Merge pull request #693 from HiFiPhile/dcd_same70

SAMx7x (E70, S70, V70, V71) DCD Support
This commit is contained in:
Ha Thach 2021-07-22 00:07:33 +07:00 committed by GitHub
commit c737aa6fbb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 817 additions and 38 deletions

View File

@ -48,7 +48,7 @@
// Default to Highspeed for MCU with internal HighSpeed PHY (can be port specific), otherwise FullSpeed
#ifndef BOARD_DEVICE_RHPORT_SPEED
#if (CFG_TUSB_MCU == OPT_MCU_LPC18XX || CFG_TUSB_MCU == OPT_MCU_LPC43XX || CFG_TUSB_MCU == OPT_MCU_MIMXRT10XX || \
CFG_TUSB_MCU == OPT_MCU_NUC505 || CFG_TUSB_MCU == OPT_MCU_CXD56)
CFG_TUSB_MCU == OPT_MCU_NUC505 || CFG_TUSB_MCU == OPT_MCU_CXD56 || CFG_TUSB_MCU == OPT_MCU_SAMX7X)
#define BOARD_DEVICE_RHPORT_SPEED OPT_MODE_HIGH_SPEED
#else
#define BOARD_DEVICE_RHPORT_SPEED OPT_MODE_FULL_SPEED

View File

@ -87,16 +87,32 @@ enum
// LPC 17xx and 40xx endpoint type (bulk/interrupt/iso) are fixed by its number
// 0 control, 1 In, 2 Bulk, 3 Iso, 4 In etc ...
#define EPNUM_CDC_0_NOTIF 0x81
#define EPNUM_CDC_0_DATA 0x02
#define EPNUM_CDC_0_OUT 0x02
#define EPNUM_CDC_0_IN 0x82
#define EPNUM_CDC_1_NOTIF 0x84
#define EPNUM_CDC_1_DATA 0x05
#define EPNUM_CDC_1_OUT 0x05
#define EPNUM_CDC_1_IN 0x85
#elif CFG_TUSB_MCU == OPT_MCU_SAMG || CFG_TUSB_MCU == OPT_MCU_SAMX7X
// SAMG & SAME70 don't support a same endpoint number with different direction IN and OUT
// e.g EP1 OUT & EP1 IN cannot exist together
#define EPNUM_CDC_0_NOTIF 0x81
#define EPNUM_CDC_0_OUT 0x02
#define EPNUM_CDC_0_IN 0x83
#define EPNUM_CDC_1_NOTIF 0x84
#define EPNUM_CDC_1_OUT 0x05
#define EPNUM_CDC_1_IN 0x86
#else
#define EPNUM_CDC_0_NOTIF 0x81
#define EPNUM_CDC_0_DATA 0x02
#define EPNUM_CDC_0_OUT 0x02
#define EPNUM_CDC_0_IN 0x82
#define EPNUM_CDC_1_NOTIF 0x83
#define EPNUM_CDC_1_DATA 0x04
#define EPNUM_CDC_1_OUT 0x04
#define EPNUM_CDC_1_IN 0x84
#endif
uint8_t const desc_fs_configuration[] =
@ -105,10 +121,10 @@ uint8_t const desc_fs_configuration[] =
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
// 1st CDC: Interface number, string index, EP notification address and size, EP data address (out, in) and size.
TUD_CDC_DESCRIPTOR(ITF_NUM_CDC_0, 4, EPNUM_CDC_0_NOTIF, 8, EPNUM_CDC_0_DATA, 0x80 | EPNUM_CDC_0_DATA, 64),
TUD_CDC_DESCRIPTOR(ITF_NUM_CDC_0, 4, EPNUM_CDC_0_NOTIF, 8, EPNUM_CDC_0_OUT, EPNUM_CDC_0_IN, 64),
// 2nd CDC: Interface number, string index, EP notification address and size, EP data address (out, in) and size.
TUD_CDC_DESCRIPTOR(ITF_NUM_CDC_1, 4, EPNUM_CDC_1_NOTIF, 8, EPNUM_CDC_1_DATA, 0x80 | EPNUM_CDC_1_DATA, 64),
TUD_CDC_DESCRIPTOR(ITF_NUM_CDC_1, 4, EPNUM_CDC_1_NOTIF, 8, EPNUM_CDC_1_OUT, EPNUM_CDC_1_IN, 64),
};
#if TUD_OPT_HIGH_SPEED
@ -118,10 +134,10 @@ uint8_t const desc_hs_configuration[] =
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
// 1st CDC: Interface number, string index, EP notification address and size, EP data address (out, in) and size.
TUD_CDC_DESCRIPTOR(ITF_NUM_CDC_0, 4, EPNUM_CDC_0_NOTIF, 8, EPNUM_CDC_0_DATA, 0x80 | EPNUM_CDC_0_DATA, 512),
TUD_CDC_DESCRIPTOR(ITF_NUM_CDC_0, 4, EPNUM_CDC_0_NOTIF, 8, EPNUM_CDC_0_OUT, EPNUM_CDC_0_IN, 512),
// 2nd CDC: Interface number, string index, EP notification address and size, EP data address (out, in) and size.
TUD_CDC_DESCRIPTOR(ITF_NUM_CDC_1, 4, EPNUM_CDC_1_NOTIF, 8, EPNUM_CDC_1_DATA, 0x80 | EPNUM_CDC_1_DATA, 512),
TUD_CDC_DESCRIPTOR(ITF_NUM_CDC_1, 4, EPNUM_CDC_1_NOTIF, 8, EPNUM_CDC_1_OUT, EPNUM_CDC_1_IN, 512),
};
#endif

View File

@ -48,7 +48,7 @@
// Default to Highspeed for MCU with internal HighSpeed PHY (can be port specific), otherwise FullSpeed
#ifndef BOARD_DEVICE_RHPORT_SPEED
#if (CFG_TUSB_MCU == OPT_MCU_LPC18XX || CFG_TUSB_MCU == OPT_MCU_LPC43XX || CFG_TUSB_MCU == OPT_MCU_MIMXRT10XX || \
CFG_TUSB_MCU == OPT_MCU_NUC505 || CFG_TUSB_MCU == OPT_MCU_CXD56)
CFG_TUSB_MCU == OPT_MCU_NUC505 || CFG_TUSB_MCU == OPT_MCU_CXD56 || CFG_TUSB_MCU == OPT_MCU_SAMX7X)
#define BOARD_DEVICE_RHPORT_SPEED OPT_MODE_HIGH_SPEED
#else
#define BOARD_DEVICE_RHPORT_SPEED OPT_MODE_FULL_SPEED

