Merge branch 'master' into add-stm-hs

This commit is contained in:
hathach 2020-06-30 01:55:57 +07:00
commit ab75998316
46 changed files with 1271 additions and 248 deletions

View File

@ -2,7 +2,7 @@
name: Bug report
about: Create a report to help us improve
title: ''
labels: Bug
labels: Bug 🐞
assignees: ''
---

View File

@ -2,7 +2,7 @@
name: Feature request
about: Suggest an idea for this project
title: ''
labels: Feature
labels: Feature 💡
assignees: ''
---

View File

@ -79,6 +79,11 @@ jobs:
# Build ESP32S
build-esp32s:
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
example: ['board_test', 'cdc_msc_freertos', 'hid_composite_freertos']
steps:
- name: Setup Python
uses: actions/setup-python@v1
@ -92,4 +97,4 @@ jobs:
submodules: 'false'
- name: Build
run: docker run --rm -v $PWD:/project -w /project espressif/idf:latest python3 tools/build_esp32s.py
run: docker run --rm -v $PWD:/project -w /project espressif/idf:latest python3 tools/build_esp32s.py ${{ matrix.example }}

View File

@ -30,7 +30,7 @@
* Added `net_lwip_webserver` example for demonstration of usbnet with lwip
* Board support for NuTiny NUC120, NUC121s, NUC125s, NUC126V, NUC505
* Complete multiple class interfaces & add cdc_dual_ports example
* **[Scott Shawcroft](https://github.com/tannewt)**
* SAMD21 and SAMD51 device driver port
* MIDI device class driver support
@ -51,11 +51,14 @@
* **[Tod E. Kurt](https://github.com/todbot)**
* hid_test.js script and extensive test for bi-directional raw HID
* **[William D. Jones](https://github.com/cr1901)**
* Synopsys DesignWare device driver port for STM32 L4, F2, F4, F7, H7 etc ...
* TI MSP430 device driver port
* Board support for STM32F407 Discovery, STM32H743 Nucleo, pyboard v1.1, msp_exp430f5529lp etc ...
* **[Jan Dümpelmann](https://github.com/duempel)**
* Improvements to Synopsys device controller driver (DCD) for STM32 MCUs
**[Full contributors list](https://github.com/hathach/tinyusb/contributors).**

View File

@ -31,7 +31,7 @@ Special thanks to all the people who spent their precious time and effort to hel
The stack supports the following MCUs:
- **Espressif:** ESP32-S2
- **MicroChip:** SAMD21, SAMD51 (device only)
- **MicroChip:** SAMD21, SAMD51, SAME5x (device only)
- **NordicSemi:** nRF52833, nRF52840
- **Nuvoton:** NUC120, NUC121/NUC125, NUC126, NUC505
- **NXP:**

View File

@ -11,6 +11,7 @@ This code base already had supported for a handful of following boards (sorted a
### Espressif ESP32-S2
- [ESP32-S2-Kaluga-1](https://docs.espressif.com/projects/esp-idf/en/latest/esp32s2/hw-reference/esp32s2/user-guide-esp32-s2-kaluga-1-kit.html)
- [ESP32-S2-Saola-1](https://docs.espressif.com/projects/esp-idf/en/latest/esp32s2/hw-reference/esp32s2/user-guide-saola-1-v1.2.html)
### MicroChip SAMD

View File

@ -7,7 +7,7 @@ set(TOP "../../..")
get_filename_component(TOP "${TOP}" REALPATH)
# Add example src and bsp directories
set(EXTRA_COMPONENT_DIRS "src" "${TOP}/hw/bsp/esp32s2_saola_1")
set(EXTRA_COMPONENT_DIRS "src" "${TOP}/hw/bsp/${BOARD}")
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
set(SUPPORTED_TARGETS esp32s2)

View File

@ -7,7 +7,7 @@ set(TOP "../../..")
get_filename_component(TOP "${TOP}" REALPATH)
# Add example src and bsp directories
set(EXTRA_COMPONENT_DIRS "src" "${TOP}/hw/bsp/esp32s2_saola_1")
set(EXTRA_COMPONENT_DIRS "src" "${TOP}/hw/bsp/${BOARD}")
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
set(SUPPORTED_TARGETS esp32s2)

View File

@ -67,8 +67,10 @@
// This examples use FreeRTOS
#define CFG_TUSB_OS OPT_OS_FREERTOS
// CFG_TUSB_DEBUG is defined by compiler in DEBUG build
// #define CFG_TUSB_DEBUG 0
// can be defined by compiler in DEBUG build
#ifndef CFG_TUSB_DEBUG
#define CFG_TUSB_DEBUG 0
#endif
/* USB DMA on some MCUs can only access a specific SRAM region with restriction on alignment.
* Tinyusb use follows macros to declare transferring memory so that they can be put

View File

@ -7,7 +7,7 @@ set(TOP "../../..")
get_filename_component(TOP "${TOP}" REALPATH)
# Add example src and bsp directories
set(EXTRA_COMPONENT_DIRS "src" "${TOP}/hw/bsp/esp32s2_saola_1")
set(EXTRA_COMPONENT_DIRS "src" "${TOP}/hw/bsp/${BOARD}")
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
set(SUPPORTED_TARGETS esp32s2)

