esp32-s2_dfu/src/class/vendor/vendor_device.c

273 lines
7.8 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2019 Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if (CFG_TUD_ENABLED && CFG_TUD_VENDOR)
#include "device/usbd.h"
#include "device/usbd_pvt.h"
#include "vendor_device.h"
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
typedef struct
{
uint8_t itf_num;
uint8_t ep_in;
uint8_t ep_out;
/*------------- From this point, data is not cleared by bus reset -------------*/
tu_fifo_t rx_ff;
tu_fifo_t tx_ff;
uint8_t rx_ff_buf[CFG_TUD_VENDOR_RX_BUFSIZE];
uint8_t tx_ff_buf[CFG_TUD_VENDOR_TX_BUFSIZE];
#if CFG_FIFO_MUTEX
osal_mutex_def_t rx_ff_mutex;
osal_mutex_def_t tx_ff_mutex;
#endif
// Endpoint Transfer buffer
CFG_TUSB_MEM_ALIGN uint8_t epout_buf[CFG_TUD_VENDOR_EPSIZE];
CFG_TUSB_MEM_ALIGN uint8_t epin_buf[CFG_TUD_VENDOR_EPSIZE];
} vendord_interface_t;
CFG_TUSB_MEM_SECTION static vendord_interface_t _vendord_itf[CFG_TUD_VENDOR];
#define ITF_MEM_RESET_SIZE offsetof(vendord_interface_t, rx_ff)
bool tud_vendor_n_mounted (uint8_t itf)
{
return _vendord_itf[itf].ep_in && _vendord_itf[itf].ep_out;
}
uint32_t tud_vendor_n_available (uint8_t itf)
{
return tu_fifo_count(&_vendord_itf[itf].rx_ff);
}
bool tud_vendor_n_peek(uint8_t itf, uint8_t* u8)
{
return tu_fifo_peek(&_vendord_itf[itf].rx_ff, u8);
}
//--------------------------------------------------------------------+
// Read API
//--------------------------------------------------------------------+
static void _prep_out_transaction (vendord_interface_t* p_itf)
{
uint8_t const rhport = 0;
// skip if previous transfer not complete
if ( usbd_edpt_busy(rhport, p_itf->ep_out) ) return;
// Prepare for incoming data but only allow what we can store in the ring buffer.
uint16_t max_read = tu_fifo_remaining(&p_itf->rx_ff);
if ( max_read >= CFG_TUD_VENDOR_EPSIZE )
{
usbd_edpt_xfer(rhport, p_itf->ep_out, p_itf->epout_buf, CFG_TUD_VENDOR_EPSIZE);
}
}
uint32_t tud_vendor_n_read (uint8_t itf, void* buffer, uint32_t bufsize)
{
vendord_interface_t* p_itf = &_vendord_itf[itf];
uint32_t num_read = tu_fifo_read_n(&p_itf->rx_ff, buffer, (uint16_t) bufsize);
_prep_out_transaction(p_itf);
return num_read;
}
void tud_vendor_n_read_flush (uint8_t itf)
{
vendord_interface_t* p_itf = &_vendord_itf[itf];
tu_fifo_clear(&p_itf->rx_ff);
_prep_out_transaction(p_itf);
}
//--------------------------------------------------------------------+
// Write API
//--------------------------------------------------------------------+
static uint16_t maybe_transmit(vendord_interface_t* p_itf)
{
uint8_t const rhport = 0;
// skip if previous transfer not complete
TU_VERIFY( !usbd_edpt_busy(rhport, p_itf->ep_in) );
uint16_t count = tu_fifo_read_n(&p_itf->tx_ff, p_itf->epin_buf, CFG_TUD_VENDOR_EPSIZE);
if (count > 0)
{
TU_ASSERT( usbd_edpt_xfer(rhport, p_itf->ep_in, p_itf->epin_buf, count) );
}
return count;
}
uint32_t tud_vendor_n_write (uint8_t itf, void const* buffer, uint32_t bufsize)
{
vendord_interface_t* p_itf = &_vendord_itf[itf];
uint16_t ret = tu_fifo_write_n(&p_itf->tx_ff, buffer, (uint16_t) bufsize);
if (tu_fifo_count(&p_itf->tx_ff) >= CFG_TUD_VENDOR_EPSIZE) {
maybe_transmit(p_itf);
}
return ret;
}