View File

@ -94,8 +94,8 @@ enum
#define EPNUM_MSC_OUT 0x05
#define EPNUM_MSC_IN 0x85
#elif CFG_TUSB_MCU == OPT_MCU_SAMG
// SAMG doesn't support a same endpoint number with different direction IN and OUT
#elif CFG_TUSB_MCU == OPT_MCU_SAMG || CFG_TUSB_MCU == OPT_MCU_SAMX7X
// SAMG & SAME70 don't support a same endpoint number with different direction IN and OUT
// e.g EP1 OUT & EP1 IN cannot exist together
#define EPNUM_CDC_NOTIF 0x81
#define EPNUM_CDC_OUT 0x02

View File

@ -48,7 +48,7 @@
// Default to Highspeed for MCU with internal HighSpeed PHY (can be port specific), otherwise FullSpeed
#ifndef BOARD_DEVICE_RHPORT_SPEED
#if (CFG_TUSB_MCU == OPT_MCU_LPC18XX || CFG_TUSB_MCU == OPT_MCU_LPC43XX || CFG_TUSB_MCU == OPT_MCU_MIMXRT10XX || \
CFG_TUSB_MCU == OPT_MCU_NUC505 || CFG_TUSB_MCU == OPT_MCU_CXD56)
CFG_TUSB_MCU == OPT_MCU_NUC505 || CFG_TUSB_MCU == OPT_MCU_CXD56 || CFG_TUSB_MCU == OPT_MCU_SAMX7X)
#define BOARD_DEVICE_RHPORT_SPEED OPT_MODE_HIGH_SPEED
#else
#define BOARD_DEVICE_RHPORT_SPEED OPT_MODE_FULL_SPEED

View File

@ -107,8 +107,8 @@ uint8_t const * tud_descriptor_device_cb(void)
#define EPNUM_NET_OUT 0x02
#define EPNUM_NET_IN 0x82
#elif CFG_TUSB_MCU == OPT_MCU_SAMG
// SAMG doesn't support a same endpoint number with different direction IN and OUT
#elif CFG_TUSB_MCU == OPT_MCU_SAMG || CFG_TUSB_MCU == OPT_MCU_SAMX7X
// SAMG & SAME70 don't support a same endpoint number with different direction IN and OUT
// e.g EP1 OUT & EP1 IN cannot exist together
#define EPNUM_NET_NOTIF 0x81
#define EPNUM_NET_OUT 0x02

View File

@ -79,12 +79,20 @@ uint8_t const * tud_descriptor_device_cb(void)
#if CFG_TUSB_MCU == OPT_MCU_LPC175X_6X || CFG_TUSB_MCU == OPT_MCU_LPC177X_8X || CFG_TUSB_MCU == OPT_MCU_LPC40XX
// LPC 17xx and 40xx endpoint type (bulk/interrupt/iso) are fixed by its number
// 0 control, 1 In, 2 Bulk, 3 Iso, 4 In etc ...
#define EPNUM_AUDIO 0x03
#define EPNUM_AUDIO_IN 0x03
#define EPNUM_AUDIO_OUT 0x03
#elif CFG_TUSB_MCU == OPT_MCU_NRF5X
// ISO endpoints for NRF5x are fixed to 0x08 (0x88)
#define EPNUM_AUDIO 0x08
#define EPNUM_AUDIO_IN 0x08
#define EPNUM_AUDIO_OUT 0x08
#elif CFG_TUSB_MCU == OPT_MCU_SAMG || CFG_TUSB_MCU == OPT_MCU_SAMX7X
// SAMG & SAME70 don't support a same endpoint number with different direction IN and OUT
// e.g EP1 OUT & EP1 IN cannot exist together
#define EPNUM_AUDIO_IN 0x01
#define EPNUM_AUDIO_OUT 0x02
#else
#define EPNUM_AUDIO 0x01
#define EPNUM_AUDIO_IN 0x01
#define EPNUM_AUDIO_OUT 0x01
#endif
uint8_t const desc_configuration[] =
@ -93,7 +101,7 @@ uint8_t const desc_configuration[] =
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
// Interface number, string index, EP Out & EP In address, EP size
TUD_AUDIO_HEADSET_STEREO_DESCRIPTOR(2, EPNUM_AUDIO, EPNUM_AUDIO | 0x80)
TUD_AUDIO_HEADSET_STEREO_DESCRIPTOR(2, EPNUM_AUDIO_OUT, EPNUM_AUDIO_IN | 0x80)
};
// Invoked when received GET CONFIGURATION DESCRIPTOR

