointer,pipe_read_packet},
/* IN */ {tu_fifo_get_read_info, tu_fifo_advance_read_pointer, pipe_write_packet},
};
tu_fifo_buffer_info_t info;
ops[dir].tu_fifo_get_info(f, &info);
unsigned total_len = len;
len = TU_MIN(total_len, info.len_lin);
ops[dir].pipe_read_write(info.ptr_lin, fifo, len);
unsigned rem = total_len - len;
if (rem) {
len = TU_MIN(rem, info.len_wrap);
ops[dir].pipe_read_write(info.ptr_wrap, fifo, len);
rem -= len;
}
ops[dir].tu_fifo_advance(f, total_len - rem);
}
static void process_setup_packet(uint8_t rhport)
{
uint32_t *p = (void*)&_dcd.setup_packet;
p[0] = USB0->FIFO0_WORD;
p[1] = USB0->FIFO0_WORD;
_dcd.pipe0.buf = NULL;
_dcd.pipe0.length = 0;
_dcd.pipe0.remaining = 0;
dcd_event_setup_received(rhport, (const uint8_t*)(uintptr_t)&_dcd.setup_packet, true);
const unsigned len = _dcd.setup_packet.wLength;
_dcd.remaining_ctrl = len;
const unsigned dir_in = tu_edpt_dir(_dcd.setup_packet.bmRequestType);
/* Clear RX FIFO and reverse the transaction direction */
if (len && dir_in) USB0->CSRL0 = USB_CSRL0_RXRDYC;
}
static bool handle_xfer_in(uint_fast8_t ep_addr)
{
unsigned epnum_minus1 = tu_edpt_number(ep_addr) - 1;
pipe_state_t *pipe = &_dcd.pipe[tu_edpt_dir(ep_addr)][epnum_minus1];
const unsigned rem = pipe->remaining;
if (!rem) {
pipe->buf = NULL;
return true;
}
volatile hw_endpoint_t *regs = edpt_regs(epnum_minus1);
const unsigned mps = regs->TXMAXP;
const unsigned len = TU_MIN(mps, rem);
void *buf = pipe->buf;
// TU_LOG1(" %p mps %d len %d rem %d\n", buf, mps, len, rem);
if (len) {
if (_dcd.pipe_buf_is_fifo[TUSB_DIR_IN] & TU_BIT(epnum_minus1)) {
pipe_read_write_packet_ff(buf, &USB0->FIFO1_WORD + epnum_minus1, len, TUSB_DIR_IN);
} else {
pipe_write_packet(buf, &USB0->FIFO1_WORD + epnum_minus1, len);
pipe->buf = buf + len;
}
pipe->remaining = rem - len;
}
regs->TXCSRL = USB_TXCSRL1_TXRDY;
// TU_LOG1(" TXCSRL%d = %x %d\n", epnum_minus1 + 1, regs->TXCSRL, rem - len);
return false;
}
static bool handle_xfer_out(uint_fast8_t ep_addr)
{
unsigned epnum_minus1 = tu_edpt_number(ep_addr) - 1;
pipe_state_t *pipe = &_dcd.pipe[tu_edpt_dir(ep_addr)][epnum_minus1];
volatile hw_endpoint_t *regs = edpt_regs(epnum_minus1);
// TU_LOG1(" RXCSRL%d = %x\n", epnum_minus1 + 1, regs->RXCSRL);
TU_ASSERT(regs->RXCSRL & USB_RXCSRL1_RXRDY);
const unsigned mps = regs->RXMAXP;
const unsigned rem = pipe->remaining;
const unsigned vld = regs->RXCOUNT;
const unsigned len = TU_MIN(TU_MIN(rem, mps), vld);
void *buf = pipe->buf;
if (len) {
if (_dcd.pipe_buf_is_fifo[TUSB_DIR_OUT] & TU_BIT(epnum_minus1)) {
pipe_read_write_packet_ff(buf, &USB0->FIFO1_WORD + epnum_minus1, len, TUSB_DIR_OUT);
} else {
pipe_read_packet(buf, &USB0->FIFO1_WORD + epnum_minus1, len);
pipe->buf = buf + len;
}
pipe->remaining = rem - len;
}
if ((len < mps) || (rem == len)) {
pipe->buf = NULL;
return NULL != buf;
}
regs->RXCSRL = 0; /* Clear RXRDY bit */
return false;
}
static bool edpt_n_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes)
{
(void)rhport;
unsigned epnum_minus1 = tu_edpt_number(ep_addr) - 1;
unsigned dir_in = tu_edpt_dir(ep_addr);
pipe_state_t *pipe = &_dcd.pipe[dir_in][epnum_minus1];
pipe->buf = buffer;
pipe->length = total_bytes;
pipe->remaining = total_bytes;
if (dir_in) {
handle_xfer_in(ep_addr);
} else {
volatile hw_endpoint_t *regs = edpt_regs(epnum_minus1);
if (regs->RXCSRL & USB_RXCSRL1_RXRDY) regs->RXCSRL = 0;
}
return true;
}
static bool edpt0_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t *buffer, uint16_t total_bytes)
{
(void)rhport;
TU_ASSERT(total_bytes <= 64); /* Current implementation supports for only up to 64 bytes. */
const unsigned req = _dcd.setup_packet.bmRequestType;
TU_ASSERT(req != REQUEST_TYPE_INVALID || total_bytes == 0);
if (req == REQUEST_TYPE_INVALID || _dcd.status_out) {
/* STATUS OUT stage.
