esp32-s2_dfu/src/device/usbd.c

1390 lines
42 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if CFG_TUD_ENABLED
#include "device/dcd.h"
#include "tusb.h"
#include "common/tusb_private.h"
#include "device/usbd.h"
#include "device/usbd_pvt.h"
//--------------------------------------------------------------------+
// USBD Configuration
//--------------------------------------------------------------------+
// Debug level of USBD
#define USBD_DBG 2
#ifndef CFG_TUD_TASK_QUEUE_SZ
#define CFG_TUD_TASK_QUEUE_SZ 16
#endif
//--------------------------------------------------------------------+
// Device Data
//--------------------------------------------------------------------+
// Invalid driver ID in itf2drv[] ep2drv[][] mapping
enum { DRVID_INVALID = 0xFFu };
typedef struct
{
struct TU_ATTR_PACKED
{
volatile uint8_t connected : 1;
volatile uint8_t addressed : 1;
volatile uint8_t suspended : 1;
uint8_t remote_wakeup_en : 1; // enable/disable by host
uint8_t remote_wakeup_support : 1; // configuration descriptor's attribute
uint8_t self_powered : 1; // configuration descriptor's attribute
};
volatile uint8_t cfg_num; // current active configuration (0x00 is not configured)
uint8_t speed;
uint8_t itf2drv[CFG_TUD_INTERFACE_MAX]; // map interface number to driver (0xff is invalid)
uint8_t ep2drv[CFG_TUD_ENDPPOINT_MAX][2]; // map endpoint to driver ( 0xff is invalid ), can use only 4-bit each
tu_edpt_state_t ep_status[CFG_TUD_ENDPPOINT_MAX][2];
}usbd_device_t;
static usbd_device_t _usbd_dev;
//--------------------------------------------------------------------+
// Class Driver
//--------------------------------------------------------------------+
#if CFG_TUSB_DEBUG >= 2
#define DRIVER_NAME(_name) .name = _name,
#else
#define DRIVER_NAME(_name)
#endif
// Built-in class drivers
static usbd_class_driver_t const _usbd_driver[] =
{
#if CFG_TUD_CDC
{
DRIVER_NAME("CDC")
.init = cdcd_init,
.reset = cdcd_reset,
.open = cdcd_open,
.control_xfer_cb = cdcd_control_xfer_cb,
.xfer_cb = cdcd_xfer_cb,
.sof = NULL
},
#endif
#if CFG_TUD_MSC
{
DRIVER_NAME("MSC")
.init = mscd_init,
.reset = mscd_reset,
.open = mscd_open,
.control_xfer_cb = mscd_control_xfer_cb,
.xfer_cb = mscd_xfer_cb,
.sof = NULL
},
#endif
#if CFG_TUD_HID
{
DRIVER_NAME("HID")
.init = hidd_init,
.reset = hidd_reset,
.open = hidd_open,
.control_xfer_cb = hidd_control_xfer_cb,
.xfer_cb = hidd_xfer_cb,
.sof = NULL
},
#endif
#if CFG_TUD_AUDIO
{
DRIVER_NAME("AUDIO")
.init = audiod_init,
.reset = audiod_reset,
.open = audiod_open,
.control_xfer_cb = audiod_control_xfer_cb,
.xfer_cb = audiod_xfer_cb,
.sof = audiod_sof_isr
},
#endif
#if CFG_TUD_VIDEO
{
DRIVER_NAME("VIDEO")
.init = videod_init,
.reset = videod_reset,
.open = videod_open,
.control_xfer_cb = videod_control_xfer_cb,
.xfer_cb = videod_xfer_cb,
.sof = NULL
},
#endif
#if CFG_TUD_MIDI
{
DRIVER_NAME("MIDI")
.init = midid_init,
.open = midid_open,
.reset = midid_reset,
.control_xfer_cb = midid_control_xfer_cb,
.xfer_cb = midid_xfer_cb,
.sof = NULL
},
#endif
#if CFG_TUD_VENDOR
{
DRIVER_NAME("VENDOR")
.init = vendord_init,
.reset = vendord_reset,
.open = vendord_open,
.control_xfer_cb = tud_vendor_control_xfer_cb,
.xfer_cb = vendord_xfer_cb,
.sof = NULL
},
#endif
#if CFG_TUD_USBTMC
{
DRIVER_NAME("TMC")
.init = usbtmcd_init_cb,
.reset = usbtmcd_reset_cb,
.open = usbtmcd_open_cb,
.control_xfer_cb = usbtmcd_control_xfer_cb,
.xfer_cb = usbtmcd_xfer_cb,
.sof = NULL
},
#endif
#if CFG_TUD_DFU_RUNTIME
{
DRIVER_NAME("DFU-RUNTIME")
.init = dfu_rtd_init,
.reset = dfu_rtd_reset,
.open = dfu_rtd_open,
.control_xfer_cb = dfu_rtd_control_xfer_cb,
.xfer_cb = NULL,
.sof = NULL
},
#endif
#if CFG_TUD_DFU
{
DRIVER_NAME("DFU")
.init = dfu_moded_init,
.reset = dfu_moded_reset,
.open = dfu_moded_open,
.control_xfer_cb = dfu_moded_control_xfer_cb,
.xfer_cb = NULL,
.sof = NULL
},
#endif
#if CFG_TUD_ECM_RNDIS || CFG_TUD_NCM
{
DRIVER_NAME("NET")
.init = netd_init,
.reset = netd_reset,
.open = netd_open,
.control_xfer_cb = netd_control_xfer_cb,
.xfer_cb = netd_xfer_cb,
.sof = NULL,
},
#endif
#if CFG_TUD_BTH
{
DRIVER_NAME("BTH")
.init = btd_init,
.reset = btd_reset,
.open = btd_open,
.control_xfer_cb = btd_control_xfer_cb,
.xfer_cb = btd_xfer_cb,
.sof = NULL
},
#endif
};
enum { BUILTIN_DRIVER_COUNT = TU_ARRAY_SIZE(_usbd_driver) };
// Additional class drivers implemented by application
static usbd_class_driver_t const * _app_driver = NULL;
static uint8_t _app_driver_count = 0;
// virtually joins built-in and application drivers together.