View File

@ -86,11 +86,22 @@ enum
#if CFG_TUSB_MCU == OPT_MCU_LPC175X_6X || CFG_TUSB_MCU == OPT_MCU_LPC177X_8X || CFG_TUSB_MCU == OPT_MCU_LPC40XX
// LPC 17xx and 40xx endpoint type (bulk/interrupt/iso) are fixed by its number
// 0 control, 1 In, 2 Bulk, 3 Iso, 4 In etc ...
#define EPNUM_CDC 2
#define EPNUM_VENDOR 5
#define EPNUM_CDC_IN 2
#define EPNUM_CDC_OUT 2
#define EPNUM_VENDOR_IN 5
#define EPNUM_VENDOR_OUT 5
#elif CFG_TUSB_MCU == OPT_MCU_SAMG || CFG_TUSB_MCU == OPT_MCU_SAMX7X
// SAMG & SAME70 don't support a same endpoint number with different direction IN and OUT
// e.g EP1 OUT & EP1 IN cannot exist together
#define EPNUM_CDC_IN 2
#define EPNUM_CDC_OUT 3
#define EPNUM_VENDOR_IN 4
#define EPNUM_VENDOR_OUT 5
#else
#define EPNUM_CDC 2
#define EPNUM_VENDOR 3
#define EPNUM_CDC_IN 2
#define EPNUM_CDC_OUT 2
#define EPNUM_VENDOR_IN 3
#define EPNUM_VENDOR_OUT 3
#endif
uint8_t const desc_configuration[] =
@ -99,10 +110,10 @@ uint8_t const desc_configuration[] =
TUD_CONFIG_DESCRIPTOR(1, ITF_NUM_TOTAL, 0, CONFIG_TOTAL_LEN, TUSB_DESC_CONFIG_ATT_REMOTE_WAKEUP, 100),
// Interface number, string index, EP notification address and size, EP data address (out, in) and size.
TUD_CDC_DESCRIPTOR(ITF_NUM_CDC, 4, 0x81, 8, EPNUM_CDC, 0x80 | EPNUM_CDC, TUD_OPT_HIGH_SPEED ? 512 : 64),
TUD_CDC_DESCRIPTOR(ITF_NUM_CDC, 4, 0x81, 8, EPNUM_CDC_OUT, 0x80 | EPNUM_CDC_IN, TUD_OPT_HIGH_SPEED ? 512 : 64),
// Interface number, string index, EP Out & IN address, EP size
TUD_VENDOR_DESCRIPTOR(ITF_NUM_VENDOR, 5, EPNUM_VENDOR, 0x80 | EPNUM_VENDOR, TUD_OPT_HIGH_SPEED ? 512 : 64)
TUD_VENDOR_DESCRIPTOR(ITF_NUM_VENDOR, 5, EPNUM_VENDOR_OUT, 0x80 | EPNUM_VENDOR_IN, TUD_OPT_HIGH_SPEED ? 512 : 64)
};
// Invoked when received GET CONFIGURATION DESCRIPTOR

View File

@ -8,7 +8,7 @@ CFLAGS += \
-mfpu=fpv4-sp-d16 \
-nostdlib -nostartfiles \
-D__SAME70Q21B__ \
-DCFG_TUSB_MCU=OPT_MCU_NONE
-DCFG_TUSB_MCU=OPT_MCU_SAMX7X
# suppress following warnings from mcu driver
CFLAGS += -Wno-error=unused-parameter -Wno-error=cast-align
@ -19,7 +19,7 @@ ASF_DIR = hw/mcu/microchip/same70
LD_FILE = $(ASF_DIR)/same70b/gcc/gcc/same70q21b_flash.ld
SRC_C += \
src/portable/template/dcd_template.c \
src/portable/microchip/samx7x/dcd_samx7x.c \
$(ASF_DIR)/same70b/gcc/gcc/startup_same70q21b.c \
$(ASF_DIR)/same70b/gcc/system_same70q21b.c \
$(ASF_DIR)/hpl/core/hpl_init.c \
@ -43,11 +43,6 @@ INC += \
$(TOP)/$(ASF_DIR)/hri \
$(TOP)/$(ASF_DIR)/CMSIS/Core/Include
# For TinyUSB port source
#SRC_C += src/portable/template/dcd_template.c
VENDOR = .
CHIP_FAMILY = template
# For freeRTOS port source
FREERTOS_PORT = ARM_CM7

View File

@ -52,6 +52,7 @@ static volatile bool uart_busy = false;
static void tx_cb_EDBG_COM(const struct usart_async_descriptor *const io_descr)
{
(void) io_descr;
uart_busy = false;
}
@ -108,11 +109,9 @@ void board_init(void)
//--------------------------------------------------------------------+
// USB Interrupt Handler
//--------------------------------------------------------------------+
void UDP_Handler(void)
void USBHS_Handler(void)
{
#if CFG_TUSB_RHPORT0_MODE & OPT_MODE_DEVICE
tud_int_handler(0);
#endif
tud_int_handler(0);
}
//--------------------------------------------------------------------+

View File

@ -236,7 +236,7 @@ TU_ATTR_WEAK bool tud_vendor_control_xfer_cb(uint8_t rhport, uint8_t stage, tusb
// Interface number, string index, protocol, report descriptor len, EP In address, size & polling interval
#define TUD_HID_DESCRIPTOR(_itfnum, _stridx, _boot_protocol, _report_desc_len, _epin, _epsize, _ep_interval) \
/* Interface */\
9, TUSB_DESC_INTERFACE, _itfnum, 0, 1, TUSB_CLASS_HID, (uint8_t)((_boot_protocol) ? HID_SUBCLASS_BOOT : 0), _boot_protocol, _stridx,\
9, TUSB_DESC_INTERFACE, _itfnum, 0, 1, TUSB_CLASS_HID, (uint8_t)((_boot_protocol) ? (uint8_t)HID_SUBCLASS_BOOT : 0), _boot_protocol, _stridx,\
/* HID descriptor */\
9, HID_DESC_TYPE_HID, U16_TO_U8S_LE(0x0111), 0, 1, HID_DESC_TYPE_REPORT, U16_TO_U8S_LE(_report_desc_len),\
/* Endpoint In */\
@ -249,7 +249,7 @@ TU_ATTR_WEAK bool tud_vendor_control_xfer_cb(uint8_t rhport, uint8_t stage, tusb
// Interface number, string index, protocol, report descriptor len, EP OUT & IN address, size & polling interval
#define TUD_HID_INOUT_DESCRIPTOR(_itfnum, _stridx, _boot_protocol, _report_desc_len, _epout, _epin, _epsize, _ep_interval) \
/* Interface */\
9, TUSB_DESC_INTERFACE, _itfnum, 0, 2, TUSB_CLASS_HID, (uint8_t)((_boot_protocol) ? HID_SUBCLASS_BOOT : 0), _boot_protocol, _stridx,\
9, TUSB_DESC_INTERFACE, _itfnum, 0, 2, TUSB_CLASS_HID, (uint8_t)((_boot_protocol) ? (uint8_t)HID_SUBCLASS_BOOT : 0), _boot_protocol, _stridx,\
/* HID descriptor */\
9, HID_DESC_TYPE_HID, U16_TO_U8S_LE(0x0111), 0, 1, HID_DESC_TYPE_REPORT, U16_TO_U8S_LE(_report_desc_len),\
/* Endpoint Out */\