View File

@ -32,6 +32,13 @@ Then compile with `make BOARD=[your_board] all`, for example
$ make BOARD=feather_nrf52840_express all
```
To compile for debugging with debug symbols add DEBUG=1, for example
```
$ make BOARD=feather_nrf52840_express DEBUG=1 all
```
### Debug Log
### Log Level

View File

@ -12,11 +12,10 @@ all:
idf.py -B$(BUILD) -DBOARD=$(BOARD) build
clean:
idf.py -B$(BUILD) clean
idf.py -B$(BUILD) -DBOARD=$(BOARD) clean
flash:
@:$(call check_defined, SERIAL, example: SERIAL=/dev/ttyUSB0)
idf.py -B$(BUILD) -p $(SERIAL) flash
idf.py -B$(BUILD) -DBOARD=$(BOARD) flash
else
# GNU Make build system

View File

@ -0,0 +1,16 @@
idf_component_register(SRCS "${BOARD}.c" "led_strip/src/led_strip_rmt_ws2812.c"
INCLUDE_DIRS "led_strip/include"
PRIV_REQUIRES "driver"
REQUIRES freertos src)
target_compile_options(${COMPONENT_TARGET} PUBLIC
"-DCFG_TUSB_MCU=OPT_MCU_ESP32S2"
"-DCFG_TUSB_OS=OPT_OS_FREERTOS"
)
idf_component_get_property( FREERTOS_ORIG_INCLUDE_PATH freertos ORIG_INCLUDE_PATH)
target_include_directories(${COMPONENT_TARGET} PUBLIC
"${FREERTOS_ORIG_INCLUDE_PATH}"
"${TOP}/hw"
"${TOP}/src"
)

View File

@ -0,0 +1,2 @@
# Cross Compiler for ESP32
CROSS_COMPILE = xtensa-esp32s2-elf-

View File

@ -0,0 +1,108 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2020, Ha Thach (tinyusb.org)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "../board.h"
#include "driver/gpio.h"
#include "driver/periph_ctrl.h"
#include "hal/usb_hal.h"
#include "soc/usb_periph.h"
#include "driver/rmt.h"
#include "led_strip/include/led_strip.h"
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM DECLARATION
//--------------------------------------------------------------------+
#define LED_PIN 45
#define BUTTON_PIN 0
#define BUTTON_STATE_ACTIVE 0
static led_strip_t *strip;
// Initialize on-board peripherals : led, button, uart and USB
void board_init(void)
{
// WS2812 Neopixel driver with RMT peripheral
rmt_config_t config = RMT_DEFAULT_CONFIG_TX(LED_PIN, RMT_CHANNEL_0);
config.clk_div = 2; // set counter clock to 40MHz
rmt_config(&config);
rmt_driver_install(config.channel, 0, 0);
led_strip_config_t strip_config = LED_STRIP_DEFAULT_CONFIG(1, (led_strip_dev_t) config.channel);
strip = led_strip_new_rmt_ws2812(&strip_config);
strip->clear(strip, 100); // off led
// Button
gpio_pad_select_gpio(BUTTON_PIN);
gpio_set_direction(BUTTON_PIN, GPIO_MODE_INPUT);
gpio_set_pull_mode(BUTTON_PIN, BUTTON_STATE_ACTIVE ? GPIO_PULLDOWN_ONLY : GPIO_PULLUP_ONLY);
// USB Controller Hal init
periph_module_reset(PERIPH_USB_MODULE);
periph_module_enable(PERIPH_USB_MODULE);
usb_hal_context_t hal = {
.use_external_phy = false // use built-in PHY
};
usb_hal_init(&hal);
// Pin drive strength
gpio_set_drive_capability(USBPHY_DM_NUM, GPIO_DRIVE_CAP_3);
gpio_set_drive_capability(USBPHY_DP_NUM, GPIO_DRIVE_CAP_3);
}
// Turn LED on or off
void board_led_write(bool state)
{
strip->set_pixel(strip, 0, (state ? 0x88 : 0x00), 0x00, 0x00);
strip->refresh(strip, 100);
}
// Get the current state of button
// a '1' means active (pressed), a '0' means inactive.
uint32_t board_button_read(void)
{
return gpio_get_level(BUTTON_PIN) == BUTTON_STATE_ACTIVE;
}
// Get characters from UART
int board_uart_read(uint8_t* buf, int len)
{
(void) buf; (void) len;
return 0;
}
// Send characters to UART
int board_uart_write(void const * buf, int len)
{
(void) buf; (void) len;
return 0;
}

View File

@ -0,0 +1,126 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
#include "esp_err.h"
/**
* @brief LED Strip Type
*
*/
typedef struct led_strip_s led_strip_t;
/**
* @brief LED Strip Device Type
*
*/
typedef void *led_strip_dev_t;
/**
* @brief Declare of LED Strip Type
*
*/
struct led_strip_s {
/**
* @brief Set RGB for a specific pixel
*
* @param strip: LED strip
* @param index: index of pixel to set
* @param red: red part of color
* @param green: green part of color
* @param blue: blue part of color
*
* @return
* - ESP_OK: Set RGB for a specific pixel successfully
* - ESP_ERR_INVALID_ARG: Set RGB for a specific pixel failed because of invalid parameters
* - ESP_FAIL: Set RGB for a specific pixel failed because other error occurred
*/
esp_err_t (*set_pixel)(led_strip_t *strip, uint32_t index, uint32_t red, uint32_t green, uint32_t blue);
/**
* @brief Refresh memory colors to LEDs
*
* @param strip: LED strip
* @param timeout_ms: timeout value for refreshing task
*
* @return
* - ESP_OK: Refresh successfully