* MUSB controller automatically handles STATUS OUT packets without
* software helps. We do not have to do anything. And STATUS stage
* may have already finished and received the next setup packet
* without calling this function, so we have no choice but to
* invoke the callback function of status packet here. */
// TU_LOG1(" STATUS OUT USB0->CSRL0 = %x\n", USB0->CSRL0);
_dcd.status_out = 0;
if (req == REQUEST_TYPE_INVALID) {
dcd_event_xfer_complete(rhport, ep_addr, total_bytes, XFER_RESULT_SUCCESS, false);
} else {
/* The next setup packet has already been received, it aborts
* invoking callback function to avoid confusing TUSB stack. */
TU_LOG1("Drop CONTROL_STAGE_ACK\n");
}
return true;
}
const unsigned dir_in = tu_edpt_dir(ep_addr);
if (tu_edpt_dir(req) == dir_in) { /* DATA stage */
TU_ASSERT(total_bytes <= _dcd.remaining_ctrl);
const unsigned rem = _dcd.remaining_ctrl;
const unsigned len = TU_MIN(TU_MIN(rem, 64), total_bytes);
if (dir_in) {
pipe_write_packet(buffer, &USB0->FIFO0_WORD, len);
_dcd.pipe0.buf = buffer + len;
_dcd.pipe0.length = len;
_dcd.pipe0.remaining = 0;
_dcd.remaining_ctrl = rem - len;
if ((len < 64) || (rem == len)) {
_dcd.setup_packet.bmRequestType = REQUEST_TYPE_INVALID; /* Change to STATUS/SETUP stage */
_dcd.status_out = 1;
/* Flush TX FIFO and reverse the transaction direction. */
USB0->CSRL0 = USB_CSRL0_TXRDY | USB_CSRL0_DATAEND;
} else {
USB0->CSRL0 = USB_CSRL0_TXRDY; /* Flush TX FIFO to return ACK. */
}
// TU_LOG1(" IN USB0->CSRL0 = %x\n", USB0->CSRL0);
} else {
// TU_LOG1(" OUT USB0->CSRL0 = %x\n", USB0->CSRL0);
_dcd.pipe0.buf = buffer;
_dcd.pipe0.length = len;
_dcd.pipe0.remaining = len;
USB0->CSRL0 = USB_CSRL0_RXRDYC; /* Clear RX FIFO to return ACK. */
}
} else if (dir_in) {
// TU_LOG1(" STATUS IN USB0->CSRL0 = %x\n", USB0->CSRL0);
_dcd.pipe0.buf = NULL;
_dcd.pipe0.length = 0;
_dcd.pipe0.remaining = 0;
/* Clear RX FIFO and reverse the transaction direction */
USB0->CSRL0 = USB_CSRL0_RXRDYC | USB_CSRL0_DATAEND;
}
return true;
}
static void process_ep0(uint8_t rhport)
{
uint_fast8_t csrl = USB0->CSRL0;
// TU_LOG1(" EP0 USB0->CSRL0 = %x\n", csrl);
if (csrl & USB_CSRL0_STALLED) {
/* Returned STALL packet to HOST. */
USB0->CSRL0 = 0; /* Clear STALL */
return;
}
unsigned req = _dcd.setup_packet.bmRequestType;
if (csrl & USB_CSRL0_SETEND) {
TU_LOG1(" ABORT by the next packets\n");
USB0->CSRL0 = USB_CSRL0_SETENDC;
if (req != REQUEST_TYPE_INVALID && _dcd.pipe0.buf) {
/* DATA stage was aborted by receiving STATUS or SETUP packet. */
_dcd.pipe0.buf = NULL;
_dcd.setup_packet.bmRequestType = REQUEST_TYPE_INVALID;
dcd_event_xfer_complete(rhport,
req & TUSB_DIR_IN_MASK,
_dcd.pipe0.length - _dcd.pipe0.remaining,
XFER_RESULT_SUCCESS, true);
}
req = REQUEST_TYPE_INVALID;
if (!(csrl & USB_CSRL0_RXRDY)) return; /* Received SETUP packet */