View File

@ -0,0 +1,749 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2018, hathach (tinyusb.org)
* Copyright (c) 2021, HiFiPhile
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED && CFG_TUSB_MCU == OPT_MCU_SAMX7X
#include "device/dcd.h"
#include "sam.h"
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM DECLARATION
//--------------------------------------------------------------------+
// Since TinyUSB doesn't use SOF for now, and this interrupt too often (1ms interval)
// We disable SOF for now until needed later on
#ifndef USE_SOF
# define USE_SOF 0
#endif
// Dual bank can imporve performance, but need 2 times bigger packet buffer
// As SAM7x has only 4KB packet buffer, use with caution !
// Enable in FS mode as packets are smaller
#ifndef USE_DUAL_BANK
# if TUD_OPT_HIGH_SPEED
# define USE_DUAL_BANK 0
# else
# define USE_DUAL_BANK 1
# endif
#endif
#define EP_MAX 10
#define USBHS_RAM_ADDR 0xA0100000u
#define EP_GET_FIFO_PTR(ep, scale) (((TU_XSTRCAT(TU_STRCAT(uint, scale),_t) (*)[0x8000 / ((scale) / 8)])USBHS_RAM_ADDR)[(ep)])
// Errata: The DMA feature is not available for Pipe/Endpoint 7
#define EP_DMA_SUPPORT(epnum) (epnum >= 1 && epnum <= 6)
// DMA Channel Transfer Descriptor
typedef struct {
volatile uint32_t next_desc;
volatile uint32_t buff_addr;
volatile uint32_t chnl_ctrl;
uint32_t padding;
} dma_desc_t;
// Transfer control context
typedef struct {
uint8_t * buffer;
uint16_t total_len;
uint16_t queued_len;
uint16_t max_packet_size;
uint8_t interval;
tu_fifo_t * fifo;
} xfer_ctl_t;
static tusb_speed_t get_speed(void);
static void dcd_transmit_packet(xfer_ctl_t * xfer, uint8_t ep_ix);
// DMA descriptors shouldn't be placed in ITCM !
CFG_TUSB_MEM_SECTION dma_desc_t dma_desc[6];
xfer_ctl_t xfer_status[EP_MAX];
static const tusb_desc_endpoint_t ep0_desc =
{
.bEndpointAddress = 0x00,
.wMaxPacketSize = { .size = CFG_TUD_ENDPOINT0_SIZE },
};
//------------------------------------------------------------------
// Device API
//------------------------------------------------------------------
// Initialize controller to device mode
void dcd_init (uint8_t rhport)
{
dcd_connect(rhport);
}
// Enable device interrupt
void dcd_int_enable (uint8_t rhport)
{
(void) rhport;
NVIC_EnableIRQ((IRQn_Type) ID_USBHS);
}
// Disable device interrupt
void dcd_int_disable (uint8_t rhport)
{
(void) rhport;
NVIC_DisableIRQ((IRQn_Type) ID_USBHS);
}
// Receive Set Address request, mcu port must also include status IN response
void dcd_set_address (uint8_t rhport, uint8_t dev_addr)
{
(void) dev_addr;
// DCD can only set address after status for this request is complete
// do it at dcd_edpt0_status_complete()
// Response with zlp status
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
}
// Wake up host
void dcd_remote_wakeup (uint8_t rhport)
{
(void) rhport;
USBHS->USBHS_DEVCTRL |= USBHS_DEVCTRL_RMWKUP;
}
// Connect by enabling internal pull-up resistor on D+/D-
void dcd_connect(uint8_t rhport)
{
(void) rhport;
dcd_int_disable(rhport);
// Enable USB clock
PMC->PMC_PCER1 = 1 << (ID_USBHS - 32);
// Enable the USB controller in device mode
USBHS->USBHS_CTRL = USBHS_CTRL_UIMOD | USBHS_CTRL_USBE;
while (USBHS_SR_CLKUSABLE != (USBHS->USBHS_SR & USBHS_SR_CLKUSABLE));
#if TUD_OPT_HIGH_SPEED
USBHS->USBHS_DEVCTRL &= ~USBHS_DEVCTRL_SPDCONF_Msk;
#else
USBHS->USBHS_DEVCTRL |= USBHS_DEVCTRL_SPDCONF_LOW_POWER;
#endif
// Enable the End Of Reset, Suspend & Wakeup interrupts
USBHS->USBHS_DEVIER = (USBHS_DEVIER_EORSTES | USBHS_DEVIER_SUSPES | USBHS_DEVIER_WAKEUPES);
#if USE_SOF
USBHS->USBHS_DEVIER = USBHS_DEVIER_SOFES;
#endif
// Clear the End Of Reset, SOF & Wakeup interrupts
USBHS->USBHS_DEVICR = (USBHS_DEVICR_EORSTC | USBHS_DEVICR_SOFC | USBHS_DEVICR_WAKEUPC);
// Manually set the Suspend Interrupt
USBHS->USBHS_DEVIFR |= USBHS_DEVIFR_SUSPS;
// Ack the Wakeup Interrupt
USBHS->USBHS_DEVICR = USBHS_DEVICR_WAKEUPC;
// Attach the device
USBHS->USBHS_DEVCTRL &= ~USBHS_DEVCTRL_DETACH;
// Freeze USB clock
USBHS->USBHS_CTRL |= USBHS_CTRL_FRZCLK;
}