* - ESP_ERR_TIMEOUT: Refresh failed because of timeout
* - ESP_FAIL: Refresh failed because some other error occurred
*
* @note:
* After updating the LED colors in the memory, a following invocation of this API is needed to flush colors to strip.
*/
esp_err_t (*refresh)(led_strip_t *strip, uint32_t timeout_ms);
/**
* @brief Clear LED strip (turn off all LEDs)
*
* @param strip: LED strip
* @param timeout_ms: timeout value for clearing task
*
* @return
* - ESP_OK: Clear LEDs successfully
* - ESP_ERR_TIMEOUT: Clear LEDs failed because of timeout
* - ESP_FAIL: Clear LEDs failed because some other error occurred
*/
esp_err_t (*clear)(led_strip_t *strip, uint32_t timeout_ms);
/**
* @brief Free LED strip resources
*
* @param strip: LED strip
*
* @return
* - ESP_OK: Free resources successfully
* - ESP_FAIL: Free resources failed because error occurred
*/
esp_err_t (*del)(led_strip_t *strip);
};
/**
* @brief LED Strip Configuration Type
*
*/
typedef struct {
uint32_t max_leds; /*!< Maximum LEDs in a single strip */
led_strip_dev_t dev; /*!< LED strip device (e.g. RMT channel, PWM channel, etc) */
} led_strip_config_t;
/**
* @brief Default configuration for LED strip
*
*/
#define LED_STRIP_DEFAULT_CONFIG(number, dev_hdl) \
{ \
.max_leds = number, \
.dev = dev_hdl, \
}
/**
* @brief Install a new ws2812 driver (based on RMT peripheral)
*
* @param config: LED strip configuration
* @return
* LED strip instance or NULL
*/
led_strip_t *led_strip_new_rmt_ws2812(const led_strip_config_t *config);
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,171 @@
// Copyright 2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdlib.h>
#include <string.h>
#include <sys/cdefs.h>
#include "esp_log.h"
#include "esp_attr.h"
#include "led_strip.h"
#include "driver/rmt.h"
static const char *TAG = "ws2812";
#define STRIP_CHECK(a, str, goto_tag, ret_value, ...) \
do \
{ \
if (!(a)) \
{ \
ESP_LOGE(TAG, "%s(%d): " str, __FUNCTION__, __LINE__, ##__VA_ARGS__); \
ret = ret_value; \
goto goto_tag; \
} \
} while (0)
#define WS2812_T0H_NS (350)
#define WS2812_T0L_NS (1000)
#define WS2812_T1H_NS (1000)
#define WS2812_T1L_NS (350)
#define WS2812_RESET_US (280)
static uint32_t ws2812_t0h_ticks = 0;
static uint32_t ws2812_t1h_ticks = 0;
static uint32_t ws2812_t0l_ticks = 0;
static uint32_t ws2812_t1l_ticks = 0;
typedef struct {
led_strip_t parent;
rmt_channel_t rmt_channel;
uint32_t strip_len;
uint8_t buffer[0];
} ws2812_t;
/**
* @brief Conver RGB data to RMT format.
*
* @note For WS2812, R,G,B each contains 256 different choices (i.e. uint8_t)
*
* @param[in] src: source data, to converted to RMT format
* @param[in] dest: place where to store the convert result
* @param[in] src_size: size of source data
* @param[in] wanted_num: number of RMT items that want to get
* @param[out] translated_size: number of source data that got converted
* @param[out] item_num: number of RMT items which are converted from source data
*/
static void IRAM_ATTR ws2812_rmt_adapter(const void *src, rmt_item32_t *dest, size_t src_size,
size_t wanted_num, size_t *translated_size, size_t *item_num)
{
if (src == NULL || dest == NULL) {
*translated_size = 0;
*item_num = 0;
return;
}
const rmt_item32_t bit0 = {{{ ws2812_t0h_ticks, 1, ws2812_t0l_ticks, 0 }}}; //Logical 0
const rmt_item32_t bit1 = {{{ ws2812_t1h_ticks, 1, ws2812_t1l_ticks, 0 }}}; //Logical 1
size_t size = 0;
size_t num = 0;
uint8_t *psrc = (uint8_t *)src;
rmt_item32_t *pdest = dest;
while (size < src_size && num < wanted_num) {
for (int i = 0; i < 8; i++) {
// MSB first
if (*psrc & (1 << (7 - i))) {
pdest->val = bit1.val;
} else {
pdest->val = bit0.val;
}
num++;
pdest++;
}
size++;
psrc++;
}
*translated_size = size;
*item_num = num;
}
static esp_err_t ws2812_set_pixel(led_strip_t *strip, uint32_t index, uint32_t red, uint32_t green, uint32_t blue)
{
esp_err_t ret = ESP_OK;
ws2812_t *ws2812 = __containerof(strip, ws2812_t, parent);
STRIP_CHECK(index < ws2812->strip_len, "index out of the maximum number of leds", err, ESP_ERR_INVALID_ARG);
uint32_t start = index * 3;
// In thr order of GRB
ws2812->buffer[start + 0] = green & 0xFF;
ws2812->buffer[start + 1] = red & 0xFF;
ws2812->buffer[start + 2] = blue & 0xFF;
return ESP_OK;
err:
return ret;
}
static esp_err_t ws2812_refresh(led_strip_t *strip, uint32_t timeout_ms)
{
esp_err_t ret = ESP_OK;
ws2812_t *ws2812 = __containerof(strip, ws2812_t, parent);