// Application is positioned first to allow overwriting built-in ones.
static inline usbd_class_driver_t const * get_driver(uint8_t drvid)
{
// Application drivers
if ( usbd_app_driver_get_cb )
{
if ( drvid < _app_driver_count ) return &_app_driver[drvid];
drvid -= _app_driver_count;
}
// Built-in drivers
if (drvid < BUILTIN_DRIVER_COUNT) return &_usbd_driver[drvid];
return NULL;
}
#define TOTAL_DRIVER_COUNT (_app_driver_count + BUILTIN_DRIVER_COUNT)
//--------------------------------------------------------------------+
// DCD Event
//--------------------------------------------------------------------+
enum { RHPORT_INVALID = 0xFFu };
static uint8_t _usbd_rhport = RHPORT_INVALID;
// Event queue
// usbd_int_set() is used as mutex in OS NONE config
OSAL_QUEUE_DEF(usbd_int_set, _usbd_qdef, CFG_TUD_TASK_QUEUE_SZ, dcd_event_t);
static osal_queue_t _usbd_q;
// Mutex for claiming endpoint, only needed when using with preempted RTOS
#if CFG_TUSB_OS != OPT_OS_NONE
static osal_mutex_def_t _ubsd_mutexdef;
static osal_mutex_t _usbd_mutex;
#endif
//--------------------------------------------------------------------+
// Prototypes
//--------------------------------------------------------------------+
static bool process_control_request(uint8_t rhport, tusb_control_request_t const * p_request);
static bool process_set_config(uint8_t rhport, uint8_t cfg_num);
static bool process_get_descriptor(uint8_t rhport, tusb_control_request_t const * p_request);
// from usbd_control.c
void usbd_control_reset(void);
void usbd_control_set_request(tusb_control_request_t const *request);
void usbd_control_set_complete_callback( usbd_control_xfer_cb_t fp );
bool usbd_control_xfer_cb (uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
//--------------------------------------------------------------------+
// Debug
//--------------------------------------------------------------------+
#if CFG_TUSB_DEBUG >= 2
static char const* const _usbd_event_str[DCD_EVENT_COUNT] =
{
"Invalid" ,
"Bus Reset" ,
"Unplugged" ,
"SOF" ,
"Suspend" ,
"Resume" ,
"Setup Received" ,
"Xfer Complete" ,
"Func Call"
};
// for usbd_control to print the name of control complete driver
void usbd_driver_print_control_complete_name(usbd_control_xfer_cb_t callback)
{
for (uint8_t i = 0; i < TOTAL_DRIVER_COUNT; i++)
{
usbd_class_driver_t const * driver = get_driver(i);
if ( driver && driver->control_xfer_cb == callback )
{
TU_LOG(USBD_DBG, " %s control complete\r\n", driver->name);
return;
}
}
}
#endif
//--------------------------------------------------------------------+
// Application API
//--------------------------------------------------------------------+
tusb_speed_t tud_speed_get(void)
{
return (tusb_speed_t) _usbd_dev.speed;
}
bool tud_connected(void)
{
return _usbd_dev.connected;
}
bool tud_mounted(void)
{
return _usbd_dev.cfg_num ? true : false;
}
bool tud_suspended(void)
{
return _usbd_dev.suspended;
}
bool tud_remote_wakeup(void)
{
// only wake up host if this feature is supported and enabled and we are suspended
TU_VERIFY (_usbd_dev.suspended && _usbd_dev.remote_wakeup_support && _usbd_dev.remote_wakeup_en );
dcd_remote_wakeup(_usbd_rhport);
return true;
}
bool tud_disconnect(void)
{
TU_VERIFY(dcd_disconnect);
dcd_disconnect(_usbd_rhport);
return true;
}
bool tud_connect(void)
{
TU_VERIFY(dcd_connect);
dcd_connect(_usbd_rhport);
return true;
}
//--------------------------------------------------------------------+
// USBD Task
//--------------------------------------------------------------------+
bool tud_inited(void)
{
return _usbd_rhport != RHPORT_INVALID;
}
bool tud_init (uint8_t rhport)
{
// skip if already initialized
if ( tud_inited() ) return true;
TU_LOG(USBD_DBG, "USBD init on controller %u\r\n", rhport);
TU_LOG_INT(USBD_DBG, sizeof(usbd_device_t));
tu_varclr(&_usbd_dev);
#if CFG_TUSB_OS != OPT_OS_NONE
// Init device mutex
_usbd_mutex = osal_mutex_create(&_ubsd_mutexdef);
TU_ASSERT(_usbd_mutex);
#endif
// Init device queue & task
_usbd_q = osal_queue_create(&_usbd_qdef);
TU_ASSERT(_usbd_q);
// Get application driver if available
if ( usbd_app_driver_get_cb )
{
_app_driver = usbd_app_driver_get_cb(&_app_driver_count);
}
// Init class drivers
for (uint8_t i = 0; i < TOTAL_DRIVER_COUNT; i++)
{
usbd_class_driver_t const * driver = get_driver(i);
TU_ASSERT(driver);
TU_LOG(USBD_DBG, "%s init\r\n", driver->name);
driver->init();
}
_usbd_rhport = rhport;
// Init device controller driver
dcd_init(rhport);
dcd_int_enable(rhport);
return true;
}
static void configuration_reset(uint8_t rhport)
{
for ( uint8_t i = 0; i < TOTAL_DRIVER_COUNT; i++ )
{
usbd_class_driver_t const * driver = get_driver(i);
TU_ASSERT(driver, );
driver->reset(rhport);
}
tu_varclr(&_usbd_dev);
memset(_usbd_dev.itf2drv, DRVID_INVALID, sizeof(_usbd_dev.itf2drv)); // invalid mapping
memset(_usbd_dev.ep2drv , DRVID_INVALID, sizeof(_usbd_dev.ep2drv )); // invalid mapping
}
static void usbd_reset(uint8_t rhport)
{
configuration_reset(rhport);
usbd_control_reset();
}
bool tud_task_event_ready(void)
{
// Skip if stack is not initialized
if ( !tusb_inited() ) return false;
return !osal_queue_empty(_usbd_q);
}
/* USB Device Driver task
* This top level thread manages all device controller event and delegates events to class-specific drivers.