// Disconnect by disabling internal pull-up resistor on D+/D-
void dcd_disconnect(uint8_t rhport)
{
(void) rhport;
dcd_int_disable(rhport);
// Disable all endpoints
USBHS->USBHS_DEVEPT &= ~(0x3FF << USBHS_DEVEPT_EPEN0_Pos);
// Unfreeze USB clock
USBHS->USBHS_CTRL &= ~USBHS_CTRL_FRZCLK;
while (USBHS_SR_CLKUSABLE != (USBHS->USBHS_SR & USBHS_SR_CLKUSABLE));
// Clear all the pending interrupts
USBHS->USBHS_DEVICR = USBHS_DEVICR_Msk;
// Disable all interrupts
USBHS->USBHS_DEVIDR = USBHS_DEVCTRL_UADD_Msk;
// Detach the device
USBHS->USBHS_DEVCTRL |= USBHS_DEVCTRL_DETACH;
// Disable the device address
USBHS->USBHS_DEVCTRL &=~(USBHS_DEVCTRL_ADDEN | USBHS_DEVCTRL_UADD_Msk);
}
static tusb_speed_t get_speed(void)
{
switch ((USBHS->USBHS_SR & USBHS_SR_SPEED_Msk) >> USBHS_SR_SPEED_Pos) {
case USBHS_SR_SPEED_FULL_SPEED_Val:
default:
return TUSB_SPEED_FULL;
case USBHS_SR_SPEED_HIGH_SPEED_Val:
return TUSB_SPEED_HIGH;
case USBHS_SR_SPEED_LOW_SPEED_Val:
return TUSB_SPEED_LOW;
}
}
static void dcd_ep_handler(uint8_t ep_ix)
{
uint32_t int_status = USBHS->USBHS_DEVEPTISR[ep_ix];
int_status &= USBHS->USBHS_DEVEPTIMR[ep_ix];
uint16_t count = (USBHS->USBHS_DEVEPTISR[ep_ix] &
USBHS_DEVEPTISR_BYCT_Msk) >> USBHS_DEVEPTISR_BYCT_Pos;
xfer_ctl_t *xfer = &xfer_status[ep_ix];
if (ep_ix == 0U)
{
static uint8_t ctrl_dir;
if (int_status & USBHS_DEVEPTISR_CTRL_RXSTPI)
{
ctrl_dir = (USBHS->USBHS_DEVEPTISR[0] & USBHS_DEVEPTISR_CTRL_CTRLDIR_Msk) >> USBHS_DEVEPTISR_CTRL_CTRLDIR_Pos;
// Setup packet should always be 8 bytes. If not, ignore it, and try again.
if (count == 8)
{
uint8_t *ptr = EP_GET_FIFO_PTR(0,8);
dcd_event_setup_received(0, ptr, true);
}
// Ack and disable SETUP interrupt
USBHS->USBHS_DEVEPTICR[0] = USBHS_DEVEPTICR_CTRL_RXSTPIC;
USBHS->USBHS_DEVEPTIDR[0] = USBHS_DEVEPTIDR_CTRL_RXSTPEC;
}
if (int_status & USBHS_DEVEPTISR_RXOUTI)
{
uint8_t *ptr = EP_GET_FIFO_PTR(0,8);
if (count && xfer->total_len)
{
uint16_t remain = xfer->total_len - xfer->queued_len;
if (count > remain)
{
count = remain;
}
if (xfer->buffer)
{
memcpy(xfer->buffer + xfer->queued_len, ptr, count);
} else
{
tu_fifo_write_n(xfer->fifo, ptr, count);
}
xfer->queued_len = (uint16_t)(xfer->queued_len + count);
}
// Acknowledge the interrupt
USBHS->USBHS_DEVEPTICR[0] = USBHS_DEVEPTICR_RXOUTIC;
if ((count < xfer->max_packet_size) || (xfer->queued_len == xfer->total_len))
{
// RX COMPLETE
dcd_event_xfer_complete(0, 0, xfer->queued_len, XFER_RESULT_SUCCESS, true);
// Disable the interrupt
USBHS->USBHS_DEVEPTIDR[0] = USBHS_DEVEPTIDR_RXOUTEC;
// Re-enable SETUP interrupt
if (ctrl_dir == 1)
{
USBHS->USBHS_DEVEPTIER[0] = USBHS_DEVEPTIER_CTRL_RXSTPES;
}
}
}
if (int_status & USBHS_DEVEPTISR_TXINI)
{
// Disable the interrupt
USBHS->USBHS_DEVEPTIDR[0] = USBHS_DEVEPTIDR_TXINEC;
if ((xfer->total_len != xfer->queued_len))
{
// TX not complete
dcd_transmit_packet(xfer, 0);
} else
{
// TX complete
dcd_event_xfer_complete(0, 0x80 + 0, xfer->total_len, XFER_RESULT_SUCCESS, true);
// Re-enable SETUP interrupt
if (ctrl_dir == 0)
{
USBHS->USBHS_DEVEPTIER[0] = USBHS_DEVEPTIER_CTRL_RXSTPES;
}
}
}
} else
{
if (int_status & USBHS_DEVEPTISR_RXOUTI)
{
if (count && xfer->total_len)
{
uint16_t remain = xfer->total_len - xfer->queued_len;
if (count > remain)
{
count = remain;
}
uint8_t *ptr = EP_GET_FIFO_PTR(ep_ix,8);
if (xfer->buffer)
{
memcpy(xfer->buffer + xfer->queued_len, ptr, count);
} else {
tu_fifo_write_n(xfer->fifo, ptr, count);
}
xfer->queued_len = (uint16_t)(xfer->queued_len + count);
}
// Clear the FIFO control flag to receive more data.
USBHS->USBHS_DEVEPTIDR[ep_ix] = USBHS_DEVEPTIDR_FIFOCONC;
// Acknowledge the interrupt
USBHS->USBHS_DEVEPTICR[ep_ix] = USBHS_DEVEPTICR_RXOUTIC;
if ((count < xfer->max_packet_size) || (xfer->queued_len == xfer->total_len))
{
// RX COMPLETE
dcd_event_xfer_complete(0, ep_ix, xfer->queued_len, XFER_RESULT_SUCCESS, true);
// Disable the interrupt
USBHS->USBHS_DEVEPTIDR[ep_ix] = USBHS_DEVEPTIDR_RXOUTEC;
// Though the host could still send, we don't know.
}
}
if (int_status & USBHS_DEVEPTISR_TXINI)
{
// Acknowledge the interrupt
