Merge pull request #938 from HiFiPhile/uac_example

Bug fix and Enhancements of UAC2
This commit is contained in:
Ha Thach 2021-07-06 22:57:48 +07:00 committed by GitHub
commit ecb100a62f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 297 additions and 152 deletions

View File

@ -34,9 +34,11 @@
// MACRO CONSTANT TYPEDEF PROTOTYPES
//--------------------------------------------------------------------+
#ifndef AUDIO_SAMPLE_RATE
#define AUDIO_SAMPLE_RATE 48000
#endif
// List of supported sample rates
const uint32_t sample_rates[] = {44100, 48000, 88200, 96000};
uint32_t current_sample_rate = 44100;
#define N_SAMPLE_RATES TU_ARRAY_SIZE(sample_rates)
/* Blink pattern
* - 25 ms : streaming data
@ -76,11 +78,16 @@ int8_t mute[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX + 1]; // +1 for master chan
int16_t volume[CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX + 1]; // +1 for master channel 0
// Buffer for microphone data
int16_t mic_buf[1000];
int32_t mic_buf[CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ / 4];
// Buffer for speaker data
int16_t spk_buf[1000];
int32_t spk_buf[CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ / 4];
// Speaker data size received in the last frame
int spk_data_size;
// Resolution per format
const uint8_t resolutions_per_format[CFG_TUD_AUDIO_FUNC_1_N_FORMATS] = {CFG_TUD_AUDIO_FUNC_1_FORMAT_1_RESOLUTION_RX,
CFG_TUD_AUDIO_FUNC_1_FORMAT_2_RESOLUTION_RX};
// Current resolution, update on format change
uint8_t current_resolution;
void led_blinking_task(void);
void audio_task(void);
@ -135,55 +142,35 @@ void tud_resume_cb(void)
blink_interval_ms = BLINK_MOUNTED;
}
typedef struct TU_ATTR_PACKED
{
union
{
struct TU_ATTR_PACKED
{
uint8_t recipient : 5; ///< Recipient type tusb_request_recipient_t.
uint8_t type : 2; ///< Request type tusb_request_type_t.
uint8_t direction : 1; ///< Direction type. tusb_dir_t
} bmRequestType_bit;
uint8_t bmRequestType;
};
uint8_t bRequest; ///< Request type audio_cs_req_t
uint8_t bChannelNumber;
uint8_t bControlSelector;
union
{
uint8_t bInterface;
uint8_t bEndpoint;
};
uint8_t bEntityID;
uint16_t wLength;
} audio_control_request_t;
// Helper for clock get requests
static bool tud_audio_clock_get_request(uint8_t rhport, audio_control_request_t const *request)
{
TU_ASSERT(request->bEntityID == UAC2_ENTITY_CLOCK);
// Example supports only single frequency, same value will be used for current value and range
if (request->bControlSelector == AUDIO_CS_CTRL_SAM_FREQ)
{
if (request->bRequest == AUDIO_CS_REQ_CUR)
{
TU_LOG2("Clock get current freq %u\r\n", AUDIO_SAMPLE_RATE);
TU_LOG1("Clock get current freq %u\r\n", current_sample_rate);
audio_control_cur_4_t curf = { tu_htole32(AUDIO_SAMPLE_RATE) };
audio_control_cur_4_t curf = { tu_htole32(current_sample_rate) };
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &curf, sizeof(curf));
}
else if (request->bRequest == AUDIO_CS_REQ_RANGE)
{
audio_control_range_4_n_t(1) rangef =
audio_control_range_4_n_t(N_SAMPLE_RATES) rangef =
{
.wNumSubRanges = tu_htole16(1),
.subrange[0] = { tu_htole32(AUDIO_SAMPLE_RATE), tu_htole32(AUDIO_SAMPLE_RATE), 0}
.wNumSubRanges = tu_htole16(N_SAMPLE_RATES)
};
TU_LOG2("Clock get freq range (%d, %d, %d)\r\n", (int)rangef.subrange[0].bMin, (int)rangef.subrange[0].bMax, (int)rangef.subrange[0].bRes);
TU_LOG1("Clock get %d freq ranges\r\n", N_SAMPLE_RATES);
for(uint8_t i = 0; i < N_SAMPLE_RATES; i++)
{
rangef.subrange[i].bMin = sample_rates[i];
rangef.subrange[i].bMax = sample_rates[i];
rangef.subrange[i].bRes = 0;
TU_LOG1("Range %d (%d, %d, %d)\r\n", i, (int)rangef.subrange[i].bMin, (int)rangef.subrange[i].bMax, (int)rangef.subrange[i].bRes);
}
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &rangef, sizeof(rangef));
}
}
@ -191,7 +178,7 @@ static bool tud_audio_clock_get_request(uint8_t rhport, audio_control_request_t
request->bRequest == AUDIO_CS_REQ_CUR)
{
audio_control_cur_1_t cur_valid = { .bCur = 1 };
TU_LOG2("Clock get is valid %u\r\n", cur_valid.bCur);
TU_LOG1("Clock get is valid %u\r\n", cur_valid.bCur);
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &cur_valid, sizeof(cur_valid));
}
TU_LOG1("Clock get request not supported, entity = %u, selector = %u, request = %u\r\n",
@ -199,6 +186,32 @@ static bool tud_audio_clock_get_request(uint8_t rhport, audio_control_request_t
return false;
}
// Helper for clock set requests
static bool tud_audio_clock_set_request(uint8_t rhport, audio_control_request_t const *request, uint8_t const *buf)
{
(void)rhport;
TU_ASSERT(request->bEntityID == UAC2_ENTITY_CLOCK);
TU_VERIFY(request->bRequest == AUDIO_CS_REQ_CUR);
if (request->bControlSelector == AUDIO_CS_CTRL_SAM_FREQ)
{
TU_VERIFY(request->wLength == sizeof(audio_control_cur_4_t));
current_sample_rate = ((audio_control_cur_4_t *)buf)->bCur;
TU_LOG1("Clock set current freq: %d\r\n", current_sample_rate);
return true;
}
else
{
TU_LOG1("Clock set request not supported, entity = %u, selector = %u, request = %u\r\n",
request->bEntityID, request->bControlSelector, request->bRequest);
return false;
}
}
// Helper for feature unit get requests
static bool tud_audio_feature_unit_get_request(uint8_t rhport, audio_control_request_t const *request)
{
@ -207,7 +220,7 @@ static bool tud_audio_feature_unit_get_request(uint8_t rhport, audio_control_req
if (request->bControlSelector == AUDIO_FU_CTRL_MUTE && request->bRequest == AUDIO_CS_REQ_CUR)
{
audio_control_cur_1_t mute1 = { .bCur = mute[request->bChannelNumber] };
TU_LOG2("Get channel %u mute %d\r\n", request->bChannelNumber, mute1.bCur);
TU_LOG1("Get channel %u mute %d\r\n", request->bChannelNumber, mute1.bCur);
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &mute1, sizeof(mute1));
}
else if (UAC2_ENTITY_SPK_FEATURE_UNIT && request->bControlSelector == AUDIO_FU_CTRL_VOLUME)
@ -218,14 +231,14 @@ static bool tud_audio_feature_unit_get_request(uint8_t rhport, audio_control_req
.wNumSubRanges = tu_htole16(1),
.subrange[0] = { .bMin = tu_htole16(-VOLUME_CTRL_50_DB), tu_htole16(VOLUME_CTRL_0_DB), tu_htole16(256) }
};
TU_LOG2("Get channel %u volume range (%d, %d, %u) dB\r\n", request->bChannelNumber,
TU_LOG1("Get channel %u volume range (%d, %d, %u) dB\r\n", request->bChannelNumber,
range_vol.subrange[0].bMin / 256, range_vol.subrange[0].bMax / 256, range_vol.subrange[0].bRes / 256);
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &range_vol, sizeof(range_vol));
}
else if (request->bRequest == AUDIO_CS_REQ_CUR)
{
audio_control_cur_2_t cur_vol = { .bCur = tu_htole16(volume[request->bChannelNumber]) };
TU_LOG2("Get channel %u volume %u dB\r\n", request->bChannelNumber, cur_vol.bCur);
TU_LOG1("Get channel %u volume %d dB\r\n", request->bChannelNumber, cur_vol.bCur / 256);
return tud_audio_buffer_and_schedule_control_xfer(rhport, (tusb_control_request_t const *)request, &cur_vol, sizeof(cur_vol));
}
}
@ -249,7 +262,7 @@ static bool tud_audio_feature_unit_set_request(uint8_t rhport, audio_control_req
mute[request->bChannelNumber] = ((audio_control_cur_1_t *)buf)->bCur;
TU_LOG2("Set channel %d Mute: %d\r\n", request->bChannelNumber, mute[request->bChannelNumber]);
TU_LOG1("Set channel %d Mute: %d\r\n", request->bChannelNumber, mute[request->bChannelNumber]);
return true;
}
@ -259,7 +272,7 @@ static bool tud_audio_feature_unit_set_request(uint8_t rhport, audio_control_req
volume[request->bChannelNumber] = ((audio_control_cur_2_t const *)buf)->bCur;
TU_LOG2("Set channel %d volume: %d dB\r\n", request->bChannelNumber, volume[request->bChannelNumber] / 256);
TU_LOG1("Set channel %d volume: %d dB\r\n", request->bChannelNumber, volume[request->bChannelNumber] / 256);
return true;
}
@ -299,7 +312,8 @@ bool tud_audio_set_req_entity_cb(uint8_t rhport, tusb_control_request_t const *p
if (request->bEntityID == UAC2_ENTITY_SPK_FEATURE_UNIT)
return tud_audio_feature_unit_set_request(rhport, request, buf);
if (request->bEntityID == UAC2_ENTITY_CLOCK)
return tud_audio_clock_set_request(rhport, request, buf);
TU_LOG1("Set request not handled, entity = %d, selector = %d, request = %d\r\n",
request->bEntityID, request->bControlSelector, request->bRequest);
@ -329,6 +343,13 @@ bool tud_audio_set_itf_cb(uint8_t rhport, tusb_control_request_t const * p_reque
if (ITF_NUM_AUDIO_STREAMING_SPK == itf && alt != 0)
blink_interval_ms = BLINK_STREAMING;
// Clear buffer when streaming format is changed
spk_data_size = 0;
if(alt != 0)
{
current_resolution = resolutions_per_format[alt-1];
}
return true;
}
@ -362,20 +383,40 @@ void audio_task(void)
{
// When new data arrived, copy data from speaker buffer, to microphone buffer
// and send it over
// Only support speaker & headphone both have the same resolution
// If one is 16bit another is 24bit be care of LOUD noise !
if (spk_data_size)
{
int16_t *src = spk_buf;
int16_t *limit = spk_buf + spk_data_size / 2;
int16_t *dst = mic_buf;
while (src < limit)
if (current_resolution == 16)
{
// Combine two channels into one
int32_t left = *src++;
int32_t right = *src++;
*dst++ = (int16_t)((left + right) / 2);
int16_t *src = (int16_t*)spk_buf;
int16_t *limit = (int16_t*)spk_buf + spk_data_size / 2;
int16_t *dst = (int16_t*)mic_buf;
while (src < limit)
{
// Combine two channels into one
int32_t left = *src++;
int32_t right = *src++;
*dst++ = (left >> 1) + (right >> 1);
}
tud_audio_write((uint8_t *)mic_buf, spk_data_size / 2);
spk_data_size = 0;
}
else if (current_resolution == 24)
{
int32_t *src = spk_buf;
int32_t *limit = spk_buf + spk_data_size / 4;
int32_t *dst = mic_buf;
while (src < limit)
{
// Combine two channels into one
int32_t left = *src++;
int32_t right = *src++;
*dst++ = ((left >> 1) + (right >> 1)) & 0xffffff00;
}
tud_audio_write((uint8_t *)mic_buf, spk_data_size / 2);
spk_data_size = 0;
}
tud_audio_write((uint8_t *)mic_buf, spk_data_size / 2);
spk_data_size = 0;
}
}