* This should be called periodically within the mainloop or rtos thread.
*
@code
int main(void)
{
application_init();
tusb_init();
while(1) // the mainloop
{
application_code();
tud_task(); // tinyusb device task
}
}
@endcode
*/
void tud_task_ext(uint32_t timeout_ms, bool in_isr)
{
(void) in_isr; // not implemented yet
// Skip if stack is not initialized
if ( !tusb_inited() ) return;
// Loop until there is no more events in the queue
while (1)
{
dcd_event_t event;
if ( !osal_queue_receive(_usbd_q, &event, timeout_ms) ) return;
#if CFG_TUSB_DEBUG >= 2
if (event.event_id == DCD_EVENT_SETUP_RECEIVED) TU_LOG(USBD_DBG, "\r\n"); // extra line for setup
TU_LOG(USBD_DBG, "USBD %s ", event.event_id < DCD_EVENT_COUNT ? _usbd_event_str[event.event_id] : "CORRUPTED");
#endif
switch ( event.event_id )
{
case DCD_EVENT_BUS_RESET:
TU_LOG(USBD_DBG, ": %s Speed\r\n", tu_str_speed[event.bus_reset.speed]);
usbd_reset(event.rhport);
_usbd_dev.speed = event.bus_reset.speed;
break;
case DCD_EVENT_UNPLUGGED:
TU_LOG(USBD_DBG, "\r\n");
usbd_reset(event.rhport);
// invoke callback
if (tud_umount_cb) tud_umount_cb();
break;
case DCD_EVENT_SETUP_RECEIVED:
TU_LOG_VAR(USBD_DBG, &event.setup_received);
TU_LOG(USBD_DBG, "\r\n");
// Mark as connected after receiving 1st setup packet.
// But it is easier to set it every time instead of wasting time to check then set
_usbd_dev.connected = 1;
// mark both in & out control as free
_usbd_dev.ep_status[0][TUSB_DIR_OUT].busy = false;
_usbd_dev.ep_status[0][TUSB_DIR_OUT].claimed = 0;
_usbd_dev.ep_status[0][TUSB_DIR_IN ].busy = false;
_usbd_dev.ep_status[0][TUSB_DIR_IN ].claimed = 0;
// Process control request
if ( !process_control_request(event.rhport, &event.setup_received) )
{
TU_LOG(USBD_DBG, " Stall EP0\r\n");
// Failed -> stall both control endpoint IN and OUT
dcd_edpt_stall(event.rhport, 0);
dcd_edpt_stall(event.rhport, 0 | TUSB_DIR_IN_MASK);
}
break;
case DCD_EVENT_XFER_COMPLETE:
{
// Invoke the class callback associated with the endpoint address
uint8_t const ep_addr = event.xfer_complete.ep_addr;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const ep_dir = tu_edpt_dir(ep_addr);
TU_LOG(USBD_DBG, "on EP %02X with %u bytes\r\n", ep_addr, (unsigned int) event.xfer_complete.len);
_usbd_dev.ep_status[epnum][ep_dir].busy = false;
_usbd_dev.ep_status[epnum][ep_dir].claimed = 0;
if ( 0 == epnum )
{
usbd_control_xfer_cb(event.rhport, ep_addr, (xfer_result_t)event.xfer_complete.result, event.xfer_complete.len);
}
else
{
usbd_class_driver_t const * driver = get_driver( _usbd_dev.ep2drv[epnum][ep_dir] );
TU_ASSERT(driver, );
TU_LOG(USBD_DBG, " %s xfer callback\r\n", driver->name);
driver->xfer_cb(event.rhport, ep_addr, (xfer_result_t)event.xfer_complete.result, event.xfer_complete.len);
}
}
break;
case DCD_EVENT_SUSPEND:
// NOTE: When plugging/unplugging device, the D+/D- state are unstable and
// can accidentally meet the SUSPEND condition ( Bus Idle for 3ms ), which result in a series of event
// e.g suspend -> resume -> unplug/plug. Skip suspend/resume if not connected
if ( _usbd_dev.connected )
{
TU_LOG(USBD_DBG, ": Remote Wakeup = %u\r\n", _usbd_dev.remote_wakeup_en);
if (tud_suspend_cb) tud_suspend_cb(_usbd_dev.remote_wakeup_en);
}else
{
TU_LOG(USBD_DBG, " Skipped\r\n");
}
break;
case DCD_EVENT_RESUME:
if ( _usbd_dev.connected )
{
TU_LOG(USBD_DBG, "\r\n");
if (tud_resume_cb) tud_resume_cb();
}else
{
TU_LOG(USBD_DBG, " Skipped\r\n");
}
break;
case USBD_EVENT_FUNC_CALL:
TU_LOG(USBD_DBG, "\r\n");
if ( event.func_call.func ) event.func_call.func(event.func_call.param);
break;
case DCD_EVENT_SOF:
default:
TU_BREAKPOINT();
break;
}
#if CFG_TUSB_OS != OPT_OS_NONE && CFG_TUSB_OS != OPT_OS_PICO
// return if there is no more events, for application to run other background
if (osal_queue_empty(_usbd_q)) return;
#endif
}
}
//--------------------------------------------------------------------+
// Control Request Parser & Handling
//--------------------------------------------------------------------+
// Helper to invoke class driver control request handler
static bool invoke_class_control(uint8_t rhport, usbd_class_driver_t const * driver, tusb_control_request_t const * request)
{
usbd_control_set_complete_callback(driver->control_xfer_cb);
TU_LOG(USBD_DBG, " %s control request\r\n", driver->name);
return driver->control_xfer_cb(rhport, CONTROL_STAGE_SETUP, request);
}
// This handles the actual request and its response.