}
if (csrl & USB_CSRL0_RXRDY) {
/* Received SETUP or DATA OUT packet */
if (req == REQUEST_TYPE_INVALID) {
/* SETUP */
TU_ASSERT(sizeof(tusb_control_request_t) == USB0->COUNT0,);
process_setup_packet(rhport);
return;
}
if (_dcd.pipe0.buf) {
/* DATA OUT */
const unsigned vld = USB0->COUNT0;
const unsigned rem = _dcd.pipe0.remaining;
const unsigned len = TU_MIN(TU_MIN(rem, 64), vld);
pipe_read_packet(_dcd.pipe0.buf, &USB0->FIFO0_WORD, len);
_dcd.pipe0.remaining = rem - len;
_dcd.remaining_ctrl -= len;
_dcd.pipe0.buf = NULL;
dcd_event_xfer_complete(rhport,
tu_edpt_addr(0, TUSB_DIR_OUT),
_dcd.pipe0.length - _dcd.pipe0.remaining,
XFER_RESULT_SUCCESS, true);
}
return;
}
/* When CSRL0 is zero, it means that completion of sending a any length packet
* or receiving a zero length packet. */
if (req != REQUEST_TYPE_INVALID && !tu_edpt_dir(req)) {
/* STATUS IN */
if (*(const uint16_t*)(uintptr_t)&_dcd.setup_packet == 0x0500) {
/* The address must be changed on completion of the control transfer. */
USB0->FADDR = (uint8_t)_dcd.setup_packet.wValue;
}
_dcd.setup_packet.bmRequestType = REQUEST_TYPE_INVALID;
dcd_event_xfer_complete(rhport,
tu_edpt_addr(0, TUSB_DIR_IN),
_dcd.pipe0.length - _dcd.pipe0.remaining,
XFER_RESULT_SUCCESS, true);
return;
}
if (_dcd.pipe0.buf) {
/* DATA IN */
_dcd.pipe0.buf = NULL;
dcd_event_xfer_complete(rhport,
tu_edpt_addr(0, TUSB_DIR_IN),
_dcd.pipe0.length - _dcd.pipe0.remaining,
XFER_RESULT_SUCCESS, true);
}
}
static void process_edpt_n(uint8_t rhport, uint_fast8_t ep_addr)
{
bool completed;
const unsigned dir_in = tu_edpt_dir(ep_addr);
const unsigned epn_minus1 = tu_edpt_number(ep_addr) - 1;
volatile hw_endpoint_t *regs = edpt_regs(epn_minus1);
if (dir_in) {
// TU_LOG1(" TXCSRL%d = %x\n", epn_minus1 + 1, regs->TXCSRL);
if (regs->TXCSRL & USB_TXCSRL1_STALLED) {
regs->TXCSRL &= ~(USB_TXCSRL1_STALLED | USB_TXCSRL1_UNDRN);
return;
}
completed = handle_xfer_in(ep_addr);
} else {
// TU_LOG1(" RXCSRL%d = %x\n", epn_minus1 + 1, regs->RXCSRL);
if (regs->RXCSRL & USB_RXCSRL1_STALLED) {
regs->RXCSRL &= ~(USB_RXCSRL1_STALLED | USB_RXCSRL1_OVER);
return;
}
completed = handle_xfer_out(ep_addr);
}
if (completed) {
pipe_state_t *pipe = &_dcd.pipe[dir_in][tu_edpt_number(ep_addr) - 1];
dcd_event_xfer_complete(rhport, ep_addr,
pipe->length - pipe->remaining,
XFER_RESULT_SUCCESS, true);
}
}
static void process_bus_reset(uint8_t rhport)
{
/* When bmRequestType is REQUEST_TYPE_INVALID(0xFF),
* a control transfer state is SETUP or STATUS stage. */
_dcd.setup_packet.bmRequestType = REQUEST_TYPE_INVALID;
_dcd.status_out = 0;
/* When pipe0.buf has not NULL, DATA stage works in progress. */
_dcd.pipe0.buf = NULL;
USB0->TXIE = 1; /* Enable only EP0 */
USB0->RXIE = 0;
/* Clear FIFO settings */
for (unsigned i = 1; i < TUP_DCD_ENDPOINT_MAX; ++i) {