View File

@ -93,33 +93,49 @@ extern "C" {
//--------------------------------------------------------------------
// AUDIO CLASS DRIVER CONFIGURATION
//--------------------------------------------------------------------
#define CFG_TUD_AUDIO_IN_PATH (CFG_TUD_AUDIO)
#define CFG_TUD_AUDIO_OUT_PATH (CFG_TUD_AUDIO)
//#define CFG_TUD_AUDIO_FUNC_1_DESC_LEN 220 // This equals TUD_AUDIO_HEADSET_STEREO_DESC_LEN, however, including it from usb_descriptors.h is not possible due to some strange include hassle
#define CFG_TUD_AUDIO_FUNC_1_DESC_LEN TUD_AUDIO_HEADSET_STEREO_DESC_LEN
#define CFG_TUD_AUDIO_FUNC_1_DESC_LEN TUD_AUDIO_HEADSET_STEREO_DESC_LEN
// How many formats are used, need to adjust USB descriptor if changed
#define CFG_TUD_AUDIO_FUNC_1_N_FORMATS 2
// Audio format type I specifications
#define CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX 1
#define CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_TX 2
#define CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX 2
#define CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_RX 2
#define CFG_TUD_AUDIO_ENABLE_FEEDBACK_EP 0
#define CFG_TUD_AUDIO_FUNC_1_MAX_SAMPLE_RATE 96000 // 24bit/96kHz is the best quality for full-speed, high-speed is needed beyond this
#define CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX 1
#define CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX 2
// 16bit in 16bit slots
#define CFG_TUD_AUDIO_FUNC_1_FORMAT_1_N_BYTES_PER_SAMPLE_TX 2
#define CFG_TUD_AUDIO_FUNC_1_FORMAT_1_RESOLUTION_TX 16
#define CFG_TUD_AUDIO_FUNC_1_FORMAT_1_N_BYTES_PER_SAMPLE_RX 2
#define CFG_TUD_AUDIO_FUNC_1_FORMAT_1_RESOLUTION_RX 16
// 24bit in 32bit slots
#define CFG_TUD_AUDIO_FUNC_1_FORMAT_2_N_BYTES_PER_SAMPLE_TX 4
#define CFG_TUD_AUDIO_FUNC_1_FORMAT_2_RESOLUTION_TX 24
#define CFG_TUD_AUDIO_FUNC_1_FORMAT_2_N_BYTES_PER_SAMPLE_RX 4
#define CFG_TUD_AUDIO_FUNC_1_FORMAT_2_RESOLUTION_RX 24
// EP and buffer size - for isochronous EP´s, the buffer and EP size are equal (different sizes would not make sense)
#define CFG_TUD_AUDIO_ENABLE_EP_IN 1
#define CFG_TUD_AUDIO_EP_SZ_IN (CFG_TUD_AUDIO_IN_PATH * (48 + 1) * (CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_TX) * (CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX)) // 48 Samples (48 kHz) x 2 Bytes/Sample x n Channels
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ CFG_TUD_AUDIO_EP_SZ_IN
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SZ_MAX CFG_TUD_AUDIO_EP_SZ_IN // Maximum EP IN size for all AS alternate settings used
#define CFG_TUD_AUDIO_FUNC_1_FORMAT_1_EP_SZ_IN TUD_AUDIO_EP_SIZE(CFG_TUD_AUDIO_FUNC_1_MAX_SAMPLE_RATE, CFG_TUD_AUDIO_FUNC_1_FORMAT_1_N_BYTES_PER_SAMPLE_TX, CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX)
#define CFG_TUD_AUDIO_FUNC_1_FORMAT_2_EP_SZ_IN TUD_AUDIO_EP_SIZE(CFG_TUD_AUDIO_FUNC_1_MAX_SAMPLE_RATE, CFG_TUD_AUDIO_FUNC_1_FORMAT_2_N_BYTES_PER_SAMPLE_TX, CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX)
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ TU_MAX(CFG_TUD_AUDIO_FUNC_1_FORMAT_1_EP_SZ_IN, CFG_TUD_AUDIO_FUNC_1_FORMAT_2_EP_SZ_IN)*2
#define CFG_TUD_AUDIO_FUNC_1_EP_IN_SZ_MAX TU_MAX(CFG_TUD_AUDIO_FUNC_1_FORMAT_1_EP_SZ_IN, CFG_TUD_AUDIO_FUNC_1_FORMAT_2_EP_SZ_IN) // Maximum EP IN size for all AS alternate settings used
// EP and buffer size - for isochronous EP´s, the buffer and EP size are equal (different sizes would not make sense)
#define CFG_TUD_AUDIO_ENABLE_EP_OUT 1
#define CFG_TUD_AUDIO_EP_OUT_SZ (CFG_TUD_AUDIO_OUT_PATH * ((48 + CFG_TUD_AUDIO_ENABLE_FEEDBACK_EP) * (CFG_TUD_AUDIO_FUNC_1_N_BYTES_PER_SAMPLE_RX) * (CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX))) // N Samples (N kHz) x 2 Bytes/Sample x n Channels
#define CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ CFG_TUD_AUDIO_EP_OUT_SZ*3
#define CFG_TUD_AUDIO_FUNC_1_EP_OUT_SZ_MAX CFG_TUD_AUDIO_EP_OUT_SZ // Maximum EP IN size for all AS alternate settings used
#define CFG_TUD_AUDIO_UNC_1_FORMAT_1_EP_SZ_OUT TUD_AUDIO_EP_SIZE(CFG_TUD_AUDIO_FUNC_1_MAX_SAMPLE_RATE, CFG_TUD_AUDIO_FUNC_1_FORMAT_1_N_BYTES_PER_SAMPLE_RX, CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX)
#define CFG_TUD_AUDIO_UNC_1_FORMAT_2_EP_SZ_OUT TUD_AUDIO_EP_SIZE(CFG_TUD_AUDIO_FUNC_1_MAX_SAMPLE_RATE, CFG_TUD_AUDIO_FUNC_1_FORMAT_2_N_BYTES_PER_SAMPLE_RX, CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX)
#define CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ TU_MAX(CFG_TUD_AUDIO_UNC_1_FORMAT_1_EP_SZ_OUT, CFG_TUD_AUDIO_UNC_1_FORMAT_2_EP_SZ_OUT)*2
#define CFG_TUD_AUDIO_FUNC_1_EP_OUT_SZ_MAX TU_MAX(CFG_TUD_AUDIO_UNC_1_FORMAT_1_EP_SZ_OUT, CFG_TUD_AUDIO_UNC_1_FORMAT_2_EP_SZ_OUT) // Maximum EP IN size for all AS alternate settings used
// Number of Standard AS Interface Descriptors (4.9.1) defined per audio function - this is required to be able to remember the current alternate settings of these interfaces - We restrict us here to have a constant number for all audio functions (which means this has to be the maximum number of AS interfaces an audio function has and a second audio function with less AS interfaces just wastes a few bytes)
#define CFG_TUD_AUDIO_FUNC_1_N_AS_INT 1
#define CFG_TUD_AUDIO_FUNC_1_N_AS_INT 2
// Size of control request buffer
#define CFG_TUD_AUDIO_FUNC_1_CTRL_BUF_SZ 64