// return false will cause its caller to stall control endpoint
static bool process_control_request(uint8_t rhport, tusb_control_request_t const * p_request)
{
usbd_control_set_complete_callback(NULL);
TU_ASSERT(p_request->bmRequestType_bit.type < TUSB_REQ_TYPE_INVALID);
// Vendor request
if ( p_request->bmRequestType_bit.type == TUSB_REQ_TYPE_VENDOR )
{
TU_VERIFY(tud_vendor_control_xfer_cb);
usbd_control_set_complete_callback(tud_vendor_control_xfer_cb);
return tud_vendor_control_xfer_cb(rhport, CONTROL_STAGE_SETUP, p_request);
}
#if CFG_TUSB_DEBUG >= 2
if (TUSB_REQ_TYPE_STANDARD == p_request->bmRequestType_bit.type && p_request->bRequest <= TUSB_REQ_SYNCH_FRAME)
{
TU_LOG(USBD_DBG, " %s", tu_str_std_request[p_request->bRequest]);
if (TUSB_REQ_GET_DESCRIPTOR != p_request->bRequest) TU_LOG(USBD_DBG, "\r\n");
}
#endif
switch ( p_request->bmRequestType_bit.recipient )
{
//------------- Device Requests e.g in enumeration -------------//
case TUSB_REQ_RCPT_DEVICE:
if ( TUSB_REQ_TYPE_CLASS == p_request->bmRequestType_bit.type )
{
uint8_t const itf = tu_u16_low(p_request->wIndex);
TU_VERIFY(itf < TU_ARRAY_SIZE(_usbd_dev.itf2drv));
usbd_class_driver_t const * driver = get_driver(_usbd_dev.itf2drv[itf]);
TU_VERIFY(driver);
// forward to class driver: "non-STD request to Interface"
return invoke_class_control(rhport, driver, p_request);
}
if ( TUSB_REQ_TYPE_STANDARD != p_request->bmRequestType_bit.type )
{
// Non standard request is not supported
TU_BREAKPOINT();
return false;
}
switch ( p_request->bRequest )
{
case TUSB_REQ_SET_ADDRESS:
// Depending on mcu, status phase could be sent either before or after changing device address,
// or even require stack to not response with status at all
// Therefore DCD must take full responsibility to response and include zlp status packet if needed.
usbd_control_set_request(p_request); // set request since DCD has no access to tud_control_status() API
dcd_set_address(rhport, (uint8_t) p_request->wValue);
// skip tud_control_status()
_usbd_dev.addressed = 1;
break;
case TUSB_REQ_GET_CONFIGURATION:
{
uint8_t cfg_num = _usbd_dev.cfg_num;
tud_control_xfer(rhport, p_request, &cfg_num, 1);
}
break;
case TUSB_REQ_SET_CONFIGURATION:
{
uint8_t const cfg_num = (uint8_t) p_request->wValue;
// Only process if new configure is different
if (_usbd_dev.cfg_num != cfg_num)
{
if ( _usbd_dev.cfg_num )
{
// already configured: need to clear all endpoints and driver first
TU_LOG(USBD_DBG, " Clear current Configuration (%u) before switching\r\n", _usbd_dev.cfg_num);
// close all non-control endpoints, cancel all pending transfers if any
dcd_edpt_close_all(rhport);
// close all drivers and current configured state except bus speed
uint8_t const speed = _usbd_dev.speed;
configuration_reset(rhport);
_usbd_dev.speed = speed; // restore speed
}
// switch to new configuration if not zero
if ( cfg_num ) TU_ASSERT( process_set_config(rhport, cfg_num) );
}
_usbd_dev.cfg_num = cfg_num;
tud_control_status(rhport, p_request);
}
break;
case TUSB_REQ_GET_DESCRIPTOR:
TU_VERIFY( process_get_descriptor(rhport, p_request) );
break;
case TUSB_REQ_SET_FEATURE:
// Only support remote wakeup for device feature
TU_VERIFY(TUSB_REQ_FEATURE_REMOTE_WAKEUP == p_request->wValue);
TU_LOG(USBD_DBG, " Enable Remote Wakeup\r\n");
// Host may enable remote wake up before suspending especially HID device
_usbd_dev.remote_wakeup_en = true;
tud_control_status(rhport, p_request);
break;
case TUSB_REQ_CLEAR_FEATURE:
// Only support remote wakeup for device feature
TU_VERIFY(TUSB_REQ_FEATURE_REMOTE_WAKEUP == p_request->wValue);
TU_LOG(USBD_DBG, " Disable Remote Wakeup\r\n");
// Host may disable remote wake up after resuming
_usbd_dev.remote_wakeup_en = false;
tud_control_status(rhport, p_request);
break;
case TUSB_REQ_GET_STATUS:
{
// Device status bit mask
// - Bit 0: Self Powered
// - Bit 1: Remote Wakeup enabled
uint16_t status = (uint16_t) ((_usbd_dev.self_powered ? 1u : 0u) | (_usbd_dev.remote_wakeup_en ? 2u : 0u));
tud_control_xfer(rhport, p_request, &status, 2);
}
break;
// Unknown/Unsupported request
default: TU_BREAKPOINT(); return false;
}
break;
//------------- Class/Interface Specific Request -------------//
case TUSB_REQ_RCPT_INTERFACE:
{
uint8_t const itf = tu_u16_low(p_request->wIndex);
TU_VERIFY(itf < TU_ARRAY_SIZE(_usbd_dev.itf2drv));
usbd_class_driver_t const * driver = get_driver(_usbd_dev.itf2drv[itf]);
TU_VERIFY(driver);
// all requests to Interface (STD or Class) is forwarded to class driver.