STRIP_CHECK(rmt_write_sample(ws2812->rmt_channel, ws2812->buffer, ws2812->strip_len * 3, true) == ESP_OK,
"transmit RMT samples failed", err, ESP_FAIL);
return rmt_wait_tx_done(ws2812->rmt_channel, pdMS_TO_TICKS(timeout_ms));
err:
return ret;
}
static esp_err_t ws2812_clear(led_strip_t *strip, uint32_t timeout_ms)
{
ws2812_t *ws2812 = __containerof(strip, ws2812_t, parent);
// Write zero to turn off all leds
memset(ws2812->buffer, 0, ws2812->strip_len * 3);
return ws2812_refresh(strip, timeout_ms);
}
static esp_err_t ws2812_del(led_strip_t *strip)
{
ws2812_t *ws2812 = __containerof(strip, ws2812_t, parent);
free(ws2812);
return ESP_OK;
}
led_strip_t *led_strip_new_rmt_ws2812(const led_strip_config_t *config)
{
led_strip_t *ret = NULL;
STRIP_CHECK(config, "configuration can't be null", err, NULL);
// 24 bits per led
uint32_t ws2812_size = sizeof(ws2812_t) + config->max_leds * 3;
ws2812_t *ws2812 = calloc(1, ws2812_size);
STRIP_CHECK(ws2812, "request memory for ws2812 failed", err, NULL);
uint32_t counter_clk_hz = 0;
STRIP_CHECK(rmt_get_counter_clock((rmt_channel_t)config->dev, &counter_clk_hz) == ESP_OK,
"get rmt counter clock failed", err, NULL);
// ns -> ticks
float ratio = (float)counter_clk_hz / 1e9;
ws2812_t0h_ticks = (uint32_t)(ratio * WS2812_T0H_NS);
ws2812_t0l_ticks = (uint32_t)(ratio * WS2812_T0L_NS);
ws2812_t1h_ticks = (uint32_t)(ratio * WS2812_T1H_NS);
ws2812_t1l_ticks = (uint32_t)(ratio * WS2812_T1L_NS);
// set ws2812 to rmt adapter
rmt_translator_init((rmt_channel_t)config->dev, ws2812_rmt_adapter);
ws2812->rmt_channel = (rmt_channel_t)config->dev;
ws2812->strip_len = config->max_leds;
ws2812->parent.set_pixel = ws2812_set_pixel;
ws2812->parent.refresh = ws2812_refresh;
ws2812->parent.clear = ws2812_clear;
ws2812->parent.del = ws2812_del;
return &ws2812->parent;
err:
return ret;
}

View File

@ -1,4 +1,4 @@
idf_component_register(SRCS "esp32s2_saola_1.c" "led_strip/src/led_strip_rmt_ws2812.c"
idf_component_register(SRCS "${BOARD}.c" "led_strip/src/led_strip_rmt_ws2812.c"
INCLUDE_DIRS "led_strip/include"
PRIV_REQUIRES "driver"
REQUIRES freertos src)

View File

@ -26,7 +26,9 @@
#include "../board.h"
#include "driver/gpio.h"
#include "driver/periph_ctrl.h"
#include "hal/usb_hal.h"
#include "soc/usb_periph.h"
#include "driver/rmt.h"
#include "led_strip/include/led_strip.h"
@ -37,8 +39,8 @@
// Note: On the production version (v1.2) WS2812 is connected to GPIO 18,
// however earlier revision v1.1 WS2812 is connected to GPIO 17
//#define LED_PIN 18 // v1.2 and later
#define LED_PIN 17 // v1.1
//#define LED_PIN 17 // v1.1
#define LED_PIN 18 // v1.2 and later
#define BUTTON_PIN 0
#define BUTTON_STATE_ACTIVE 0
@ -66,10 +68,17 @@ void board_init(void)
gpio_set_pull_mode(BUTTON_PIN, BUTTON_STATE_ACTIVE ? GPIO_PULLDOWN_ONLY : GPIO_PULLUP_ONLY);
// USB Controller Hal init
periph_module_reset(PERIPH_USB_MODULE);
periph_module_enable(PERIPH_USB_MODULE);
usb_hal_context_t hal = {
.use_external_phy = false // use built-in PHY
};
usb_hal_init(&hal);
// Pin drive strength
gpio_set_drive_capability(USBPHY_DM_NUM, GPIO_DRIVE_CAP_3);
gpio_set_drive_capability(USBPHY_DP_NUM, GPIO_DRIVE_CAP_3);
}
// Turn LED on or off

@ -1 +1 @@
Subproject commit 281cc2e178fd9a470d844b3afdea9eb322a0b0e8
Subproject commit a5397bea558fb4b6838081a22d1ee679289d7417

252
src/class/bth/bth_device.c Executable file
View File

@ -0,0 +1,252 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2020 Jerzy Kasenberg
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if (TUSB_OPT_DEVICE_ENABLED && CFG_TUD_BTH)
//--------------------------------------------------------------------+
// INCLUDE
//--------------------------------------------------------------------+
#include "bth_device.h"
#include <common/tusb_types.h>
#include <device/usbd_pvt.h>
//--------------------------------------------------------------------+
// MACRO CONSTANT TYPEDEF
//--------------------------------------------------------------------+
typedef struct
{
uint8_t itf_num;
uint8_t ep_ev;
uint8_t ep_acl_in;
uint8_t ep_acl_out;
uint8_t ep_voice[2]; // Not used yet
uint8_t ep_voice_size[2][CFG_TUD_BTH_ISO_ALT_COUNT];
// Endpoint Transfer buffer
CFG_TUSB_MEM_ALIGN bt_hci_cmd_t hci_cmd;
CFG_TUSB_MEM_ALIGN uint8_t epout_buf[CFG_TUD_BTH_DATA_EPSIZE];
} btd_interface_t;
//--------------------------------------------------------------------+
// INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+