View File

@ -93,7 +93,7 @@ uint8_t const desc_configuration[] =
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
// Interface number, string index, EP Out & EP In address, EP size
TUD_AUDIO_HEADSET_STEREO_DESCRIPTOR(2, 2, 16, EPNUM_AUDIO, CFG_TUD_AUDIO_EP_OUT_SZ, EPNUM_AUDIO | 0x80, CFG_TUD_AUDIO_EP_SZ_IN)
TUD_AUDIO_HEADSET_STEREO_DESCRIPTOR(2, EPNUM_AUDIO, EPNUM_AUDIO | 0x80)
};
// Invoked when received GET CONFIGURATION DESCRIPTOR

View File

@ -55,21 +55,36 @@ enum
+ TUD_AUDIO_DESC_OUTPUT_TERM_LEN\
+ TUD_AUDIO_DESC_INPUT_TERM_LEN\
+ TUD_AUDIO_DESC_OUTPUT_TERM_LEN\
/* Interface 1, Alternate 0 */\
+ TUD_AUDIO_DESC_STD_AS_INT_LEN\
/* Interface 1, Alternate 0 */\
+ TUD_AUDIO_DESC_STD_AS_INT_LEN\
+ TUD_AUDIO_DESC_CS_AS_INT_LEN\
+ TUD_AUDIO_DESC_TYPE_I_FORMAT_LEN\
+ TUD_AUDIO_DESC_STD_AS_ISO_EP_LEN\
+ TUD_AUDIO_DESC_CS_AS_ISO_EP_LEN\
/* Interface 1, Alternate 2 */\
+ TUD_AUDIO_DESC_STD_AS_INT_LEN\
+ TUD_AUDIO_DESC_CS_AS_INT_LEN\
+ TUD_AUDIO_DESC_TYPE_I_FORMAT_LEN\
+ TUD_AUDIO_DESC_STD_AS_ISO_EP_LEN\
+ TUD_AUDIO_DESC_CS_AS_ISO_EP_LEN\
/* Interface 2, Alternate 0 */\
+ TUD_AUDIO_DESC_STD_AS_INT_LEN\
/* Interface 2, Alternate 1 */\
+ TUD_AUDIO_DESC_STD_AS_INT_LEN\
+ TUD_AUDIO_DESC_CS_AS_INT_LEN\
+ TUD_AUDIO_DESC_TYPE_I_FORMAT_LEN\
+ TUD_AUDIO_DESC_STD_AS_ISO_EP_LEN\
+ TUD_AUDIO_DESC_CS_AS_ISO_EP_LEN\
/* Interface 2, Alternate 2 */\
+ TUD_AUDIO_DESC_STD_AS_INT_LEN\
+ TUD_AUDIO_DESC_CS_AS_INT_LEN\
+ TUD_AUDIO_DESC_TYPE_I_FORMAT_LEN\
+ TUD_AUDIO_DESC_STD_AS_ISO_EP_LEN\
+ TUD_AUDIO_DESC_CS_AS_ISO_EP_LEN)
#define TUD_AUDIO_HEADSET_STEREO_DESCRIPTOR(_stridx, _nBytesPerSample, _nBitsUsedPerSample, _epout, _epoutsize, _epin, _epinsize) \
#define TUD_AUDIO_HEADSET_STEREO_DESCRIPTOR(_stridx, _epout, _epin) \
/* Standard Interface Association Descriptor (IAD) */\
TUD_AUDIO_DESC_IAD(/*_firstitfs*/ ITF_NUM_AUDIO_CONTROL, /*_nitfs*/ ITF_NUM_TOTAL, /*_stridx*/ 0x00),\
/* Standard AC Interface Descriptor(4.7.1) */\
@ -77,13 +92,13 @@ enum
/* Class-Specific AC Interface Header Descriptor(4.7.2) */\
TUD_AUDIO_DESC_CS_AC(/*_bcdADC*/ 0x0200, /*_category*/ AUDIO_FUNC_HEADSET, /*_totallen*/ TUD_AUDIO_DESC_CLK_SRC_LEN+TUD_AUDIO_DESC_FEATURE_UNIT_TWO_CHANNEL_LEN+TUD_AUDIO_DESC_INPUT_TERM_LEN+TUD_AUDIO_DESC_OUTPUT_TERM_LEN+TUD_AUDIO_DESC_INPUT_TERM_LEN+TUD_AUDIO_DESC_OUTPUT_TERM_LEN, /*_ctrl*/ AUDIO_CS_AS_INTERFACE_CTRL_LATENCY_POS),\
/* Clock Source Descriptor(4.7.2.1) */\
TUD_AUDIO_DESC_CLK_SRC(/*_clkid*/ UAC2_ENTITY_CLOCK, /*_attr*/ 3, /*_ctrl*/ 5, /*_assocTerm*/ 0x00, /*_stridx*/ 0x00), \
TUD_AUDIO_DESC_CLK_SRC(/*_clkid*/ UAC2_ENTITY_CLOCK, /*_attr*/ 3, /*_ctrl*/ 7, /*_assocTerm*/ 0x00, /*_stridx*/ 0x00), \
/* Input Terminal Descriptor(4.7.2.4) */\
TUD_AUDIO_DESC_INPUT_TERM(/*_termid*/ UAC2_ENTITY_SPK_INPUT_TERMINAL, /*_termtype*/ AUDIO_TERM_TYPE_USB_STREAMING, /*_assocTerm*/ 0x00, /*_clkid*/ UAC2_ENTITY_CLOCK, /*_nchannelslogical*/ 0x02, /*_channelcfg*/ AUDIO_CHANNEL_CONFIG_NON_PREDEFINED, /*_idxchannelnames*/ 0x00, /*_ctrl*/ 0 * (AUDIO_CTRL_R << AUDIO_IN_TERM_CTRL_CONNECTOR_POS), /*_stridx*/ 0x00),\
/* Feature Unit Descriptor(4.7.2.8) */\
TUD_AUDIO_DESC_FEATURE_UNIT_TWO_CHANNEL(/*_unitid*/ UAC2_ENTITY_SPK_FEATURE_UNIT, /*_srcid*/ UAC2_ENTITY_SPK_INPUT_TERMINAL, /*_ctrlch0master*/ (AUDIO_CTRL_RW << AUDIO_FEATURE_UNIT_CTRL_MUTE_POS | AUDIO_CTRL_RW << AUDIO_FEATURE_UNIT_CTRL_VOLUME_POS), /*_ctrlch1*/ (AUDIO_CTRL_RW << AUDIO_FEATURE_UNIT_CTRL_MUTE_POS | AUDIO_CTRL_RW << AUDIO_FEATURE_UNIT_CTRL_VOLUME_POS), /*_ctrlch2*/ (AUDIO_CTRL_RW << AUDIO_FEATURE_UNIT_CTRL_MUTE_POS | AUDIO_CTRL_RW << AUDIO_FEATURE_UNIT_CTRL_VOLUME_POS), /*_stridx*/ 0x00),\
/* Output Terminal Descriptor(4.7.2.5) */\
TUD_AUDIO_DESC_OUTPUT_TERM(/*_termid*/ UAC2_ENTITY_SPK_OUTPUT_TERMINAL, /*_termtype*/ AUDIO_TERM_TYPE_OUT_GENERIC_SPEAKER, /*_assocTerm*/ 0x00, /*_srcid*/ UAC2_ENTITY_SPK_FEATURE_UNIT, /*_clkid*/ UAC2_ENTITY_CLOCK, /*_ctrl*/ 0x0000, /*_stridx*/ 0x00),\
TUD_AUDIO_DESC_OUTPUT_TERM(/*_termid*/ UAC2_ENTITY_SPK_OUTPUT_TERMINAL, /*_termtype*/ AUDIO_TERM_TYPE_OUT_HEADPHONES, /*_assocTerm*/ 0x00, /*_srcid*/ UAC2_ENTITY_SPK_FEATURE_UNIT, /*_clkid*/ UAC2_ENTITY_CLOCK, /*_ctrl*/ 0x0000, /*_stridx*/ 0x00),\
/* Input Terminal Descriptor(4.7.2.4) */\
TUD_AUDIO_DESC_INPUT_TERM(/*_termid*/ UAC2_ENTITY_MIC_INPUT_TERMINAL, /*_termtype*/ AUDIO_TERM_TYPE_IN_GENERIC_MIC, /*_assocTerm*/ 0x00, /*_clkid*/ UAC2_ENTITY_CLOCK, /*_nchannelslogical*/ 0x01, /*_channelcfg*/ AUDIO_CHANNEL_CONFIG_NON_PREDEFINED, /*_idxchannelnames*/ 0x00, /*_ctrl*/ 0 * (AUDIO_CTRL_R << AUDIO_IN_TERM_CTRL_CONNECTOR_POS), /*_stridx*/ 0x00),\
/* Output Terminal Descriptor(4.7.2.5) */\
@ -95,26 +110,46 @@ enum
/* Interface 1, Alternate 1 - alternate interface for data streaming */\
TUD_AUDIO_DESC_STD_AS_INT(/*_itfnum*/ (uint8_t)(ITF_NUM_AUDIO_STREAMING_SPK), /*_altset*/ 0x01, /*_nEPs*/ 0x01, /*_stridx*/ 0x05),\
/* Class-Specific AS Interface Descriptor(4.9.2) */\
TUD_AUDIO_DESC_CS_AS_INT(/*_termid*/ UAC2_ENTITY_SPK_INPUT_TERMINAL, /*_ctrl*/ AUDIO_CTRL_NONE, /*_formattype*/ AUDIO_FORMAT_TYPE_I, /*_formats*/ AUDIO_DATA_FORMAT_TYPE_I_PCM, /*_nchannelsphysical*/ 0x02, /*_channelcfg*/ AUDIO_CHANNEL_CONFIG_NON_PREDEFINED, /*_stridx*/ 0x00),\
TUD_AUDIO_DESC_CS_AS_INT(/*_termid*/ UAC2_ENTITY_SPK_INPUT_TERMINAL, /*_ctrl*/ AUDIO_CTRL_NONE, /*_formattype*/ AUDIO_FORMAT_TYPE_I, /*_formats*/ AUDIO_DATA_FORMAT_TYPE_I_PCM, /*_nchannelsphysical*/ CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX, /*_channelcfg*/ AUDIO_CHANNEL_CONFIG_NON_PREDEFINED, /*_stridx*/ 0x00),\
/* Type I Format Type Descriptor(2.3.1.6 - Audio Formats) */\
TUD_AUDIO_DESC_TYPE_I_FORMAT(_nBytesPerSample, _nBitsUsedPerSample),\
TUD_AUDIO_DESC_TYPE_I_FORMAT(CFG_TUD_AUDIO_FUNC_1_FORMAT_1_N_BYTES_PER_SAMPLE_RX, CFG_TUD_AUDIO_FUNC_1_FORMAT_1_RESOLUTION_RX),\
/* Standard AS Isochronous Audio Data Endpoint Descriptor(4.10.1.1) */\
TUD_AUDIO_DESC_STD_AS_ISO_EP(/*_ep*/ _epout, /*_attr*/ (TUSB_XFER_ISOCHRONOUS | TUSB_ISO_EP_ATT_ADAPTIVE | TUSB_ISO_EP_ATT_DATA), /*_maxEPsize*/ _epoutsize, /*_interval*/ (CFG_TUSB_RHPORT0_MODE & OPT_MODE_HIGH_SPEED) ? 0x04 : 0x01),\