uint32_t tud_vendor_n_flush (uint8_t itf)
{
vendord_interface_t* p_itf = &_vendord_itf[itf];
uint32_t ret = maybe_transmit(p_itf);
return ret;
}
uint32_t tud_vendor_n_write_available (uint8_t itf)
{
return tu_fifo_remaining(&_vendord_itf[itf].tx_ff);
}
//--------------------------------------------------------------------+
// USBD Driver API
//--------------------------------------------------------------------+
void vendord_init(void)
{
tu_memclr(_vendord_itf, sizeof(_vendord_itf));
for(uint8_t i=0; i<CFG_TUD_VENDOR; i++)
{
vendord_interface_t* p_itf = &_vendord_itf[i];
// config fifo
tu_fifo_config(&p_itf->rx_ff, p_itf->rx_ff_buf, CFG_TUD_VENDOR_RX_BUFSIZE, 1, false);
tu_fifo_config(&p_itf->tx_ff, p_itf->tx_ff_buf, CFG_TUD_VENDOR_TX_BUFSIZE, 1, false);
#if CFG_FIFO_MUTEX
tu_fifo_config_mutex(&p_itf->rx_ff, NULL, osal_mutex_create(&p_itf->rx_ff_mutex));
tu_fifo_config_mutex(&p_itf->tx_ff, osal_mutex_create(&p_itf->tx_ff_mutex), NULL);
#endif
}
}
void vendord_reset(uint8_t rhport)
{
(void) rhport;
for(uint8_t i=0; i<CFG_TUD_VENDOR; i++)
{
vendord_interface_t* p_itf = &_vendord_itf[i];
tu_memclr(p_itf, ITF_MEM_RESET_SIZE);
tu_fifo_clear(&p_itf->rx_ff);
tu_fifo_clear(&p_itf->tx_ff);
}
}
uint16_t vendord_open(uint8_t rhport, tusb_desc_interface_t const * desc_itf, uint16_t max_len)
{
TU_VERIFY(TUSB_CLASS_VENDOR_SPECIFIC == desc_itf->bInterfaceClass, 0);
uint8_t const * p_desc = tu_desc_next(desc_itf);
uint8_t const * desc_end = p_desc + max_len;
// Find available interface
vendord_interface_t* p_vendor = NULL;
for(uint8_t i=0; i<CFG_TUD_VENDOR; i++)
{
if ( _vendord_itf[i].ep_in == 0 && _vendord_itf[i].ep_out == 0 )
{
p_vendor = &_vendord_itf[i];
break;
}
}
TU_VERIFY(p_vendor, 0);
p_vendor->itf_num = desc_itf->bInterfaceNumber;
if (desc_itf->bNumEndpoints)
{
// skip non-endpoint descriptors
while ( (TUSB_DESC_ENDPOINT != tu_desc_type(p_desc)) && (p_desc < desc_end) )
{
p_desc = tu_desc_next(p_desc);
}
// Open endpoint pair with usbd helper
TU_ASSERT(usbd_open_edpt_pair(rhport, p_desc, desc_itf->bNumEndpoints, TUSB_XFER_BULK, &p_vendor->ep_out, &p_vendor->ep_in), 0);
p_desc += desc_itf->bNumEndpoints*sizeof(tusb_desc_endpoint_t);
// Prepare for incoming data
if ( p_vendor->ep_out )
{
TU_ASSERT(usbd_edpt_xfer(rhport, p_vendor->ep_out, p_vendor->epout_buf, sizeof(p_vendor->epout_buf)), 0);
}
if ( p_vendor->ep_in ) maybe_transmit(p_vendor);
}
return (uint16_t) ((uintptr_t) p_desc - (uintptr_t) desc_itf);
}
bool vendord_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes)
{
(void) rhport;
(void) result;
uint8_t itf = 0;
vendord_interface_t* p_itf = _vendord_itf;
for ( ; ; itf++, p_itf++)
{
if (itf >= TU_ARRAY_SIZE(_vendord_itf)) return false;
if ( ( ep_addr == p_itf->ep_out ) || ( ep_addr == p_itf->ep_in ) ) break;
}
if ( ep_addr == p_itf->ep_out )
{
// Receive new data
tu_fifo_write_n(&p_itf->rx_ff, p_itf->epout_buf, (uint16_t) xferred_bytes);
// Invoked callback if any
if (tud_vendor_rx_cb) tud_vendor_rx_cb(itf);
_prep_out_transaction(p_itf);
}
else if ( ep_addr == p_itf->ep_in )
{
if (tud_vendor_tx_cb) tud_vendor_tx_cb(itf, (uint16_t) xferred_bytes);
// Send complete, try to send more if possible
maybe_transmit(p_itf);
}
return true;
}
#endif