// notable requests are: GET HID REPORT DESCRIPTOR, SET_INTERFACE, GET_INTERFACE
if ( !invoke_class_control(rhport, driver, p_request) )
{
// For GET_INTERFACE and SET_INTERFACE, it is mandatory to respond even if the class
// driver doesn't use alternate settings or implement this
TU_VERIFY(TUSB_REQ_TYPE_STANDARD == p_request->bmRequestType_bit.type);
switch(p_request->bRequest)
{
case TUSB_REQ_GET_INTERFACE:
case TUSB_REQ_SET_INTERFACE:
// Clear complete callback if driver set since it can also stall the request.
usbd_control_set_complete_callback(NULL);
if (TUSB_REQ_GET_INTERFACE == p_request->bRequest)
{
uint8_t alternate = 0;
tud_control_xfer(rhport, p_request, &alternate, 1);
}else
{
tud_control_status(rhport, p_request);
}
break;
default: return false;
}
}
}
break;
//------------- Endpoint Request -------------//
case TUSB_REQ_RCPT_ENDPOINT:
{
uint8_t const ep_addr = tu_u16_low(p_request->wIndex);
uint8_t const ep_num = tu_edpt_number(ep_addr);
uint8_t const ep_dir = tu_edpt_dir(ep_addr);
TU_ASSERT(ep_num < TU_ARRAY_SIZE(_usbd_dev.ep2drv) );
usbd_class_driver_t const * driver = get_driver(_usbd_dev.ep2drv[ep_num][ep_dir]);
if ( TUSB_REQ_TYPE_STANDARD != p_request->bmRequestType_bit.type )
{
// Forward class request to its driver
TU_VERIFY(driver);
return invoke_class_control(rhport, driver, p_request);
}
else
{
// Handle STD request to endpoint
switch ( p_request->bRequest )
{
case TUSB_REQ_GET_STATUS:
{
uint16_t status = usbd_edpt_stalled(rhport, ep_addr) ? 0x0001 : 0x0000;
tud_control_xfer(rhport, p_request, &status, 2);
}
break;
case TUSB_REQ_CLEAR_FEATURE:
case TUSB_REQ_SET_FEATURE:
{
if ( TUSB_REQ_FEATURE_EDPT_HALT == p_request->wValue )
{
if ( TUSB_REQ_CLEAR_FEATURE == p_request->bRequest )
{
usbd_edpt_clear_stall(rhport, ep_addr);
}else
{
usbd_edpt_stall(rhport, ep_addr);
}
}
if (driver)
{
// Some classes such as USBTMC needs to clear/re-init its buffer when receiving CLEAR_FEATURE request
// We will also forward std request targeted endpoint to class drivers as well
// STD request must always be ACKed regardless of driver returned value
// Also clear complete callback if driver set since it can also stall the request.