TUD_AUDIO_DESC_STD_AS_ISO_EP(/*_ep*/ _epout, /*_attr*/ (TUSB_XFER_ISOCHRONOUS | TUSB_ISO_EP_ATT_ADAPTIVE | TUSB_ISO_EP_ATT_DATA), /*_maxEPsize*/ TUD_AUDIO_EP_SIZE(CFG_TUD_AUDIO_FUNC_1_MAX_SAMPLE_RATE, CFG_TUD_AUDIO_FUNC_1_FORMAT_1_N_BYTES_PER_SAMPLE_RX, CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX), /*_interval*/ 0x01),\
/* Class-Specific AS Isochronous Audio Data Endpoint Descriptor(4.10.1.2) */\
TUD_AUDIO_DESC_CS_AS_ISO_EP(/*_attr*/ AUDIO_CS_AS_ISO_DATA_EP_ATT_NON_MAX_PACKETS_OK, /*_ctrl*/ AUDIO_CTRL_NONE, /*_lockdelayunit*/ AUDIO_CS_AS_ISO_DATA_EP_LOCK_DELAY_UNIT_MILLISEC, /*_lockdelay*/ 0x0001),\
/* Interface 1, Alternate 2 - alternate interface for data streaming */\
TUD_AUDIO_DESC_STD_AS_INT(/*_itfnum*/ (uint8_t)(ITF_NUM_AUDIO_STREAMING_SPK), /*_altset*/ 0x02, /*_nEPs*/ 0x01, /*_stridx*/ 0x05),\
/* Class-Specific AS Interface Descriptor(4.9.2) */\
TUD_AUDIO_DESC_CS_AS_INT(/*_termid*/ UAC2_ENTITY_SPK_INPUT_TERMINAL, /*_ctrl*/ AUDIO_CTRL_NONE, /*_formattype*/ AUDIO_FORMAT_TYPE_I, /*_formats*/ AUDIO_DATA_FORMAT_TYPE_I_PCM, /*_nchannelsphysical*/ CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX, /*_channelcfg*/ AUDIO_CHANNEL_CONFIG_NON_PREDEFINED, /*_stridx*/ 0x00),\
/* Type I Format Type Descriptor(2.3.1.6 - Audio Formats) */\
TUD_AUDIO_DESC_TYPE_I_FORMAT(CFG_TUD_AUDIO_FUNC_1_FORMAT_2_N_BYTES_PER_SAMPLE_RX, CFG_TUD_AUDIO_FUNC_1_FORMAT_2_RESOLUTION_RX),\
/* Standard AS Isochronous Audio Data Endpoint Descriptor(4.10.1.1) */\
TUD_AUDIO_DESC_STD_AS_ISO_EP(/*_ep*/ _epout, /*_attr*/ (TUSB_XFER_ISOCHRONOUS | TUSB_ISO_EP_ATT_ADAPTIVE | TUSB_ISO_EP_ATT_DATA), /*_maxEPsize*/ TUD_AUDIO_EP_SIZE(CFG_TUD_AUDIO_FUNC_1_MAX_SAMPLE_RATE, CFG_TUD_AUDIO_FUNC_1_FORMAT_2_N_BYTES_PER_SAMPLE_RX, CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_RX), /*_interval*/ 0x01),\
/* Class-Specific AS Isochronous Audio Data Endpoint Descriptor(4.10.1.2) */\
TUD_AUDIO_DESC_CS_AS_ISO_EP(/*_attr*/ AUDIO_CS_AS_ISO_DATA_EP_ATT_NON_MAX_PACKETS_OK, /*_ctrl*/ AUDIO_CTRL_NONE, /*_lockdelayunit*/ AUDIO_CS_AS_ISO_DATA_EP_LOCK_DELAY_UNIT_MILLISEC, /*_lockdelay*/ 0x0001),\
/* Standard AS Interface Descriptor(4.9.1) */\
/* Interface 2, Alternate 0 - default alternate setting with 0 bandwidth */\
TUD_AUDIO_DESC_STD_AS_INT(/*_itfnum*/ (uint8_t)(ITF_NUM_AUDIO_STREAMING_MIC), /*_altset*/ 0x00, /*_nEPs*/ 0x00, /*_stridx*/ 0x04),\
/* Standard AS Interface Descriptor(4.9.1) */\
/* Interface 1, Alternate 1 - alternate interface for data streaming */\
/* Interface 2, Alternate 1 - alternate interface for data streaming */\
TUD_AUDIO_DESC_STD_AS_INT(/*_itfnum*/ (uint8_t)(ITF_NUM_AUDIO_STREAMING_MIC), /*_altset*/ 0x01, /*_nEPs*/ 0x01, /*_stridx*/ 0x04),\
/* Class-Specific AS Interface Descriptor(4.9.2) */\
TUD_AUDIO_DESC_CS_AS_INT(/*_termid*/ UAC2_ENTITY_MIC_OUTPUT_TERMINAL, /*_ctrl*/ AUDIO_CTRL_NONE, /*_formattype*/ AUDIO_FORMAT_TYPE_I, /*_formats*/ AUDIO_DATA_FORMAT_TYPE_I_PCM, /*_nchannelsphysical*/ 0x01, /*_channelcfg*/ AUDIO_CHANNEL_CONFIG_NON_PREDEFINED, /*_stridx*/ 0x00),\
TUD_AUDIO_DESC_CS_AS_INT(/*_termid*/ UAC2_ENTITY_MIC_OUTPUT_TERMINAL, /*_ctrl*/ AUDIO_CTRL_NONE, /*_formattype*/ AUDIO_FORMAT_TYPE_I, /*_formats*/ AUDIO_DATA_FORMAT_TYPE_I_PCM, /*_nchannelsphysical*/ CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX, /*_channelcfg*/ AUDIO_CHANNEL_CONFIG_NON_PREDEFINED, /*_stridx*/ 0x00),\
/* Type I Format Type Descriptor(2.3.1.6 - Audio Formats) */\
TUD_AUDIO_DESC_TYPE_I_FORMAT(_nBytesPerSample, _nBitsUsedPerSample),\
TUD_AUDIO_DESC_TYPE_I_FORMAT(CFG_TUD_AUDIO_FUNC_1_FORMAT_1_N_BYTES_PER_SAMPLE_TX, CFG_TUD_AUDIO_FUNC_1_FORMAT_1_RESOLUTION_TX),\
/* Standard AS Isochronous Audio Data Endpoint Descriptor(4.10.1.1) */\
TUD_AUDIO_DESC_STD_AS_ISO_EP(/*_ep*/ _epin, /*_attr*/ (TUSB_XFER_ISOCHRONOUS | TUSB_ISO_EP_ATT_ASYNCHRONOUS | TUSB_ISO_EP_ATT_DATA), /*_maxEPsize*/ _epinsize, /*_interval*/ (CFG_TUSB_RHPORT0_MODE & OPT_MODE_HIGH_SPEED) ? 0x04 : 0x01),\
TUD_AUDIO_DESC_STD_AS_ISO_EP(/*_ep*/ _epin, /*_attr*/ (TUSB_XFER_ISOCHRONOUS | TUSB_ISO_EP_ATT_ASYNCHRONOUS | TUSB_ISO_EP_ATT_DATA), /*_maxEPsize*/ TUD_AUDIO_EP_SIZE(CFG_TUD_AUDIO_FUNC_1_MAX_SAMPLE_RATE, CFG_TUD_AUDIO_FUNC_1_FORMAT_1_N_BYTES_PER_SAMPLE_TX, CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX), /*_interval*/ 0x01),\
/* Class-Specific AS Isochronous Audio Data Endpoint Descriptor(4.10.1.2) */\
TUD_AUDIO_DESC_CS_AS_ISO_EP(/*_attr*/ AUDIO_CS_AS_ISO_DATA_EP_ATT_NON_MAX_PACKETS_OK, /*_ctrl*/ AUDIO_CTRL_NONE, /*_lockdelayunit*/ AUDIO_CS_AS_ISO_DATA_EP_LOCK_DELAY_UNIT_UNDEFINED, /*_lockdelay*/ 0x0000)\
TUD_AUDIO_DESC_CS_AS_ISO_EP(/*_attr*/ AUDIO_CS_AS_ISO_DATA_EP_ATT_NON_MAX_PACKETS_OK, /*_ctrl*/ AUDIO_CTRL_NONE, /*_lockdelayunit*/ AUDIO_CS_AS_ISO_DATA_EP_LOCK_DELAY_UNIT_UNDEFINED, /*_lockdelay*/ 0x0000),\
/* Interface 2, Alternate 2 - alternate interface for data streaming */\
TUD_AUDIO_DESC_STD_AS_INT(/*_itfnum*/ (uint8_t)(ITF_NUM_AUDIO_STREAMING_MIC), /*_altset*/ 0x02, /*_nEPs*/ 0x01, /*_stridx*/ 0x04),\
/* Class-Specific AS Interface Descriptor(4.9.2) */\
TUD_AUDIO_DESC_CS_AS_INT(/*_termid*/ UAC2_ENTITY_MIC_OUTPUT_TERMINAL, /*_ctrl*/ AUDIO_CTRL_NONE, /*_formattype*/ AUDIO_FORMAT_TYPE_I, /*_formats*/ AUDIO_DATA_FORMAT_TYPE_I_PCM, /*_nchannelsphysical*/ CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX, /*_channelcfg*/ AUDIO_CHANNEL_CONFIG_NON_PREDEFINED, /*_stridx*/ 0x00),\
/* Type I Format Type Descriptor(2.3.1.6 - Audio Formats) */\
TUD_AUDIO_DESC_TYPE_I_FORMAT(CFG_TUD_AUDIO_FUNC_1_FORMAT_2_N_BYTES_PER_SAMPLE_TX, CFG_TUD_AUDIO_FUNC_1_FORMAT_2_RESOLUTION_TX),\
/* Standard AS Isochronous Audio Data Endpoint Descriptor(4.10.1.1) */\
TUD_AUDIO_DESC_STD_AS_ISO_EP(/*_ep*/ _epin, /*_attr*/ (TUSB_XFER_ISOCHRONOUS | TUSB_ISO_EP_ATT_ASYNCHRONOUS | TUSB_ISO_EP_ATT_DATA), /*_maxEPsize*/ TUD_AUDIO_EP_SIZE(CFG_TUD_AUDIO_FUNC_1_MAX_SAMPLE_RATE, CFG_TUD_AUDIO_FUNC_1_FORMAT_2_N_BYTES_PER_SAMPLE_TX, CFG_TUD_AUDIO_FUNC_1_N_CHANNELS_TX), /*_interval*/ 0x01),\
/* Class-Specific AS Isochronous Audio Data Endpoint Descriptor(4.10.1.2) */\
TUD_AUDIO_DESC_CS_AS_ISO_EP(/*_attr*/ AUDIO_CS_AS_ISO_DATA_EP_ATT_NON_MAX_PACKETS_OK, /*_ctrl*/ AUDIO_CTRL_NONE, /*_lockdelayunit*/ AUDIO_CS_AS_ISO_DATA_EP_LOCK_DELAY_UNIT_UNDEFINED, /*_lockdelay*/ 0x0000)
#endif