USBHS->USBHS_DEVEPTICR[ep_ix] = USBHS_DEVEPTICR_TXINIC;
if ((xfer->total_len != xfer->queued_len))
{
// TX not complete
dcd_transmit_packet(xfer, ep_ix);
} else
{
// TX complete
dcd_event_xfer_complete(0, 0x80 + ep_ix, xfer->total_len, XFER_RESULT_SUCCESS, true);
// Disable the interrupt
USBHS->USBHS_DEVEPTIDR[ep_ix] = USBHS_DEVEPTIDR_TXINEC;
}
}
}
}
static void dcd_dma_handler(uint8_t ep_ix)
{
uint32_t status = USBHS->UsbhsDevdma[ep_ix - 1].USBHS_DEVDMASTATUS;
if (status & USBHS_DEVDMASTATUS_CHANN_ENB)
{
return; // Ignore EOT_STA interrupt
}
// Disable DMA interrupt
USBHS->USBHS_DEVIDR = USBHS_DEVIDR_DMA_1 << (ep_ix - 1);
xfer_ctl_t *xfer = &xfer_status[ep_ix];
uint16_t count = xfer->total_len - ((status & USBHS_DEVDMASTATUS_BUFF_COUNT_Msk) >> USBHS_DEVDMASTATUS_BUFF_COUNT_Pos);
if(USBHS->USBHS_DEVEPTCFG[ep_ix] & USBHS_DEVEPTCFG_EPDIR)
{
dcd_event_xfer_complete(0, 0x80 + ep_ix, count, XFER_RESULT_SUCCESS, true);
} else
{
dcd_event_xfer_complete(0, ep_ix, count, XFER_RESULT_SUCCESS, true);
}
}
void dcd_int_handler(uint8_t rhport)
{
(void) rhport;
uint32_t int_status = USBHS->USBHS_DEVISR;
int_status &= USBHS->USBHS_DEVIMR;
// End of reset interrupt
if (int_status & USBHS_DEVISR_EORST)
{
// Unfreeze USB clock
USBHS->USBHS_CTRL &= ~USBHS_CTRL_FRZCLK;
while(USBHS_SR_CLKUSABLE != (USBHS->USBHS_SR & USBHS_SR_CLKUSABLE));
// Reset all endpoints
for (int ep_ix = 1; ep_ix < EP_MAX; ep_ix++)
{
USBHS->USBHS_DEVEPT |= 1 << (USBHS_DEVEPT_EPRST0_Pos + ep_ix);
USBHS->USBHS_DEVEPT &=~(1 << (USBHS_DEVEPT_EPRST0_Pos + ep_ix));
}
dcd_edpt_open (0, &ep0_desc);
USBHS->USBHS_DEVICR = USBHS_DEVICR_EORSTC;
USBHS->USBHS_DEVICR = USBHS_DEVICR_WAKEUPC;
USBHS->USBHS_DEVICR = USBHS_DEVICR_SUSPC;
USBHS->USBHS_DEVIER = USBHS_DEVIER_SUSPES;
dcd_event_bus_reset(rhport, get_speed(), true);
}
// End of Wakeup interrupt
if (int_status & USBHS_DEVISR_WAKEUP)
{
USBHS->USBHS_CTRL &= ~USBHS_CTRL_FRZCLK;
while (USBHS_SR_CLKUSABLE != (USBHS->USBHS_SR & USBHS_SR_CLKUSABLE));
USBHS->USBHS_DEVICR = USBHS_DEVICR_WAKEUPC;
USBHS->USBHS_DEVIDR = USBHS_DEVIDR_WAKEUPEC;
USBHS->USBHS_DEVIER = USBHS_DEVIER_SUSPES;
dcd_event_bus_signal(0, DCD_EVENT_RESUME, true);
}
// Suspend interrupt
if (int_status & USBHS_DEVISR_SUSP)
{
// Unfreeze USB clock
USBHS->USBHS_CTRL &= ~USBHS_CTRL_FRZCLK;
while (USBHS_SR_CLKUSABLE != (USBHS->USBHS_SR & USBHS_SR_CLKUSABLE));
USBHS->USBHS_DEVICR = USBHS_DEVICR_SUSPC;
USBHS->USBHS_DEVIDR = USBHS_DEVIDR_SUSPEC;
USBHS->USBHS_DEVIER = USBHS_DEVIER_WAKEUPES;
USBHS->USBHS_CTRL |= USBHS_CTRL_FRZCLK;
dcd_event_bus_signal(0, DCD_EVENT_SUSPEND, true);
}
#if USE_SOF
if(int_status & USBHS_DEVISR_SOF)
{
USBHS->USBHS_DEVICR = USBHS_DEVICR_SOFC;
dcd_event_bus_signal(0, DCD_EVENT_SOF, true);
}
#endif
// Endpoints interrupt
for (int ep_ix = 0; ep_ix < EP_MAX; ep_ix++)
{
if (int_status & (USBHS_DEVISR_PEP_0 << ep_ix))
{
dcd_ep_handler(ep_ix);
}
}
// Endpoints DMA interrupt
for (int ep_ix = 0; ep_ix < EP_MAX; ep_ix++)
{
if (EP_DMA_SUPPORT(ep_ix))
{
if (int_status & (USBHS_DEVISR_DMA_1 << (ep_ix - 1)))
{
dcd_dma_handler(ep_ix);
}
}
}
}
//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+
// Invoked when a control transfer's status stage is complete.
// May help DCD to prepare for next control transfer, this API is optional.
void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * request)
{
(void) rhport;
if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE &&
request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD &&
request->bRequest == TUSB_REQ_SET_ADDRESS )
{
uint8_t const dev_addr = (uint8_t) request->wValue;
USBHS->USBHS_DEVCTRL |= dev_addr | USBHS_DEVCTRL_ADDEN;
}
}
// Configure endpoint's registers according to descriptor
bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * ep_desc)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_desc->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(ep_desc->bEndpointAddress);
uint16_t const epMaxPktSize = ep_desc->wMaxPacketSize.size;
tusb_xfer_type_t const eptype = (tusb_xfer_type_t)ep_desc->bmAttributes.xfer;