CFG_TUSB_MEM_SECTION btd_interface_t _btd_itf;
static bool bt_tx_data(uint8_t ep, void *data, uint16_t len)
{
// skip if previous transfer not complete
TU_VERIFY(!usbd_edpt_busy(TUD_OPT_RHPORT, ep));
TU_ASSERT(usbd_edpt_xfer(TUD_OPT_RHPORT, ep, data, len));
return true;
}
//--------------------------------------------------------------------+
// READ API
//--------------------------------------------------------------------+
//--------------------------------------------------------------------+
// WRITE API
//--------------------------------------------------------------------+
bool tud_bt_event_send(void *event, uint16_t event_len)
{
return bt_tx_data(_btd_itf.ep_ev, event, event_len);
}
bool tud_bt_acl_data_send(void *event, uint16_t event_len)
{
return bt_tx_data(_btd_itf.ep_acl_in, event, event_len);
}
//--------------------------------------------------------------------+
// USBD Driver API
//--------------------------------------------------------------------+
void btd_init(void)
{
tu_memclr(&_btd_itf, sizeof(_btd_itf));
}
void btd_reset(uint8_t rhport)
{
(void)rhport;
}
uint16_t btd_open(uint8_t rhport, tusb_desc_interface_t const *itf_desc, uint16_t max_len)
{
tusb_desc_endpoint_t const *desc_ep;
uint16_t drv_len = 0;
// Size of single alternative of ISO interface
const uint16_t iso_alt_itf_size = sizeof(tusb_desc_interface_t) + 2 * sizeof(tusb_desc_endpoint_t);
// Size of hci interface
const uint16_t hci_itf_size = sizeof(tusb_desc_interface_t) + 3 * sizeof(tusb_desc_endpoint_t);
// Ensure this is BT Primary Controller
TU_VERIFY(TUSB_CLASS_WIRELESS_CONTROLLER == itf_desc->bInterfaceClass &&
TUD_BT_APP_SUBCLASS == itf_desc->bInterfaceSubClass &&
TUD_BT_PROTOCOL_PRIMARY_CONTROLLER == itf_desc->bInterfaceProtocol, 0);
// Distinguish interface by number of endpoints, as both interface have same class, subclass and protocol
if (itf_desc->bNumEndpoints == 3 && max_len >= hci_itf_size)
{
_btd_itf.itf_num = itf_desc->bInterfaceNumber;
desc_ep = (tusb_desc_endpoint_t const *) tu_desc_next(itf_desc);
TU_ASSERT(TUSB_DESC_ENDPOINT == desc_ep->bDescriptorType && TUSB_XFER_INTERRUPT == desc_ep->bmAttributes.xfer, 0);
TU_ASSERT(dcd_edpt_open(rhport, desc_ep), 0);
_btd_itf.ep_ev = desc_ep->bEndpointAddress;
// Open endpoint pair
TU_ASSERT(usbd_open_edpt_pair(rhport, tu_desc_next(desc_ep), 2, TUSB_XFER_BULK, &_btd_itf.ep_acl_out,
&_btd_itf.ep_acl_in), 0);
// Prepare for incoming data from host
TU_ASSERT(usbd_edpt_xfer(rhport, _btd_itf.ep_acl_out, _btd_itf.epout_buf, CFG_TUD_BTH_DATA_EPSIZE), 0);
drv_len = hci_itf_size;
}
else if (itf_desc->bNumEndpoints == 2 && max_len >= iso_alt_itf_size)
{
uint8_t dir;
desc_ep = (tusb_desc_endpoint_t const *)tu_desc_next(itf_desc);
TU_ASSERT(itf_desc->bAlternateSetting < CFG_TUD_BTH_ISO_ALT_COUNT, 0);
TU_ASSERT(desc_ep->bDescriptorType == TUSB_DESC_ENDPOINT, 0);
dir = tu_edpt_dir(desc_ep->bEndpointAddress);
_btd_itf.ep_voice[dir] = desc_ep->bEndpointAddress;
// Store endpoint size for alternative
_btd_itf.ep_voice_size[dir][itf_desc->bAlternateSetting] = (uint8_t)desc_ep->wMaxPacketSize.size;
desc_ep = (tusb_desc_endpoint_t const *)tu_desc_next(desc_ep);
TU_ASSERT(desc_ep->bDescriptorType == TUSB_DESC_ENDPOINT, 0);
dir = tu_edpt_dir(desc_ep->bEndpointAddress);
_btd_itf.ep_voice[dir] = desc_ep->bEndpointAddress;
// Store endpoint size for alternative
_btd_itf.ep_voice_size[dir][itf_desc->bAlternateSetting] = (uint8_t)desc_ep->wMaxPacketSize.size;
drv_len += iso_alt_itf_size;
for (int i = 1; i < CFG_TUD_BTH_ISO_ALT_COUNT && drv_len + iso_alt_itf_size <= max_len; ++i) {
// Make sure rest of alternatives matches
itf_desc = (tusb_desc_interface_t const *)tu_desc_next(desc_ep);
if (itf_desc->bDescriptorType != TUSB_DESC_INTERFACE ||
TUSB_CLASS_WIRELESS_CONTROLLER != itf_desc->bInterfaceClass ||
TUD_BT_APP_SUBCLASS != itf_desc->bInterfaceSubClass ||
TUD_BT_PROTOCOL_PRIMARY_CONTROLLER != itf_desc->bInterfaceProtocol)
{
// Not an Iso interface instance
break;
}
TU_ASSERT(itf_desc->bAlternateSetting < CFG_TUD_BTH_ISO_ALT_COUNT, 0);
desc_ep = (tusb_desc_endpoint_t const *)tu_desc_next(itf_desc);
dir = tu_edpt_dir(desc_ep->bEndpointAddress);
// Verify that alternative endpoint are same as first ones
TU_ASSERT(desc_ep->bDescriptorType == TUSB_DESC_ENDPOINT &&
_btd_itf.ep_voice[dir] == desc_ep->bEndpointAddress, 0);
_btd_itf.ep_voice_size[dir][itf_desc->bAlternateSetting] = (uint8_t)desc_ep->wMaxPacketSize.size;