View File

@ -489,7 +489,7 @@ typedef enum
AUDIO_DATA_FORMAT_TYPE_I_IEEE_FLOAT = (uint32_t) (1 << 2),
AUDIO_DATA_FORMAT_TYPE_I_ALAW = (uint32_t) (1 << 3),
AUDIO_DATA_FORMAT_TYPE_I_MULAW = (uint32_t) (1 << 4),
AUDIO_DATA_FORMAT_TYPE_I_RAW_DATA = 0x100000000,
AUDIO_DATA_FORMAT_TYPE_I_RAW_DATA = 0x80000000,
} audio_data_format_type_I_t;
/// All remaining definitions are taken from the descriptor descriptions in the UAC2 main specification
@ -823,6 +823,33 @@ typedef struct TU_ATTR_PACKED
uint16_t wLockDelay ; ///< Indicates the time it takes this endpoint to reliably lock its internal clock recovery circuitry. Units used depend on the value of the bLockDelayUnits field.
} audio_desc_cs_as_iso_data_ep_t;
// 5.2.2 Control Request Layout
typedef struct TU_ATTR_PACKED
{
union
{
struct TU_ATTR_PACKED
{
uint8_t recipient : 5; ///< Recipient type tusb_request_recipient_t.
uint8_t type : 2; ///< Request type tusb_request_type_t.
uint8_t direction : 1; ///< Direction type. tusb_dir_t
} bmRequestType_bit;
uint8_t bmRequestType;
};
uint8_t bRequest; ///< Request type audio_cs_req_t
uint8_t bChannelNumber;
uint8_t bControlSelector;
union
{
uint8_t bInterface;
uint8_t bEndpoint;
};
uint8_t bEntityID;
uint16_t wLength;
} audio_control_request_t;
//// 5.2.3 Control Request Parameter Block Layout
// 5.2.3.1 1-byte Control CUR Parameter Block