(void) invoke_class_control(rhport, driver, p_request);
usbd_control_set_complete_callback(NULL);
// skip ZLP status if driver already did that
if ( !_usbd_dev.ep_status[0][TUSB_DIR_IN].busy ) tud_control_status(rhport, p_request);
}
}
break;
// Unknown/Unsupported request
default: TU_BREAKPOINT(); return false;
}
}
}
break;
// Unknown recipient
default: TU_BREAKPOINT(); return false;
}
return true;
}
// Process Set Configure Request
// This function parse configuration descriptor & open drivers accordingly
static bool process_set_config(uint8_t rhport, uint8_t cfg_num)
{
// index is cfg_num-1
tusb_desc_configuration_t const * desc_cfg = (tusb_desc_configuration_t const *) tud_descriptor_configuration_cb(cfg_num-1);
TU_ASSERT(desc_cfg != NULL && desc_cfg->bDescriptorType == TUSB_DESC_CONFIGURATION);
// Parse configuration descriptor
_usbd_dev.remote_wakeup_support = (desc_cfg->bmAttributes & TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP) ? 1u : 0u;
_usbd_dev.self_powered = (desc_cfg->bmAttributes & TUSB_DESC_CONFIG_ATT_SELF_POWERED ) ? 1u : 0u;
// Parse interface descriptor
uint8_t const * p_desc = ((uint8_t const*) desc_cfg) + sizeof(tusb_desc_configuration_t);
uint8_t const * desc_end = ((uint8_t const*) desc_cfg) + tu_le16toh(desc_cfg->wTotalLength);
while( p_desc < desc_end )
{
uint8_t assoc_itf_count = 1;
// Class will always starts with Interface Association (if any) and then Interface descriptor
if ( TUSB_DESC_INTERFACE_ASSOCIATION == tu_desc_type(p_desc) )
{
tusb_desc_interface_assoc_t const * desc_iad = (tusb_desc_interface_assoc_t const *) p_desc;
assoc_itf_count = desc_iad->bInterfaceCount;
p_desc = tu_desc_next(p_desc); // next to Interface
// IAD's first interface number and class should match with opened interface
//TU_ASSERT(desc_iad->bFirstInterface == desc_itf->bInterfaceNumber &&
// desc_iad->bFunctionClass == desc_itf->bInterfaceClass);
}
TU_ASSERT( TUSB_DESC_INTERFACE == tu_desc_type(p_desc) );
tusb_desc_interface_t const * desc_itf = (tusb_desc_interface_t const*) p_desc;
// Find driver for this interface
uint16_t const remaining_len = (uint16_t) (desc_end-p_desc);
uint8_t drv_id;
for (drv_id = 0; drv_id < TOTAL_DRIVER_COUNT; drv_id++)
{
usbd_class_driver_t const *driver = get_driver(drv_id);
TU_ASSERT(driver);
uint16_t const drv_len = driver->open(rhport, desc_itf, remaining_len);
if ( (sizeof(tusb_desc_interface_t) <= drv_len) && (drv_len <= remaining_len) )
{
// Open successfully
TU_LOG(USBD_DBG, " %s opened\r\n", driver->name);
// Some drivers use 2 or more interfaces but may not have IAD e.g MIDI (always) or
// BTH (even CDC) with class in device descriptor (single interface)
if ( assoc_itf_count == 1)
{
#if CFG_TUD_CDC
if ( driver->open == cdcd_open ) assoc_itf_count = 2;
#endif
#if CFG_TUD_MIDI
if ( driver->open == midid_open ) assoc_itf_count = 2;
#endif
#if CFG_TUD_BTH && CFG_TUD_BTH_ISO_ALT_COUNT
if ( driver->open == btd_open ) assoc_itf_count = 2;
#endif
}
// bind (associated) interfaces to found driver
for(uint8_t i=0; i<assoc_itf_count; i++)
{
uint8_t const itf_num = desc_itf->bInterfaceNumber+i;
// Interface number must not be used already
TU_ASSERT(DRVID_INVALID == _usbd_dev.itf2drv[itf_num]);
_usbd_dev.itf2drv[itf_num] = drv_id;
}
// bind all endpoints to found driver
tu_edpt_bind_driver(_usbd_dev.ep2drv, desc_itf, drv_len, drv_id);
// next Interface
p_desc += drv_len;
break; // exit driver find loop
}
}
// Failed if there is no supported drivers
TU_ASSERT(drv_id < TOTAL_DRIVER_COUNT);
}
// invoke callback
if (tud_mount_cb) tud_mount_cb();
return true;
}
// return descriptor's buffer and update desc_len
static bool process_get_descriptor(uint8_t rhport, tusb_control_request_t const * p_request)
{
tusb_desc_type_t const desc_type = (tusb_desc_type_t) tu_u16_high(p_request->wValue);
uint8_t const desc_index = tu_u16_low( p_request->wValue );
switch(desc_type)
{
case TUSB_DESC_DEVICE:
{
TU_LOG(USBD_DBG, " Device\r\n");
void* desc_device = (void*) (uintptr_t) tud_descriptor_device_cb();
// Only response with exactly 1 Packet if: not addressed and host requested more data than device descriptor has.
// This only happens with the very first get device descriptor and EP0 size = 8 or 16.
if ((CFG_TUD_ENDPOINT0_SIZE < sizeof(tusb_desc_device_t)) && !_usbd_dev.addressed &&
((tusb_control_request_t const*) p_request)->wLength > sizeof(tusb_desc_device_t))
{
// Hack here: we modify the request length to prevent usbd_control response with zlp
// since we are responding with 1 packet & less data than wLength.