desc_ep = (tusb_desc_endpoint_t const *)tu_desc_next(desc_ep);
dir = tu_edpt_dir(desc_ep->bEndpointAddress);
// Verify that alternative endpoint are same as first ones
TU_ASSERT(desc_ep->bDescriptorType == TUSB_DESC_ENDPOINT &&
_btd_itf.ep_voice[dir] == desc_ep->bEndpointAddress, 0);
_btd_itf.ep_voice_size[dir][itf_desc->bAlternateSetting] = (uint8_t)desc_ep->wMaxPacketSize.size;
drv_len += iso_alt_itf_size;
}
}
return drv_len;
}
bool btd_control_complete(uint8_t rhport, tusb_control_request_t const *request)
{
(void)rhport;
// Handle class request only
TU_VERIFY(request->bmRequestType_bit.type == TUSB_REQ_TYPE_CLASS);
if (tud_bt_hci_cmd_cb) tud_bt_hci_cmd_cb(&_btd_itf.hci_cmd, request->wLength);
return true;
}
bool btd_control_request(uint8_t rhport, tusb_control_request_t const *request)
{
(void)rhport;
if (request->bmRequestType_bit.type == TUSB_REQ_TYPE_CLASS &&
request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE)
{
// HCI command packet addressing for single function Primary Controllers
TU_VERIFY(request->bRequest == 0 && request->wValue == 0 && request->wIndex == 0);
}
else if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_INTERFACE)
{
if (request->bRequest == TUSB_REQ_SET_INTERFACE && _btd_itf.itf_num + 1 == request->wIndex)
{
// TODO: Set interface it would involve changing size of endpoint size
}
else
{
// HCI command packet for Primary Controller function in a composite device
TU_VERIFY(request->bRequest == 0 && request->wValue == 0 && request->wIndex == _btd_itf.itf_num);
}
}
else return false;
return tud_control_xfer(rhport, request, &_btd_itf.hci_cmd, request->wLength);
}
bool btd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes)
{
(void)result;
// received new data from host
if (ep_addr == _btd_itf.ep_acl_out)
{
if (tud_bt_acl_data_received_cb) tud_bt_acl_data_received_cb(_btd_itf.epout_buf, xferred_bytes);
// prepare for next data
TU_ASSERT(usbd_edpt_xfer(rhport, _btd_itf.ep_acl_out, _btd_itf.epout_buf, CFG_TUD_BTH_DATA_EPSIZE));
}
else if (ep_addr == _btd_itf.ep_ev)
{
if (tud_bt_event_sent_cb) tud_bt_event_sent_cb((uint16_t)xferred_bytes);
}
else if (ep_addr == _btd_itf.ep_acl_in)
{
if (tud_bt_acl_data_sent_cb) tud_bt_acl_data_sent_cb((uint16_t)xferred_bytes);
}
return TUSB_ERROR_NONE;
}
#endif

110
src/class/bth/bth_device.h Executable file
View File

@ -0,0 +1,110 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2020 Jerzy Kasenberg
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#ifndef _TUSB_BTH_DEVICE_H_
#define _TUSB_BTH_DEVICE_H_
#include <common/tusb_common.h>
#include <device/usbd.h>
//--------------------------------------------------------------------+
// Class Driver Configuration
//--------------------------------------------------------------------+
#ifndef CFG_TUD_BTH_EVENT_EPSIZE
#define CFG_TUD_BTH_EVENT_EPSIZE 16
#endif
#ifndef CFG_TUD_BTH_DATA_EPSIZE
#define CFG_TUD_BTH_DATA_EPSIZE 64
#endif
typedef struct TU_ATTR_PACKED
{
uint16_t op_code;
uint8_t param_length;
uint8_t param[255];
} bt_hci_cmd_t;
#ifdef __cplusplus
extern "C" {
#endif
//--------------------------------------------------------------------+
// Application Callback API (weak is optional)
//--------------------------------------------------------------------+
// Invoked when HCI command was received over USB from Bluetooth host.
// Detailed format is described in Bluetooth core specification Vol 2,
// Part E, 5.4.1.
// Length of the command is from 3 bytes (2 bytes for OpCode,
// 1 byte for parameter total length) to 258.
TU_ATTR_WEAK void tud_bt_hci_cmd_cb(void *hci_cmd, size_t cmd_len);
// Invoked when ACL data was received over USB from Bluetooth host.
// Detailed format is described in Bluetooth core specification Vol 2,
// Part E, 5.4.2.
// Length is from 4 bytes, (12 bits for Handle, 4 bits for flags
// and 16 bits for data total length) to endpoint size.
TU_ATTR_WEAK void tud_bt_acl_data_received_cb(void *acl_data, uint16_t data_len);
// Called when event sent with tud_bt_event_send() was delivered to BT stack.
// Controller can release/reuse buffer with Event packet at this point.
TU_ATTR_WEAK void tud_bt_event_sent_cb(uint16_t sent_bytes);
// Called when ACL data that was sent with tud_bt_acl_data_send()
// was delivered to BT stack.
// Controller can release/reuse buffer with ACL packet at this point.
TU_ATTR_WEAK void tud_bt_acl_data_sent_cb(uint16_t sent_bytes);