View File

@ -102,19 +102,19 @@
// EP IN software buffers and mutexes
#if CFG_TUD_AUDIO_ENABLE_EP_IN && !CFG_TUD_AUDIO_ENABLE_ENCODING
#if CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ > 0
CFG_TUSB_MEM_ALIGN uint8_t audio_ep_in_sw_buf_1[CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ];
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t audio_ep_in_sw_buf_1[CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ];
#if CFG_FIFO_MUTEX
osal_mutex_def_t ep_in_ff_mutex_wr_1; // No need for read mutex as only USB driver reads from FIFO
#endif
#endif // CFG_TUD_AUDIO_FUNC_1_EP_IN_SW_BUF_SZ > 0
#if CFG_TUD_AUDIO > 1 && CFG_TUD_AUDIO_FUNC_2_EP_IN_SW_BUF_SZ > 0
CFG_TUSB_MEM_ALIGN uint8_t audio_ep_in_sw_buf_2[CFG_TUD_AUDIO_FUNC_2_EP_IN_SW_BUF_SZ];
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t audio_ep_in_sw_buf_2[CFG_TUD_AUDIO_FUNC_2_EP_IN_SW_BUF_SZ];
#if CFG_FIFO_MUTEX
osal_mutex_def_t ep_in_ff_mutex_wr_2; // No need for read mutex as only USB driver reads from FIFO
#endif
#endif // CFG_TUD_AUDIO > 1 && CFG_TUD_AUDIO_FUNC_2_EP_IN_SW_BUF_SZ > 0
#if CFG_TUD_AUDIO > 2 && CFG_TUD_AUDIO_FUNC_3_EP_IN_SW_BUF_SZ > 0
CFG_TUSB_MEM_ALIGN uint8_t audio_ep_in_sw_buf_3[CFG_TUD_AUDIO_FUNC_3_EP_IN_SW_BUF_SZ];
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t audio_ep_in_sw_buf_3[CFG_TUD_AUDIO_FUNC_3_EP_IN_SW_BUF_SZ];
#if CFG_FIFO_MUTEX
osal_mutex_def_t ep_in_ff_mutex_wr_3; // No need for read mutex as only USB driver reads from FIFO
#endif
@ -126,32 +126,32 @@ osal_mutex_def_t ep_in_ff_mutex_wr_3;
// - the software encoding is used - in this case the linear buffers serve as a target memory where logical channels are encoded into
#if CFG_TUD_AUDIO_ENABLE_EP_IN && (USE_LINEAR_BUFFER || CFG_TUD_AUDIO_ENABLE_ENCODING)
#if CFG_TUD_AUDIO_FUNC_1_EP_IN_SZ_MAX > 0
CFG_TUSB_MEM_ALIGN uint8_t lin_buf_in_1[CFG_TUD_AUDIO_FUNC_1_EP_IN_SZ_MAX];
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t lin_buf_in_1[CFG_TUD_AUDIO_FUNC_1_EP_IN_SZ_MAX];
#endif
#if CFG_TUD_AUDIO > 1 && CFG_TUD_AUDIO_FUNC_2_EP_IN_SZ_MAX > 0
CFG_TUSB_MEM_ALIGN uint8_t lin_buf_in_2[CFG_TUD_AUDIO_FUNC_2_EP_IN_SZ_MAX];
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t lin_buf_in_2[CFG_TUD_AUDIO_FUNC_2_EP_IN_SZ_MAX];
#endif
#if CFG_TUD_AUDIO > 2 && CFG_TUD_AUDIO_FUNC_3_EP_IN_SZ_MAX > 0
CFG_TUSB_MEM_ALIGN uint8_t lin_buf_in_3[CFG_TUD_AUDIO_FUNC_3_EP_IN_SZ_MAX];
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t lin_buf_in_3[CFG_TUD_AUDIO_FUNC_3_EP_IN_SZ_MAX];
#endif
#endif // CFG_TUD_AUDIO_ENABLE_EP_IN && (USE_LINEAR_BUFFER || CFG_TUD_AUDIO_ENABLE_DECODING)
// EP OUT software buffers and mutexes
#if CFG_TUD_AUDIO_ENABLE_EP_OUT && !CFG_TUD_AUDIO_ENABLE_DECODING
#if CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ > 0
CFG_TUSB_MEM_ALIGN uint8_t audio_ep_out_sw_buf_1[CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ];
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t audio_ep_out_sw_buf_1[CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ];
#if CFG_FIFO_MUTEX
osal_mutex_def_t ep_out_ff_mutex_rd_1; // No need for write mutex as only USB driver writes into FIFO
#endif
#endif // CFG_TUD_AUDIO_FUNC_1_EP_OUT_SW_BUF_SZ > 0
#if CFG_TUD_AUDIO > 1 && CFG_TUD_AUDIO_FUNC_2_EP_OUT_SW_BUF_SZ > 0
CFG_TUSB_MEM_ALIGN uint8_t audio_ep_out_sw_buf_2[CFG_TUD_AUDIO_FUNC_2_EP_OUT_SW_BUF_SZ];
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t audio_ep_out_sw_buf_2[CFG_TUD_AUDIO_FUNC_2_EP_OUT_SW_BUF_SZ];
#if CFG_FIFO_MUTEX
osal_mutex_def_t ep_out_ff_mutex_rd_2; // No need for write mutex as only USB driver writes into FIFO
#endif
#endif // CFG_TUD_AUDIO > 1 && CFG_TUD_AUDIO_FUNC_2_EP_OUT_SW_BUF_SZ > 0
#if CFG_TUD_AUDIO > 2 && CFG_TUD_AUDIO_FUNC_3_EP_OUT_SW_BUF_SZ > 0
CFG_TUSB_MEM_ALIGN uint8_t audio_ep_out_sw_buf_3[CFG_TUD_AUDIO_FUNC_3_EP_OUT_SW_BUF_SZ];
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t audio_ep_out_sw_buf_3[CFG_TUD_AUDIO_FUNC_3_EP_OUT_SW_BUF_SZ];
#if CFG_FIFO_MUTEX
osal_mutex_def_t ep_out_ff_mutex_rd_3; // No need for write mutex as only USB driver writes into FIFO
#endif
@ -163,52 +163,52 @@ osal_mutex_def_t ep_out_ff_mutex_rd_3;
// - the software encoding is used - in this case the linear buffers serve as a target memory where logical channels are encoded into
#if CFG_TUD_AUDIO_ENABLE_EP_OUT && (USE_LINEAR_BUFFER || CFG_TUD_AUDIO_ENABLE_DECODING)
#if CFG_TUD_AUDIO_FUNC_1_EP_OUT_SZ_MAX > 0
CFG_TUSB_MEM_ALIGN uint8_t lin_buf_out_1[CFG_TUD_AUDIO_FUNC_1_EP_OUT_SZ_MAX];
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t lin_buf_out_1[CFG_TUD_AUDIO_FUNC_1_EP_OUT_SZ_MAX];
#endif
#if CFG_TUD_AUDIO > 1 && CFG_TUD_AUDIO_FUNC_2_EP_OUT_SZ_MAX > 0
CFG_TUSB_MEM_ALIGN uint8_t lin_buf_out_2[CFG_TUD_AUDIO_FUNC_2_EP_OUT_SZ_MAX];
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t lin_buf_out_2[CFG_TUD_AUDIO_FUNC_2_EP_OUT_SZ_MAX];
#endif
#if CFG_TUD_AUDIO > 2 && CFG_TUD_AUDIO_FUNC_3_EP_OUT_SZ_MAX > 0
CFG_TUSB_MEM_ALIGN uint8_t lin_buf_out_3[CFG_TUD_AUDIO_FUNC_3_EP_OUT_SZ_MAX];
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t lin_buf_out_3[CFG_TUD_AUDIO_FUNC_3_EP_OUT_SZ_MAX];
#endif
#endif // CFG_TUD_AUDIO_ENABLE_EP_OUT && (USE_LINEAR_BUFFER || CFG_TUD_AUDIO_ENABLE_DECODING)
// Control buffers
CFG_TUSB_MEM_ALIGN uint8_t ctrl_buf_1[CFG_TUD_AUDIO_FUNC_1_CTRL_BUF_SZ];
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t ctrl_buf_1[CFG_TUD_AUDIO_FUNC_1_CTRL_BUF_SZ];
#if CFG_TUD_AUDIO > 1
CFG_TUSB_MEM_ALIGN uint8_t ctrl_buf_2[CFG_TUD_AUDIO_FUNC_2_CTRL_BUF_SZ];
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t ctrl_buf_2[CFG_TUD_AUDIO_FUNC_2_CTRL_BUF_SZ];
#endif
#if CFG_TUD_AUDIO > 2
CFG_TUSB_MEM_ALIGN uint8_t ctrl_buf_3[CFG_TUD_AUDIO_FUNC_3_CTRL_BUF_SZ];
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t ctrl_buf_3[CFG_TUD_AUDIO_FUNC_3_CTRL_BUF_SZ];
#endif
// Active alternate setting of interfaces
CFG_TUSB_MEM_ALIGN uint8_t alt_setting_1[CFG_TUD_AUDIO_FUNC_1_N_AS_INT];
uint8_t alt_setting_1[CFG_TUD_AUDIO_FUNC_1_N_AS_INT];
#if CFG_TUD_AUDIO > 1 && CFG_TUD_AUDIO_FUNC_2_N_AS_INT > 0
CFG_TUSB_MEM_ALIGN uint8_t alt_setting_2[CFG_TUD_AUDIO_FUNC_2_N_AS_INT];
uint8_t alt_setting_2[CFG_TUD_AUDIO_FUNC_2_N_AS_INT];
#endif
#if CFG_TUD_AUDIO > 2 && CFG_TUD_AUDIO_FUNC_3_N_AS_INT > 0
CFG_TUSB_MEM_ALIGN uint8_t alt_setting_3[CFG_TUD_AUDIO_FUNC_3_N_AS_INT];
uint8_t alt_setting_3[CFG_TUD_AUDIO_FUNC_3_N_AS_INT];
#endif