tusb_control_request_t mod_request = *p_request;
mod_request.wLength = CFG_TUD_ENDPOINT0_SIZE;
return tud_control_xfer(rhport, &mod_request, desc_device, CFG_TUD_ENDPOINT0_SIZE);
}else
{
return tud_control_xfer(rhport, p_request, desc_device, sizeof(tusb_desc_device_t));
}
}
// break; // unreachable
case TUSB_DESC_BOS:
{
TU_LOG(USBD_DBG, " BOS\r\n");
// requested by host if USB > 2.0 ( i.e 2.1 or 3.x )
if (!tud_descriptor_bos_cb) return false;
uintptr_t desc_bos = (uintptr_t) tud_descriptor_bos_cb();
TU_ASSERT(desc_bos);
// Use offsetof to avoid pointer to the odd/misaligned address
uint16_t const total_len = tu_le16toh( tu_unaligned_read16((const void*) (desc_bos + offsetof(tusb_desc_bos_t, wTotalLength))) );
return tud_control_xfer(rhport, p_request, (void*) desc_bos, total_len);
}
// break; // unreachable
case TUSB_DESC_CONFIGURATION:
case TUSB_DESC_OTHER_SPEED_CONFIG:
{
uintptr_t desc_config;
if ( desc_type == TUSB_DESC_CONFIGURATION )
{
TU_LOG(USBD_DBG, " Configuration[%u]\r\n", desc_index);
desc_config = (uintptr_t) tud_descriptor_configuration_cb(desc_index);
}else
{
// Host only request this after getting Device Qualifier descriptor
TU_LOG(USBD_DBG, " Other Speed Configuration\r\n");
TU_VERIFY( tud_descriptor_other_speed_configuration_cb );
desc_config = (uintptr_t) tud_descriptor_other_speed_configuration_cb(desc_index);
}
TU_ASSERT(desc_config);
// Use offsetof to avoid pointer to the odd/misaligned address
uint16_t const total_len = tu_le16toh( tu_unaligned_read16((const void*) (desc_config + offsetof(tusb_desc_configuration_t, wTotalLength))) );
return tud_control_xfer(rhport, p_request, (void*) desc_config, total_len);
}
// break; // unreachable
case TUSB_DESC_STRING:
{
TU_LOG(USBD_DBG, " String[%u]\r\n", desc_index);
// String Descriptor always uses the desc set from user
uint8_t const* desc_str = (uint8_t const*) tud_descriptor_string_cb(desc_index, tu_le16toh(p_request->wIndex));
TU_VERIFY(desc_str);
// first byte of descriptor is its size
return tud_control_xfer(rhport, p_request, (void*) (uintptr_t) desc_str, tu_desc_len(desc_str));
}
// break; // unreachable
case TUSB_DESC_DEVICE_QUALIFIER:
{
TU_LOG(USBD_DBG, " Device Qualifier\r\n");
TU_VERIFY( tud_descriptor_device_qualifier_cb );
uint8_t const* desc_qualifier = tud_descriptor_device_qualifier_cb();
TU_VERIFY(desc_qualifier);
// first byte of descriptor is its size
return tud_control_xfer(rhport, p_request, (void*) (uintptr_t) desc_qualifier, tu_desc_len(desc_qualifier));
}
// break; // unreachable
default: return false;
}
}
//--------------------------------------------------------------------+
// DCD Event Handler
//--------------------------------------------------------------------+
TU_ATTR_FAST_FUNC void dcd_event_handler(dcd_event_t const * event, bool in_isr)
{
switch (event->event_id)
{
case DCD_EVENT_UNPLUGGED:
_usbd_dev.connected = 0;
_usbd_dev.addressed = 0;
_usbd_dev.cfg_num = 0;
_usbd_dev.suspended = 0;
osal_queue_send(_usbd_q, event, in_isr);
break;
case DCD_EVENT_SUSPEND:
// NOTE: When plugging/unplugging device, the D+/D- state are unstable and
// can accidentally meet the SUSPEND condition ( Bus Idle for 3ms ).
// In addition, some MCUs such as SAMD or boards that haven no VBUS detection cannot distinguish
// suspended vs disconnected. We will skip handling SUSPEND/RESUME event if not currently connected
if ( _usbd_dev.connected )
{
_usbd_dev.suspended = 1;
osal_queue_send(_usbd_q, event, in_isr);
}
break;
case DCD_EVENT_RESUME:
// skip event if not connected (especially required for SAMD)
if ( _usbd_dev.connected )
{
_usbd_dev.suspended = 0;
osal_queue_send(_usbd_q, event, in_isr);
}
break;
case DCD_EVENT_SOF:
// SOF driver handler in ISR context
for (uint8_t i = 0; i < TOTAL_DRIVER_COUNT; i++)
{
usbd_class_driver_t const * driver = get_driver(i);
if (driver && driver->sof)
{
driver->sof(event->rhport, event->sof.frame_count);
}
}
// Some MCUs after running dcd_remote_wakeup() does not have way to detect the end of remote wakeup
// which last 1-15 ms. DCD can use SOF as a clear indicator that bus is back to operational
if ( _usbd_dev.suspended )
{
_usbd_dev.suspended = 0;
dcd_event_t const event_resume = { .rhport = event->rhport, .event_id = DCD_EVENT_RESUME };
osal_queue_send(_usbd_q, &event_resume, in_isr);
}
// skip osal queue for SOF in usbd task
break;
default:
osal_queue_send(_usbd_q, event, in_isr);
break;
}
}
//--------------------------------------------------------------------+
// USBD API For Class Driver
//--------------------------------------------------------------------+
void usbd_int_set(bool enabled)
{
if (enabled)
{
dcd_int_enable(_usbd_rhport);
}else
{
dcd_int_disable(_usbd_rhport);
}
}
// Parse consecutive endpoint descriptors (IN & OUT)
bool usbd_open_edpt_pair(uint8_t rhport, uint8_t const* p_desc, uint8_t ep_count, uint8_t xfer_type, uint8_t* ep_out, uint8_t* ep_in)
{
for(int i=0; i<ep_count; i++)
{
tusb_desc_endpoint_t const * desc_ep = (tusb_desc_endpoint_t const *) p_desc;
TU_ASSERT(TUSB_DESC_ENDPOINT == desc_ep->bDescriptorType && xfer_type == desc_ep->bmAttributes.xfer);
TU_ASSERT(usbd_edpt_open(rhport, desc_ep));
if ( tu_edpt_dir(desc_ep->bEndpointAddress) == TUSB_DIR_IN )
{
(*ep_in) = desc_ep->bEndpointAddress;
}else
{
(*ep_out) = desc_ep->bEndpointAddress;
}
p_desc = tu_desc_next(p_desc);
}
return true;
}
// Helper to defer an isr function
void usbd_defer_func(osal_task_func_t func, void* param, bool in_isr)
{
dcd_event_t event =
{
.rhport = 0,
.event_id = USBD_EVENT_FUNC_CALL,
};
event.func_call.func = func;
event.func_call.param = param;
dcd_event_handler(&event, in_isr);
}
//--------------------------------------------------------------------+
// USBD Endpoint API
//--------------------------------------------------------------------+
bool usbd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * desc_ep)
{
rhport = _usbd_rhport;
TU_ASSERT(tu_edpt_number(desc_ep->bEndpointAddress) < CFG_TUD_ENDPPOINT_MAX);
TU_ASSERT(tu_edpt_validate(desc_ep, (tusb_speed_t) _usbd_dev.speed));
return dcd_edpt_open(rhport, desc_ep);
}
bool usbd_edpt_claim(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
// TODO add this check later, also make sure we don't starve an out endpoint while suspending
// TU_VERIFY(tud_ready());
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
tu_edpt_state_t* ep_state = &_usbd_dev.ep_status[epnum][dir];
#if TUSB_OPT_MUTEX
return tu_edpt_claim(ep_state, _usbd_mutex);
#else
return tu_edpt_claim(ep_state, NULL);
#endif
}
bool usbd_edpt_release(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
tu_edpt_state_t* ep_state = &_usbd_dev.ep_status[epnum][dir];
#if TUSB_OPT_MUTEX
return tu_edpt_release(ep_state, _usbd_mutex);
#else
return tu_edpt_release(ep_state, NULL);
#endif
}
bool usbd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
rhport = _usbd_rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
// TODO skip ready() check for now since enumeration also use this API
// TU_VERIFY(tud_ready());
TU_LOG(USBD_DBG, " Queue EP %02X with %u bytes ...\r\n", ep_addr, total_bytes);
// Attempt to transfer on a busy endpoint, sound like an race condition !