USB0->EPIDX = i;
USB0->TXFIFOSZ = 0;
USB0->TXFIFOADD = 0;
USB0->RXFIFOSZ = 0;
USB0->RXFIFOADD = 0;
}
dcd_event_bus_reset(rhport, TUSB_SPEED_FULL, true);
}
/*------------------------------------------------------------------
* Device API
*------------------------------------------------------------------*/
void dcd_init(uint8_t rhport)
{
(void)rhport;
USB0->IE |= USB_IE_SUSPND;
NVIC_ClearPendingIRQ(USB0_IRQn);
dcd_connect(rhport);
}
void dcd_int_enable(uint8_t rhport)
{
(void)rhport;
NVIC_EnableIRQ(USB0_IRQn);
}
void dcd_int_disable(uint8_t rhport)
{
(void)rhport;
NVIC_DisableIRQ(USB0_IRQn);
}
// Receive Set Address request, mcu port must also include status IN response
void dcd_set_address(uint8_t rhport, uint8_t dev_addr)
{
(void)rhport;
(void)dev_addr;
_dcd.pipe0.buf = NULL;
_dcd.pipe0.length = 0;
_dcd.pipe0.remaining = 0;
/* Clear RX FIFO to return ACK. */
USB0->CSRL0 = USB_CSRL0_RXRDYC | USB_CSRL0_DATAEND;
}
// Wake up host
void dcd_remote_wakeup(uint8_t rhport)
{
(void)rhport;
USB0->POWER |= USB_POWER_RESUME;
unsigned cnt = SystemCoreClock / 1000;
while (cnt--) __NOP();
USB0->POWER &= ~USB_POWER_RESUME;
}
// Connect by enabling internal pull-up resistor on D+/D-
void dcd_connect(uint8_t rhport)
{
(void)rhport;
USB0->POWER |= USB_POWER_SOFTCONN;
}
// Disconnect by disabling internal pull-up resistor on D+/D-
void dcd_disconnect(uint8_t rhport)
{
(void)rhport;
USB0->POWER &= ~USB_POWER_SOFTCONN;
}
void dcd_sof_enable(uint8_t rhport, bool en)
{
(void) rhport;
(void) en;
// TODO implement later
}
//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+
// Configure endpoint's registers according to descriptor
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * ep_desc)
{
(void) rhport;
const unsigned ep_addr = ep_desc->bEndpointAddress;
const unsigned epn = tu_edpt_number(ep_addr);
const unsigned dir_in = tu_edpt_dir(ep_addr);
const unsigned xfer = ep_desc->bmAttributes.xfer;
const unsigned mps = tu_edpt_packet_size(ep_desc);
TU_ASSERT(epn < TUP_DCD_ENDPOINT_MAX);
pipe_state_t *pipe = &_dcd.pipe[dir_in][epn - 1];
pipe->buf = NULL;
pipe->length = 0;
pipe->remaining = 0;
volatile hw_endpoint_t *regs = edpt_regs(epn - 1);
if (dir_in) {
regs->TXMAXP = mps;
regs->TXCSRH = (xfer == TUSB_XFER_ISOCHRONOUS) ? USB_TXCSRH1_ISO : 0;
if (regs->TXCSRL & USB_TXCSRL1_TXRDY)
regs->TXCSRL = USB_TXCSRL1_CLRDT | USB_TXCSRL1_FLUSH;
else
regs->TXCSRL = USB_TXCSRL1_CLRDT;
USB0->TXIE |= TU_BIT(epn);
} else {
regs->RXMAXP = mps;
regs->RXCSRH = (xfer == TUSB_XFER_ISOCHRONOUS) ? USB_RXCSRH1_ISO : 0;
if (regs->RXCSRL & USB_RXCSRL1_RXRDY)
regs->RXCSRL = USB_RXCSRL1_CLRDT | USB_RXCSRL1_FLUSH;
else
regs->RXCSRL = USB_RXCSRL1_CLRDT;
USB0->RXIE |= TU_BIT(epn);
}
/* Setup FIFO */
int size_in_log2_minus3 = 28 - TU_MIN(28, __CLZ((uint32_t)mps));