// Software encoding/decoding support FIFOs
#if CFG_TUD_AUDIO_ENABLE_EP_IN && CFG_TUD_AUDIO_ENABLE_ENCODING
#if CFG_TUD_AUDIO_FUNC_1_TX_SUPP_SW_FIFO_SZ > 0
CFG_TUSB_MEM_ALIGN uint8_t tx_supp_ff_buf_1[CFG_TUD_AUDIO_FUNC_1_N_TX_SUPP_SW_FIFO][CFG_TUD_AUDIO_FUNC_1_TX_SUPP_SW_FIFO_SZ];
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t tx_supp_ff_buf_1[CFG_TUD_AUDIO_FUNC_1_N_TX_SUPP_SW_FIFO][CFG_TUD_AUDIO_FUNC_1_TX_SUPP_SW_FIFO_SZ];
tu_fifo_t tx_supp_ff_1[CFG_TUD_AUDIO_FUNC_1_N_TX_SUPP_SW_FIFO];
#if CFG_FIFO_MUTEX
osal_mutex_def_t tx_supp_ff_mutex_wr_1[CFG_TUD_AUDIO_FUNC_1_N_TX_SUPP_SW_FIFO]; // No need for read mutex as only USB driver reads from FIFO
#endif
#endif
#if CFG_TUD_AUDIO > 1 && CFG_TUD_AUDIO_FUNC_2_TX_SUPP_SW_FIFO_SZ > 0
CFG_TUSB_MEM_ALIGN uint8_t tx_supp_ff_buf_2[CFG_TUD_AUDIO_FUNC_2_N_TX_SUPP_SW_FIFO][CFG_TUD_AUDIO_FUNC_2_TX_SUPP_SW_FIFO_SZ];
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t tx_supp_ff_buf_2[CFG_TUD_AUDIO_FUNC_2_N_TX_SUPP_SW_FIFO][CFG_TUD_AUDIO_FUNC_2_TX_SUPP_SW_FIFO_SZ];
tu_fifo_t tx_supp_ff_2[CFG_TUD_AUDIO_FUNC_2_N_TX_SUPP_SW_FIFO];
#if CFG_FIFO_MUTEX
osal_mutex_def_t tx_supp_ff_mutex_wr_2[CFG_TUD_AUDIO_FUNC_2_N_TX_SUPP_SW_FIFO]; // No need for read mutex as only USB driver reads from FIFO
#endif
#endif
#if CFG_TUD_AUDIO > 2 && CFG_TUD_AUDIO_FUNC_3_TX_SUPP_SW_FIFO_SZ > 0
CFG_TUSB_MEM_ALIGN uint8_t tx_supp_ff_buf_3[CFG_TUD_AUDIO_FUNC_3_N_TX_SUPP_SW_FIFO][CFG_TUD_AUDIO_FUNC_3_TX_SUPP_SW_FIFO_SZ];
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t tx_supp_ff_buf_3[CFG_TUD_AUDIO_FUNC_3_N_TX_SUPP_SW_FIFO][CFG_TUD_AUDIO_FUNC_3_TX_SUPP_SW_FIFO_SZ];
tu_fifo_t tx_supp_ff_3[CFG_TUD_AUDIO_FUNC_3_N_TX_SUPP_SW_FIFO];
#if CFG_FIFO_MUTEX
osal_mutex_def_t tx_supp_ff_mutex_wr_3[CFG_TUD_AUDIO_FUNC_3_N_TX_SUPP_SW_FIFO]; // No need for read mutex as only USB driver reads from FIFO
@ -218,21 +218,21 @@ osal_mutex_def_t tx_supp_ff_mutex_wr_3[CFG_TUD_AUDIO_FUNC_3_N_TX_SUPP_SW_FIFO];
#if CFG_TUD_AUDIO_ENABLE_EP_OUT && CFG_TUD_AUDIO_ENABLE_DECODING
#if CFG_TUD_AUDIO_FUNC_1_RX_SUPP_SW_FIFO_SZ > 0
CFG_TUSB_MEM_ALIGN uint8_t rx_supp_ff_buf_1[CFG_TUD_AUDIO_FUNC_1_N_RX_SUPP_SW_FIFO][CFG_TUD_AUDIO_FUNC_1_RX_SUPP_SW_FIFO_SZ];
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t rx_supp_ff_buf_1[CFG_TUD_AUDIO_FUNC_1_N_RX_SUPP_SW_FIFO][CFG_TUD_AUDIO_FUNC_1_RX_SUPP_SW_FIFO_SZ];
tu_fifo_t rx_supp_ff_1[CFG_TUD_AUDIO_FUNC_1_N_RX_SUPP_SW_FIFO];
#if CFG_FIFO_MUTEX
osal_mutex_def_t rx_supp_ff_mutex_rd_1[CFG_TUD_AUDIO_FUNC_1_N_RX_SUPP_SW_FIFO]; // No need for write mutex as only USB driver writes into FIFO
#endif
#endif
#if CFG_TUD_AUDIO > 1 && CFG_TUD_AUDIO_FUNC_2_RX_SUPP_SW_FIFO_SZ > 0
CFG_TUSB_MEM_ALIGN uint8_t rx_supp_ff_buf_2[CFG_TUD_AUDIO_FUNC_2_N_RX_SUPP_SW_FIFO][CFG_TUD_AUDIO_FUNC_2_RX_SUPP_SW_FIFO_SZ];
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t rx_supp_ff_buf_2[CFG_TUD_AUDIO_FUNC_2_N_RX_SUPP_SW_FIFO][CFG_TUD_AUDIO_FUNC_2_RX_SUPP_SW_FIFO_SZ];
tu_fifo_t rx_supp_ff_2[CFG_TUD_AUDIO_FUNC_2_N_RX_SUPP_SW_FIFO];
#if CFG_FIFO_MUTEX
osal_mutex_def_t rx_supp_ff_mutex_rd_2[CFG_TUD_AUDIO_FUNC_2_N_RX_SUPP_SW_FIFO]; // No need for write mutex as only USB driver writes into FIFO
#endif
#endif
#if CFG_TUD_AUDIO > 2 && CFG_TUD_AUDIO_FUNC_3_RX_SUPP_SW_FIFO_SZ > 0
CFG_TUSB_MEM_ALIGN uint8_t rx_supp_ff_buf_3[CFG_TUD_AUDIO_FUNC_3_N_RX_SUPP_SW_FIFO][CFG_TUD_AUDIO_FUNC_3_RX_SUPP_SW_FIFO_SZ];
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t rx_supp_ff_buf_3[CFG_TUD_AUDIO_FUNC_3_N_RX_SUPP_SW_FIFO][CFG_TUD_AUDIO_FUNC_3_RX_SUPP_SW_FIFO_SZ];
tu_fifo_t rx_supp_ff_3[CFG_TUD_AUDIO_FUNC_3_N_RX_SUPP_SW_FIFO];
#if CFG_FIFO_MUTEX
osal_mutex_def_t rx_supp_ff_mutex_rd_3[CFG_TUD_AUDIO_FUNC_3_N_RX_SUPP_SW_FIFO]; // No need for write mutex as only USB driver writes into FIFO
@ -294,7 +294,7 @@ typedef struct
// Audio control interrupt buffer - no FIFO - 6 Bytes according to UAC 2 specification (p. 74)
#if CFG_TUD_AUDIO_INT_CTR_EPSIZE_IN
CFG_TUSB_MEM_ALIGN uint8_t ep_int_ctr_buf[CFG_TUD_AUDIO_INT_CTR_EP_IN_SW_BUFFER_SIZE];
CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN uint8_t ep_int_ctr_buf[CFG_TUD_AUDIO_INT_CTR_EP_IN_SW_BUFFER_SIZE];
#endif
// Decoding parameters - parameters are set when alternate AS interface is set by host
@ -643,7 +643,6 @@ static bool audiod_decode_type_I_pcm(uint8_t rhport, audiod_function_t* audio, u
// Determine amount of samples
uint8_t const n_ff_used = audio->n_ff_used_rx;
uint16_t const nBytesToCopy = audio->n_channels_per_ff_rx * audio->n_bytes_per_sampe_rx;
uint16_t const nBytesPerFFToRead = n_bytes_received / n_ff_used;
uint8_t cnt_ff;
@ -662,14 +661,14 @@ static bool audiod_decode_type_I_pcm(uint8_t rhport, audiod_function_t* audio, u
info.len_lin = tu_min16(nBytesPerFFToRead, info.len_lin);
src = &audio->lin_buf_out[cnt_ff*audio->n_channels_per_ff_rx * audio->n_bytes_per_sampe_rx];
dst_end = info.ptr_lin + info.len_lin;
src = audiod_interleaved_copy_bytes_fast_decode(nBytesToCopy, info.ptr_lin, dst_end, src, n_ff_used);
src = audiod_interleaved_copy_bytes_fast_decode(audio->n_bytes_per_sampe_rx, info.ptr_lin, dst_end, src, n_ff_used);
// Handle wrapped part of FIFO
info.len_wrap = tu_min16(nBytesPerFFToRead - info.len_lin, info.len_wrap);
if (info.len_wrap != 0)
{
dst_end = info.ptr_wrap + info.len_wrap;
audiod_interleaved_copy_bytes_fast_decode(nBytesToCopy, info.ptr_wrap, dst_end, src, n_ff_used);
audiod_interleaved_copy_bytes_fast_decode(audio->n_bytes_per_sampe_rx, info.ptr_wrap, dst_end, src, n_ff_used);
}
tu_fifo_advance_write_pointer(&audio->rx_supp_ff[cnt_ff], info.len_lin + info.len_wrap);
}
@ -994,7 +993,7 @@ static uint16_t audiod_encode_type_I_pcm(uint8_t rhport, audiod_function_t* audi
{
info.len_lin = tu_min16(nBytesPerFFToSend, info.len_lin); // Limit up to desired length
src_end = (uint8_t *)info.ptr_lin + info.len_lin;
dst = audiod_interleaved_copy_bytes_fast_encode(nBytesToCopy, info.ptr_lin, src_end, dst, n_ff_used);
dst = audiod_interleaved_copy_bytes_fast_encode(audio->n_bytes_per_sampe_tx, info.ptr_lin, src_end, dst, n_ff_used);
// Limit up to desired length
info.len_wrap = tu_min16(nBytesPerFFToSend - info.len_lin, info.len_wrap);
@ -1003,7 +1002,7 @@ static uint16_t audiod_encode_type_I_pcm(uint8_t rhport, audiod_function_t* audi
if (info.len_wrap != 0)
{
src_end = (uint8_t *)info.ptr_wrap + info.len_wrap;