uint8_t fifoSize = 0; // FIFO size
uint16_t defaultEndpointSize = 8; // Default size of Endpoint
// Find upper 2 power number of epMaxPktSize
if (epMaxPktSize)
{
while (defaultEndpointSize < epMaxPktSize)
{
fifoSize++;
defaultEndpointSize <<= 1;
}
}
xfer_status[epnum].max_packet_size = epMaxPktSize;
USBHS->USBHS_DEVEPT |= 1 << (USBHS_DEVEPT_EPRST0_Pos + epnum);
USBHS->USBHS_DEVEPT &=~(1 << (USBHS_DEVEPT_EPRST0_Pos + epnum));
if (epnum == 0)
{
// Enable the control endpoint - Endpoint 0
USBHS->USBHS_DEVEPT |= USBHS_DEVEPT_EPEN0;
// Configure the Endpoint 0 configuration register
USBHS->USBHS_DEVEPTCFG[0] =
(
USBHS_DEVEPTCFG_EPSIZE(fifoSize) |
USBHS_DEVEPTCFG_EPTYPE(TUSB_XFER_CONTROL) |
USBHS_DEVEPTCFG_EPBK(USBHS_DEVEPTCFG_EPBK_1_BANK) |
USBHS_DEVEPTCFG_ALLOC
);
USBHS->USBHS_DEVEPTIER[0] = USBHS_DEVEPTIER_RSTDTS;
USBHS->USBHS_DEVEPTIDR[0] = USBHS_DEVEPTIDR_CTRL_STALLRQC;
if (USBHS_DEVEPTISR_CFGOK == (USBHS->USBHS_DEVEPTISR[0] & USBHS_DEVEPTISR_CFGOK))
{
// Endpoint configuration is successful
USBHS->USBHS_DEVEPTIER[0] = USBHS_DEVEPTIER_CTRL_RXSTPES;
// Enable Endpoint 0 Interrupts
USBHS->USBHS_DEVIER = USBHS_DEVIER_PEP_0;
return true;
} else
{
// Endpoint configuration is not successful
return false;
}
} else
{
// Enable the endpoint
USBHS->USBHS_DEVEPT |= ((0x01 << epnum) << USBHS_DEVEPT_EPEN0_Pos);
// Set up the maxpacket size, fifo start address fifosize
// and enable the interrupt. CLear the data toggle.
// AUTOSW is needed for DMA ack !
USBHS->USBHS_DEVEPTCFG[epnum] =
(
USBHS_DEVEPTCFG_EPSIZE(fifoSize) |
USBHS_DEVEPTCFG_EPTYPE(eptype) |
USBHS_DEVEPTCFG_EPBK(USBHS_DEVEPTCFG_EPBK_1_BANK) |
USBHS_DEVEPTCFG_AUTOSW |
((dir & 0x01) << USBHS_DEVEPTCFG_EPDIR_Pos)
);
if (eptype == TUSB_XFER_ISOCHRONOUS)
{
USBHS->USBHS_DEVEPTCFG[epnum] |= USBHS_DEVEPTCFG_NBTRANS(1);
}
#if USE_DUAL_BANK
if (eptype == TUSB_XFER_ISOCHRONOUS || eptype == TUSB_XFER_BULK)
{
USBHS->USBHS_DEVEPTCFG[epnum] |= USBHS_DEVEPTCFG_EPBK_2_BANK;
}
#endif
USBHS->USBHS_DEVEPTCFG[epnum] |= USBHS_DEVEPTCFG_ALLOC;
USBHS->USBHS_DEVEPTIER[epnum] = USBHS_DEVEPTIER_RSTDTS;
USBHS->USBHS_DEVEPTIDR[epnum] = USBHS_DEVEPTIDR_CTRL_STALLRQC;
if (USBHS_DEVEPTISR_CFGOK == (USBHS->USBHS_DEVEPTISR[epnum] & USBHS_DEVEPTISR_CFGOK))
{
USBHS->USBHS_DEVIER = ((0x01 << epnum) << USBHS_DEVIER_PEP_0_Pos);
return true;
} else
{
// Endpoint configuration is not successful
return false;
}
}
}
void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
// Disable endpoint interrupt
USBHS->USBHS_DEVIDR = 1 << (USBHS_DEVIDR_PEP_0_Pos + epnum);
// Disable EP
USBHS->USBHS_DEVEPT &=~(1 << (USBHS_DEVEPT_EPEN0_Pos + epnum));
}
static void dcd_transmit_packet(xfer_ctl_t * xfer, uint8_t ep_ix)
{
uint16_t len = (uint16_t)(xfer->total_len - xfer->queued_len);
if (len)
{
if (len > xfer->max_packet_size)
{
len = xfer->max_packet_size;
}
uint8_t *ptr = EP_GET_FIFO_PTR(ep_ix,8);
if(xfer->buffer)
{
memcpy(ptr, xfer->buffer + xfer->queued_len, len);
}
else
{
tu_fifo_read_n(xfer->fifo, ptr, len);
}
__DSB();
__ISB();
xfer->queued_len = (uint16_t)(xfer->queued_len + len);
}
if (ep_ix == 0U)
{
// Control endpoint: clear the interrupt flag to send the data
USBHS->USBHS_DEVEPTICR[0] = USBHS_DEVEPTICR_TXINIC;
} else
{
// Other endpoint types: clear the FIFO control flag to send the data
USBHS->USBHS_DEVEPTIDR[ep_ix] = USBHS_DEVEPTIDR_FIFOCONC;
}
USBHS->USBHS_DEVEPTIER[ep_ix] = USBHS_DEVEPTIER_TXINES;
}
// Submit a transfer, When complete dcd_event_xfer_complete() is invoked to notify the stack
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t * xfer = &xfer_status[epnum];
xfer->buffer = buffer;
xfer->total_len = total_bytes;
xfer->queued_len = 0;
xfer->fifo = NULL;
if (EP_DMA_SUPPORT(epnum) && total_bytes != 0)
{
uint32_t udd_dma_ctrl = USBHS_DEVDMACONTROL_BUFF_LENGTH(total_bytes);
if (dir == TUSB_DIR_OUT)
{
udd_dma_ctrl |= USBHS_DEVDMACONTROL_END_TR_IT | USBHS_DEVDMACONTROL_END_TR_EN;
} else {
udd_dma_ctrl |= USBHS_DEVDMACONTROL_END_B_EN;
}
USBHS->UsbhsDevdma[epnum - 1].USBHS_DEVDMAADDRESS = (uint32_t)buffer;
udd_dma_ctrl |= USBHS_DEVDMACONTROL_END_BUFFIT | USBHS_DEVDMACONTROL_CHANN_ENB;