if ((8u << size_in_log2_minus3) < mps) ++size_in_log2_minus3;
unsigned addr = find_free_memory(size_in_log2_minus3);
TU_ASSERT(addr);
USB0->EPIDX = epn;
if (dir_in) {
USB0->TXFIFOADD = addr;
USB0->TXFIFOSZ = size_in_log2_minus3;
} else {
USB0->RXFIFOADD = addr;
USB0->RXFIFOSZ = size_in_log2_minus3;
}
return true;
}
void dcd_edpt_close_all(uint8_t rhport)
{
(void) rhport;
volatile hw_endpoint_t *regs = (volatile hw_endpoint_t *)(uintptr_t)&USB0->TXMAXP1;
unsigned const ie = NVIC_GetEnableIRQ(USB0_IRQn);
NVIC_DisableIRQ(USB0_IRQn);
USB0->TXIE = 1; /* Enable only EP0 */
USB0->RXIE = 0;
for (unsigned i = 1; i < TUP_DCD_ENDPOINT_MAX; ++i) {
regs->TXMAXP = 0;
regs->TXCSRH = 0;
if (regs->TXCSRL & USB_TXCSRL1_TXRDY)
regs->TXCSRL = USB_TXCSRL1_CLRDT | USB_TXCSRL1_FLUSH;
else
regs->TXCSRL = USB_TXCSRL1_CLRDT;
regs->RXMAXP = 0;
regs->RXCSRH = 0;
if (regs->RXCSRL & USB_RXCSRL1_RXRDY)
regs->RXCSRL = USB_RXCSRL1_CLRDT | USB_RXCSRL1_FLUSH;
else
regs->RXCSRL = USB_RXCSRL1_CLRDT;
USB0->EPIDX = i;
USB0->TXFIFOSZ = 0;
USB0->TXFIFOADD = 0;
USB0->RXFIFOSZ = 0;
USB0->RXFIFOADD = 0;
}
if (ie) NVIC_EnableIRQ(USB0_IRQn);
}
void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr)
{
(void)rhport;
unsigned const epn = tu_edpt_number(ep_addr);
unsigned const dir_in = tu_edpt_dir(ep_addr);
hw_endpoint_t volatile *regs = edpt_regs(epn - 1);
unsigned const ie = NVIC_GetEnableIRQ(USB0_IRQn);
NVIC_DisableIRQ(USB0_IRQn);
if (dir_in) {
USB0->TXIE &= ~TU_BIT(epn);
regs->TXMAXP = 0;
regs->TXCSRH = 0;
if (regs->TXCSRL & USB_TXCSRL1_TXRDY)
regs->TXCSRL = USB_TXCSRL1_CLRDT | USB_TXCSRL1_FLUSH;
else
regs->TXCSRL = USB_TXCSRL1_CLRDT;
USB0->EPIDX = epn;
USB0->TXFIFOSZ = 0;
USB0->TXFIFOADD = 0;
} else {
USB0->RXIE &= ~TU_BIT(epn);
regs->RXMAXP = 0;
regs->RXCSRH = 0;
if (regs->RXCSRL & USB_RXCSRL1_RXRDY)
regs->RXCSRL = USB_RXCSRL1_CLRDT | USB_RXCSRL1_FLUSH;
else
regs->RXCSRL = USB_RXCSRL1_CLRDT;
USB0->EPIDX = epn;
USB0->RXFIFOSZ = 0;
USB0->RXFIFOADD = 0;
}
if (ie) NVIC_EnableIRQ(USB0_IRQn);
}
// Submit a transfer, When complete dcd_event_xfer_complete() is invoked to notify the stack
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
(void)rhport;
bool ret;
// TU_LOG1("X %x %d\n", ep_addr, total_bytes);
unsigned const epnum = tu_edpt_number(ep_addr);
unsigned const ie = NVIC_GetEnableIRQ(USB0_IRQn);
NVIC_DisableIRQ(USB0_IRQn);
if (epnum) {
_dcd.pipe_buf_is_fifo[tu_edpt_dir(ep_addr)] &= ~TU_BIT(epnum - 1);
ret = edpt_n_xfer(rhport, ep_addr, buffer, total_bytes);
} else
ret = edpt0_xfer(rhport, ep_addr, buffer, total_bytes);
if (ie) NVIC_EnableIRQ(USB0_IRQn);
return ret;
}
// Submit a transfer where is managed by FIFO, When complete dcd_event_xfer_complete() is invoked to notify the stack - optional, however, must be listed in usbd.c
bool dcd_edpt_xfer_fifo(uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes)