TU_ASSERT(_usbd_dev.ep_status[epnum][dir].busy == 0);
// Set busy first since the actual transfer can be complete before dcd_edpt_xfer()
// could return and USBD task can preempt and clear the busy
_usbd_dev.ep_status[epnum][dir].busy = true;
if ( dcd_edpt_xfer(rhport, ep_addr, buffer, total_bytes) )
{
return true;
}else
{
// DCD error, mark endpoint as ready to allow next transfer
_usbd_dev.ep_status[epnum][dir].busy = false;
_usbd_dev.ep_status[epnum][dir].claimed = 0;
TU_LOG(USBD_DBG, "FAILED\r\n");
TU_BREAKPOINT();
return false;
}
}
// The number of bytes has to be given explicitly to allow more flexible control of how many
// bytes should be written and second to keep the return value free to give back a boolean
// success message. If total_bytes is too big, the FIFO will copy only what is available
// into the USB buffer!
bool usbd_edpt_xfer_fifo(uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes)
{
rhport = _usbd_rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
TU_LOG(USBD_DBG, " Queue ISO EP %02X with %u bytes ... ", ep_addr, total_bytes);
// Attempt to transfer on a busy endpoint, sound like an race condition !
TU_ASSERT(_usbd_dev.ep_status[epnum][dir].busy == 0);
// Set busy first since the actual transfer can be complete before dcd_edpt_xfer() could return
// and usbd task can preempt and clear the busy
_usbd_dev.ep_status[epnum][dir].busy = true;
if (dcd_edpt_xfer_fifo(rhport, ep_addr, ff, total_bytes))
{
TU_LOG(USBD_DBG, "OK\r\n");
return true;
}else
{
// DCD error, mark endpoint as ready to allow next transfer
_usbd_dev.ep_status[epnum][dir].busy = false;
_usbd_dev.ep_status[epnum][dir].claimed = 0;
TU_LOG(USBD_DBG, "failed\r\n");
TU_BREAKPOINT();
return false;
}
}
bool usbd_edpt_busy(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
return _usbd_dev.ep_status[epnum][dir].busy;
}
void usbd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
rhport = _usbd_rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
// only stalled if currently cleared
if ( !_usbd_dev.ep_status[epnum][dir].stalled )
{
TU_LOG(USBD_DBG, " Stall EP %02X\r\n", ep_addr);
dcd_edpt_stall(rhport, ep_addr);
_usbd_dev.ep_status[epnum][dir].stalled = true;
_usbd_dev.ep_status[epnum][dir].busy = true;
}
}
void usbd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
rhport = _usbd_rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
// only clear if currently stalled
if ( _usbd_dev.ep_status[epnum][dir].stalled )
{
TU_LOG(USBD_DBG, " Clear Stall EP %02X\r\n", ep_addr);
dcd_edpt_clear_stall(rhport, ep_addr);
_usbd_dev.ep_status[epnum][dir].stalled = false;
_usbd_dev.ep_status[epnum][dir].busy = false;
}
}
bool usbd_edpt_stalled(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
return _usbd_dev.ep_status[epnum][dir].stalled;
}
/**
* usbd_edpt_close will disable an endpoint.
*
* In progress transfers on this EP may be delivered after this call.
*
*/
void usbd_edpt_close(uint8_t rhport, uint8_t ep_addr)
{
rhport = _usbd_rhport;
TU_ASSERT(dcd_edpt_close, /**/);
TU_LOG(USBD_DBG, " CLOSING Endpoint: 0x%02X\r\n", ep_addr);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
dcd_edpt_close(rhport, ep_addr);
_usbd_dev.ep_status[epnum][dir].stalled = false;
_usbd_dev.ep_status[epnum][dir].busy = false;
_usbd_dev.ep_status[epnum][dir].claimed = false;
return;
}
void usbd_sof_enable(uint8_t rhport, bool en)
{
rhport = _usbd_rhport;
// TODO: Check needed if all drivers including the user sof_cb does not need an active SOF ISR any more.
// Only if all drivers switched off SOF calls the SOF interrupt may be disabled
dcd_sof_enable(rhport, en);
}
#endif