// Disable IRQs to have a short sequence
// between read of EOT_STA and DMA enable
uint32_t irq_state = __get_PRIMASK();
__disable_irq();
if (!(USBHS->UsbhsDevdma[epnum - 1].USBHS_DEVDMASTATUS & USBHS_DEVDMASTATUS_END_TR_ST))
{
USBHS->UsbhsDevdma[epnum - 1].USBHS_DEVDMACONTROL = udd_dma_ctrl;
USBHS->USBHS_DEVIER = USBHS_DEVIER_DMA_1 << (epnum - 1);
__set_PRIMASK(irq_state);
return true;
}
__set_PRIMASK(irq_state);
// Here a ZLP has been recieved
// and the DMA transfer must be not started.
// It is the end of transfer
return false;
} else
{
if (dir == TUSB_DIR_OUT)
{
USBHS->USBHS_DEVEPTIER[epnum] = USBHS_DEVEPTIER_RXOUTES;
} else
{
dcd_transmit_packet(xfer,epnum);
}
}
return true;
}
// The number of bytes has to be given explicitly to allow more flexible control of how many
// bytes should be written and second to keep the return value free to give back a boolean
// success message. If total_bytes is too big, the FIFO will copy only what is available
// into the USB buffer!
bool dcd_edpt_xfer_fifo (uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t * xfer = &xfer_status[epnum];
if(epnum == 0x80)
xfer = &xfer_status[EP_MAX];
xfer->buffer = NULL;
xfer->total_len = total_bytes;
xfer->queued_len = 0;
xfer->fifo = ff;
if (EP_DMA_SUPPORT(epnum) && total_bytes != 0)
{
tu_fifo_buffer_info_t info;
uint32_t udd_dma_ctrl_lin = USBHS_DEVDMACONTROL_CHANN_ENB;
uint32_t udd_dma_ctrl_wrap = USBHS_DEVDMACONTROL_CHANN_ENB | USBHS_DEVDMACONTROL_END_BUFFIT;
if (dir == TUSB_DIR_OUT)
{
tu_fifo_get_write_info(ff, &info);
udd_dma_ctrl_lin |= USBHS_DEVDMACONTROL_END_TR_IT | USBHS_DEVDMACONTROL_END_TR_EN;
udd_dma_ctrl_wrap |= USBHS_DEVDMACONTROL_END_TR_IT | USBHS_DEVDMACONTROL_END_TR_EN;
} else {
tu_fifo_get_read_info(ff, &info);
if(info.len_wrap == 0)
{
udd_dma_ctrl_lin |= USBHS_DEVDMACONTROL_END_B_EN;
}
udd_dma_ctrl_wrap |= USBHS_DEVDMACONTROL_END_B_EN;
}
USBHS->UsbhsDevdma[epnum - 1].USBHS_DEVDMAADDRESS = (uint32_t)info.ptr_lin;
if (info.len_wrap)
{
dma_desc[epnum - 1].next_desc = 0;
dma_desc[epnum - 1].buff_addr = (uint32_t)info.ptr_wrap;
dma_desc[epnum - 1].chnl_ctrl =
udd_dma_ctrl_wrap | USBHS_DEVDMACONTROL_BUFF_LENGTH(info.len_wrap);
udd_dma_ctrl_lin |= USBHS_DEVDMASTATUS_DESC_LDST;
__DSB();
__ISB();
USBHS->UsbhsDevdma[epnum - 1].USBHS_DEVDMANXTDSC = (uint32_t)&dma_desc[epnum - 1];
} else {
udd_dma_ctrl_lin |= USBHS_DEVDMACONTROL_END_BUFFIT;
}
udd_dma_ctrl_lin |= USBHS_DEVDMACONTROL_BUFF_LENGTH(info.len_lin);
// Disable IRQs to have a short sequence
// between read of EOT_STA and DMA enable
uint32_t irq_state = __get_PRIMASK();
__disable_irq();
if (!(USBHS->UsbhsDevdma[epnum - 1].USBHS_DEVDMASTATUS & USBHS_DEVDMASTATUS_END_TR_ST))
{
USBHS->UsbhsDevdma[epnum - 1].USBHS_DEVDMACONTROL = udd_dma_ctrl_lin;
USBHS->USBHS_DEVIER = USBHS_DEVIER_DMA_1 << (epnum - 1);
__set_PRIMASK(irq_state);
return true;
}
__set_PRIMASK(irq_state);
// Here a ZLP has been recieved
// and the DMA transfer must be not started.
// It is the end of transfer
return false;
} else
{
if (dir == TUSB_DIR_OUT)
{
USBHS->USBHS_DEVEPTIER[epnum] = USBHS_DEVEPTIER_RXOUTES;
} else
{
dcd_transmit_packet(xfer,epnum);
}
}
return true;
}
// Stall endpoint
void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
USBHS->USBHS_DEVEPTIER[epnum] = USBHS_DEVEPTIER_CTRL_STALLRQS;
// Re-enable SETUP interrupt
if (epnum == 0)
{
USBHS->USBHS_DEVEPTIER[0] = USBHS_DEVEPTIER_CTRL_RXSTPES;
}
}
// clear stall, data toggle is also reset to DATA0
void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
{
(void) rhport;
uint8_t const epnum = tu_edpt_number(ep_addr);
USBHS->USBHS_DEVEPTIDR[epnum] = USBHS_DEVEPTIDR_CTRL_STALLRQC;
USBHS->USBHS_DEVEPTIER[epnum] = USBHS_HSTPIPIER_RSTDTS;
}
#endif

View File

@ -62,6 +62,7 @@
#define OPT_MCU_SAMD11 204 ///< MicroChip SAMD11
#define OPT_MCU_SAML22 205 ///< MicroChip SAML22
#define OPT_MCU_SAML21 206 ///< MicroChip SAML21
#define OPT_MCU_SAMX7X 207 ///< MicroChip SAME70, S70, V70, V71 family
// STM32
#define OPT_MCU_STM32F0 300 ///< ST STM32F0