{
(void)rhport;
bool ret;
// TU_LOG1("X %x %d\n", ep_addr, total_bytes);
unsigned const epnum = tu_edpt_number(ep_addr);
TU_ASSERT(epnum);
unsigned const ie = NVIC_GetEnableIRQ(USB0_IRQn);
NVIC_DisableIRQ(USB0_IRQn);
_dcd.pipe_buf_is_fifo[tu_edpt_dir(ep_addr)] |= TU_BIT(epnum - 1);
ret = edpt_n_xfer(rhport, ep_addr, (uint8_t*)ff, total_bytes);
if (ie) NVIC_EnableIRQ(USB0_IRQn);
return ret;
}
// Stall endpoint
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
(void)rhport;
unsigned const epn = tu_edpt_number(ep_addr);
unsigned const ie = NVIC_GetEnableIRQ(USB0_IRQn);
NVIC_DisableIRQ(USB0_IRQn);
if (0 == epn) {
if (!ep_addr) { /* Ignore EP80 */
_dcd.setup_packet.bmRequestType = REQUEST_TYPE_INVALID;
_dcd.pipe0.buf = NULL;
USB0->CSRL0 = USB_CSRL0_STALL;
}
} else {
volatile hw_endpoint_t *regs = edpt_regs(epn - 1);
if (tu_edpt_dir(ep_addr)) { /* IN */
regs->TXCSRL = USB_TXCSRL1_STALL;
} else { /* OUT */
TU_ASSERT(!(regs->RXCSRL & USB_RXCSRL1_RXRDY),);
regs->RXCSRL = USB_RXCSRL1_STALL;
}
}
if (ie) NVIC_EnableIRQ(USB0_IRQn);
}
// clear stall, data toggle is also reset to DATA0
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
(void)rhport;
unsigned const epn = tu_edpt_number(ep_addr);
hw_endpoint_t volatile *regs = edpt_regs(epn - 1);
unsigned const ie = NVIC_GetEnableIRQ(USB0_IRQn);
NVIC_DisableIRQ(USB0_IRQn);
if (tu_edpt_dir(ep_addr)) { /* IN */
regs->TXCSRL = USB_TXCSRL1_CLRDT;
} else { /* OUT */
regs->RXCSRL = USB_RXCSRL1_CLRDT;
}
if (ie) NVIC_EnableIRQ(USB0_IRQn);
}
/*-------------------------------------------------------------------
* ISR
*-------------------------------------------------------------------*/
void dcd_int_handler(uint8_t rhport)
{
uint_fast8_t is, txis, rxis;
is = USB0->IS; /* read and clear interrupt status */
txis = USB0->TXIS; /* read and clear interrupt status */
rxis = USB0->RXIS; /* read and clear interrupt status */
// TU_LOG1("D%2x T%2x R%2x\n", is, txis, rxis);
is &= USB0->IE; /* Clear disabled interrupts */
if (is & USB_IS_DISCON) {
}
if (is & USB_IS_SOF) {
dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true);
}
if (is & USB_IS_RESET) {
process_bus_reset(rhport);
}
if (is & USB_IS_RESUME) {
dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
}
if (is & USB_IS_SUSPEND) {
dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
}
txis &= USB0->TXIE; /* Clear disabled interrupts */
if (txis & USB_TXIE_EP0) {
process_ep0(rhport);
txis &= ~TU_BIT(0);
}
while (txis) {
unsigned const num = __builtin_ctz(txis);
process_edpt_n(rhport, tu_edpt_addr(num, TUSB_DIR_IN));
txis &= ~TU_BIT(num);
}
rxis &= USB0->RXIE; /* Clear disabled interrupts */
while (rxis) {
unsigned const num = __builtin_ctz(rxis);
process_edpt_n(rhport, tu_edpt_addr(num, TUSB_DIR_OUT));
rxis &= ~TU_BIT(num);
}
}
#endif