audiod_interleaved_copy_bytes_fast_encode(nBytesToCopy, info.ptr_wrap, src_end, dst, n_ff_used);
audiod_interleaved_copy_bytes_fast_encode(audio->n_bytes_per_sampe_tx, info.ptr_wrap, src_end, dst, n_ff_used);
}
tu_fifo_advance_read_pointer(&audio->tx_supp_ff[cnt_ff], info.len_lin + info.len_wrap);
@ -1481,18 +1480,20 @@ static bool audiod_set_interface(uint8_t rhport, tusb_control_request_t const *
audio->ep_in_as_intf_num = 0;
usbd_edpt_close(rhport, audio->ep_in);
// Invoke callback - can be used to stop data sampling
if (tud_audio_set_itf_close_EP_cb) TU_VERIFY(tud_audio_set_itf_close_EP_cb(rhport, p_request));
audio->ep_in = 0; // Necessary?
// Clear support FIFOs if used
#if CFG_TUD_AUDIO_ENABLE_ENCODING
// Clear FIFOs, since data is no longer valid
#if !CFG_TUD_AUDIO_ENABLE_ENCODING
tu_fifo_clear(&audio->ep_in_ff);
#else
for (uint8_t cnt = 0; cnt < audio->n_tx_supp_ff; cnt++)
{
tu_fifo_clear(&audio->tx_supp_ff[cnt]);
}
#endif
// Invoke callback - can be used to stop data sampling
if (tud_audio_set_itf_close_EP_cb) TU_VERIFY(tud_audio_set_itf_close_EP_cb(rhport, p_request));
audio->ep_in = 0; // Necessary?
}
#endif
@ -1502,16 +1503,22 @@ static bool audiod_set_interface(uint8_t rhport, tusb_control_request_t const *
{
audio->ep_out_as_intf_num = 0;
usbd_edpt_close(rhport, audio->ep_out);
audio->ep_out = 0; // Necessary?
// Clear support FIFOs if used
#if CFG_TUD_AUDIO_ENABLE_DECODING
// Clear FIFOs, since data is no longer valid
#if !CFG_TUD_AUDIO_ENABLE_DECODING
tu_fifo_clear(&audio->ep_out_ff);
#else
for (uint8_t cnt = 0; cnt < audio->n_rx_supp_ff; cnt++)
{
tu_fifo_clear(&audio->rx_supp_ff[cnt]);
}
#endif
// Invoke callback - can be used to stop data sampling
if (tud_audio_set_itf_close_EP_cb) TU_VERIFY(tud_audio_set_itf_close_EP_cb(rhport, p_request));
audio->ep_out = 0; // Necessary?
// Close corresponding feedback EP
#if CFG_TUD_AUDIO_ENABLE_FEEDBACK_EP
usbd_edpt_close(rhport, audio->ep_fb);
@ -1605,9 +1612,17 @@ static bool audiod_set_interface(uint8_t rhport, tusb_control_request_t const *
TU_ASSERT( audio->n_ff_used_rx <= audio->n_rx_supp_ff );
#endif
#endif
#if CFG_TUD_AUDIO_ENABLE_FEEDBACK_EP
// In case of asynchronous EP, call Cb after ep_fb is set
if (!(((tusb_desc_endpoint_t const *) p_desc)->bmAttributes.sync == 0x01 && audio->ep_fb == 0))
{
if (tud_audio_set_itf_cb) TU_VERIFY(tud_audio_set_itf_cb(rhport, p_request));
}
#else
// Invoke callback
if (tud_audio_set_itf_cb) TU_VERIFY(tud_audio_set_itf_cb(rhport, p_request));
#endif
// Prepare for incoming data
#if USE_LINEAR_BUFFER_RX
TU_VERIFY(usbd_edpt_xfer(rhport, audio->ep_out, audio->lin_buf_out, audio->ep_out_sz), false);
@ -1621,8 +1636,11 @@ static bool audiod_set_interface(uint8_t rhport, tusb_control_request_t const *
{
audio->ep_fb = ep_addr;
// Invoke callback
if (tud_audio_set_itf_cb) TU_VERIFY(tud_audio_set_itf_cb(rhport, p_request));
// Invoke callback after ep_out is set
if (audio->ep_out != 0)
{
if (tud_audio_set_itf_cb) TU_VERIFY(tud_audio_set_itf_cb(rhport, p_request));
}
}
#endif
#endif // CFG_TUD_AUDIO_ENABLE_EP_OUT
@ -1916,8 +1934,12 @@ bool audiod_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint3
{
if (tud_audio_fb_done_cb) TU_VERIFY(tud_audio_fb_done_cb(rhport));
// Schedule next transmission - value is changed bytud_audio_n_fb_set() in the meantime or the old value gets sent
return audiod_fb_send(rhport, &_audiod_fct[func_id]);
// Schedule a transmit with the new value if EP is not busy
if (!usbd_edpt_busy(rhport, _audiod_fct[func_id].ep_fb))
{
// Schedule next transmission - value is changed bytud_audio_n_fb_set() in the meantime or the old value gets sent
return audiod_fb_send(rhport, &_audiod_fct[func_id]);
}
}
#endif
#endif
@ -1997,15 +2019,17 @@ static bool audiod_get_AS_interface_index(uint8_t itf, audiod_function_t * audio
while (p_desc < p_desc_end)
{
// We assume the number of alternate settings is increasing thus we return the index of alternate setting zero!
if (tu_desc_type(p_desc) == TUSB_DESC_INTERFACE && ((tusb_desc_interface_t const * )p_desc)->bInterfaceNumber == itf)
if (tu_desc_type(p_desc) == TUSB_DESC_INTERFACE && ((tusb_desc_interface_t const * )p_desc)->bAlternateSetting == 0)
{
*idxItf = tmp;
*pp_desc_int = p_desc;
return true;
if (((tusb_desc_interface_t const * )p_desc)->bInterfaceNumber == itf)
{
*idxItf = tmp;
*pp_desc_int = p_desc;
return true;
}
// Increase index, bytes read, and pointer
tmp++;
}
// Increase index, bytes read, and pointer
tmp++;
p_desc = tu_desc_next(p_desc);
}
}
@ -2207,22 +2231,19 @@ bool tud_audio_n_fb_set(uint8_t func_id, uint32_t feedback)
TU_VERIFY(func_id < CFG_TUD_AUDIO && _audiod_fct[func_id].p_desc != NULL);
// Format the feedback value
if (_audiod_fct[func_id].rhport == 0)
{
uint8_t * fb = (uint8_t *) &_audiod_fct[func_id].fb_val;
#if !TUD_OPT_HIGH_SPEED
uint8_t * fb = (uint8_t *) &_audiod_fct[func_id].fb_val;
// For FS format is 10.14
*(fb++) = (feedback >> 2) & 0xFF;
*(fb++) = (feedback >> 10) & 0xFF;
*(fb++) = (feedback >> 18) & 0xFF;
// 4th byte is needed to work correctly with MS Windows
*fb = 0;
}
else
{
// For HS format is 16.16 as originally demanded
_audiod_fct[func_id].fb_val = feedback;
}
// For FS format is 10.14
*(fb++) = (feedback >> 2) & 0xFF;
*(fb++) = (feedback >> 10) & 0xFF;
*(fb++) = (feedback >> 18) & 0xFF;
// 4th byte is needed to work correctly with MS Windows
*fb = 0;
#else
// For HS format is 16.16 as originally demanded
_audiod_fct[func_id].fb_val = feedback;
#endif
// Schedule a transmit with the new value if EP is not busy - this triggers repetitive scheduling of the feedback value
if (!usbd_edpt_busy(_audiod_fct[func_id].rhport, _audiod_fct[func_id].ep_fb))

View File

@ -542,6 +542,11 @@ TU_ATTR_WEAK bool tud_vendor_control_xfer_cb(uint8_t rhport, uint8_t stage, tusb
/* Standard AS Isochronous Feedback Endpoint Descriptor(4.10.2.1) */\
TUD_AUDIO_DESC_STD_AS_ISO_FB_EP(/*_ep*/ _epfb, /*_interval*/ 1)\
// Calculate wMaxPacketSize of Endpoints
#define TUD_AUDIO_EP_SIZE(_maxFrequency, _nBytesPerSample, _nChannels) \
((((_maxFrequency + ((CFG_TUSB_RHPORT0_MODE & OPT_MODE_HIGH_SPEED) ? 7999 : 999)) / ((CFG_TUSB_RHPORT0_MODE & OPT_MODE_HIGH_SPEED) ? 8000 : 1000)) + 1) * _nBytesPerSample * _nChannels)
//------------- TUD_USBTMC/USB488 -------------//
#define TUD_USBTMC_APP_CLASS (TUSB_CLASS_APPLICATION_SPECIFIC)
#define TUD_USBTMC_APP_SUBCLASS 0x03u