// Bluetooth controller calls this function when it wants to send even packet
// as described in Bluetooth core specification Vol 2, Part E, 5.4.4.
// Event has at least 2 bytes, first is Event code second contains parameter
// total length. Controller can release/reuse event memory after
// tud_bt_event_sent_cb() is called.
bool tud_bt_event_send(void *event, uint16_t event_len);
// Bluetooth controller calls this to send ACL data packet
// as described in Bluetooth core specification Vol 2, Part E, 5.4.2
// Minimum length is 4 bytes, (12 bits for Handle, 4 bits for flags
// and 16 bits for data total length). Upper limit is not limited
// to endpoint size since buffer is allocate by controller
// and must not be reused till tud_bt_acl_data_sent_cb() is called.
bool tud_bt_acl_data_send(void *acl_data, uint16_t data_len);
//--------------------------------------------------------------------+
// Internal Class Driver API
//--------------------------------------------------------------------+
void btd_init (void);
void btd_reset (uint8_t rhport);
uint16_t btd_open (uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len);
bool btd_control_request (uint8_t rhport, tusb_control_request_t const * request);
bool btd_control_complete (uint8_t rhport, tusb_control_request_t const * request);
bool btd_xfer_cb (uint8_t rhport, uint8_t edpt_addr, xfer_result_t result, uint32_t xferred_bytes);
#ifdef __cplusplus
}
#endif
#endif /* _TUSB_BTH_DEVICE_H_ */

View File

@ -222,14 +222,14 @@ void cdcd_reset(uint8_t rhport)
}
}
bool cdcd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_length)
uint16_t cdcd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len)
{
// Only support ACM subclass
TU_VERIFY ( TUSB_CLASS_CDC == itf_desc->bInterfaceClass &&
CDC_COMM_SUBCLASS_ABSTRACT_CONTROL_MODEL == itf_desc->bInterfaceSubClass);
CDC_COMM_SUBCLASS_ABSTRACT_CONTROL_MODEL == itf_desc->bInterfaceSubClass, 0);
// Note: 0xFF can be used with RNDIS
TU_VERIFY(tu_within(CDC_COMM_PROTOCOL_NONE, itf_desc->bInterfaceProtocol, CDC_COMM_PROTOCOL_ATCOMMAND_CDMA));
TU_VERIFY(tu_within(CDC_COMM_PROTOCOL_NONE, itf_desc->bInterfaceProtocol, CDC_COMM_PROTOCOL_ATCOMMAND_CDMA), 0);
// Find available interface
cdcd_interface_t * p_cdc = NULL;
@ -242,30 +242,30 @@ bool cdcd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t
break;
}
}
TU_ASSERT(p_cdc);
TU_ASSERT(p_cdc, 0);
//------------- Control Interface -------------//
p_cdc->itf_num = itf_desc->bInterfaceNumber;
uint16_t drv_len = sizeof(tusb_desc_interface_t);
uint8_t const * p_desc = tu_desc_next( itf_desc );
(*p_length) = sizeof(tusb_desc_interface_t);
// Communication Functional Descriptors
while ( TUSB_DESC_CS_INTERFACE == tu_desc_type(p_desc) )
while ( TUSB_DESC_CS_INTERFACE == tu_desc_type(p_desc) && drv_len <= max_len )
{
(*p_length) += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
}
if ( TUSB_DESC_ENDPOINT == tu_desc_type(p_desc) )
{
// notification endpoint if any
TU_ASSERT( usbd_edpt_open(rhport, (tusb_desc_endpoint_t const *) p_desc) );
TU_ASSERT( usbd_edpt_open(rhport, (tusb_desc_endpoint_t const *) p_desc), 0 );
p_cdc->ep_notif = ((tusb_desc_endpoint_t const *) p_desc)->bEndpointAddress;
(*p_length) += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
}
//------------- Data Interface (if any) -------------//
@ -273,18 +273,19 @@ bool cdcd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t
(TUSB_CLASS_CDC_DATA == ((tusb_desc_interface_t const *) p_desc)->bInterfaceClass) )
{
// next to endpoint descriptor
p_desc = tu_desc_next(p_desc);
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
// Open endpoint pair
TU_ASSERT( usbd_open_edpt_pair(rhport, p_desc, 2, TUSB_XFER_BULK, &p_cdc->ep_out, &p_cdc->ep_in) );
TU_ASSERT( usbd_open_edpt_pair(rhport, p_desc, 2, TUSB_XFER_BULK, &p_cdc->ep_out, &p_cdc->ep_in), 0 );
(*p_length) += sizeof(tusb_desc_interface_t) + 2*sizeof(tusb_desc_endpoint_t);
drv_len += 2*sizeof(tusb_desc_endpoint_t);
}
// Prepare for incoming data
_prep_out_transaction(cdc_id);
return true;
return drv_len;
}
// Invoked when class request DATA stage is finished.

View File

@ -229,12 +229,12 @@ static inline uint32_t tud_cdc_write_available(void)
//--------------------------------------------------------------------+
// INTERNAL USBD-CLASS DRIVER API
//--------------------------------------------------------------------+
void cdcd_init (void);
void cdcd_reset (uint8_t rhport);
bool cdcd_open (uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_length);
bool cdcd_control_request (uint8_t rhport, tusb_control_request_t const * request);
bool cdcd_control_complete (uint8_t rhport, tusb_control_request_t const * request);
bool cdcd_xfer_cb (uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes);
void cdcd_init (void);
void cdcd_reset (uint8_t rhport);
uint16_t cdcd_open (uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len);
bool cdcd_control_request (uint8_t rhport, tusb_control_request_t const * request);
bool cdcd_control_complete (uint8_t rhport, tusb_control_request_t const * request);
bool cdcd_xfer_cb (uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes);
#ifdef __cplusplus
}

View File

@ -56,24 +56,25 @@ void dfu_rtd_reset(uint8_t rhport)
(void) rhport;
}
bool dfu_rtd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_length)
uint16_t dfu_rtd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len)
{
(void) rhport;
(void) max_len;
// Ensure this is DFU Runtime
TU_VERIFY(itf_desc->bInterfaceSubClass == TUD_DFU_APP_SUBCLASS);
TU_VERIFY(itf_desc->bInterfaceProtocol == DFU_PROTOCOL_RT);
TU_VERIFY(itf_desc->bInterfaceSubClass == TUD_DFU_APP_SUBCLASS &&
itf_desc->bInterfaceProtocol == DFU_PROTOCOL_RT, 0);
uint8_t const * p_desc = tu_desc_next( itf_desc );
(*p_length) = sizeof(tusb_desc_interface_t);
uint16_t drv_len = sizeof(tusb_desc_interface_t);
if ( TUSB_DESC_FUNCTIONAL == tu_desc_type(p_desc) )
{
(*p_length) += p_desc[DESC_OFFSET_LEN];
p_desc = tu_desc_next(p_desc);
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
}
return true;
return drv_len;
}
bool dfu_rtd_control_complete(uint8_t rhport, tusb_control_request_t const * request)

View File

@ -63,12 +63,12 @@ TU_ATTR_WEAK void tud_dfu_rt_reboot_to_dfu(void); // TODO rename to _cb conventi
//--------------------------------------------------------------------+
// Internal Class Driver API
//--------------------------------------------------------------------+
void dfu_rtd_init(void);
void dfu_rtd_reset(uint8_t rhport);
bool dfu_rtd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_length);
bool dfu_rtd_control_request(uint8_t rhport, tusb_control_request_t const * request);
bool dfu_rtd_control_complete(uint8_t rhport, tusb_control_request_t const * request);
bool dfu_rtd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
void dfu_rtd_init(void);
void dfu_rtd_reset(uint8_t rhport);
uint16_t dfu_rtd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len);
bool dfu_rtd_control_request(uint8_t rhport, tusb_control_request_t const * request);
bool dfu_rtd_control_complete(uint8_t rhport, tusb_control_request_t const * request);
bool dfu_rtd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
#ifdef __cplusplus
}

View File

@ -158,11 +158,13 @@ void hidd_reset(uint8_t rhport)
tu_memclr(_hidd_itf, sizeof(_hidd_itf));
}
bool hidd_open(uint8_t rhport, tusb_desc_interface_t const * desc_itf, uint16_t *p_len)
uint16_t hidd_open(uint8_t rhport, tusb_desc_interface_t const * desc_itf, uint16_t max_len)
{
TU_VERIFY(TUSB_CLASS_HID == desc_itf->bInterfaceClass);
TU_VERIFY(TUSB_CLASS_HID == desc_itf->bInterfaceClass, 0);
uint8_t const *p_desc = (uint8_t const *) desc_itf;
// len = interface + hid + n*endpoints
uint16_t const drv_len = sizeof(tusb_desc_interface_t) + sizeof(tusb_hid_descriptor_hid_t) + desc_itf->bNumEndpoints*sizeof(tusb_desc_endpoint_t);
TU_ASSERT(max_len >= drv_len, 0);
// Find available interface
hidd_interface_t * p_hid = NULL;
@ -175,29 +177,38 @@ bool hidd_open(uint8_t rhport, tusb_desc_interface_t const * desc_itf, uint16_t
break;
}
}
TU_ASSERT(p_hid);
TU_ASSERT(p_hid, 0);
uint8_t const *p_desc = (uint8_t const *) desc_itf;
//------------- HID descriptor -------------//
p_desc = tu_desc_next(p_desc);
p_hid->hid_descriptor = (tusb_hid_descriptor_hid_t const *) p_desc;
TU_ASSERT(HID_DESC_TYPE_HID == p_hid->hid_descriptor->bDescriptorType);
TU_ASSERT(HID_DESC_TYPE_HID == p_hid->hid_descriptor->bDescriptorType, 0);
//------------- Endpoint Descriptor -------------//
p_desc = tu_desc_next(p_desc);
TU_ASSERT(usbd_open_edpt_pair(rhport, p_desc, desc_itf->bNumEndpoints, TUSB_XFER_INTERRUPT, &p_hid->ep_out, &p_hid->ep_in));
TU_ASSERT(usbd_open_edpt_pair(rhport, p_desc, desc_itf->bNumEndpoints, TUSB_XFER_INTERRUPT, &p_hid->ep_out, &p_hid->ep_in), 0);
if ( desc_itf->bInterfaceSubClass == HID_SUBCLASS_BOOT ) p_hid->boot_protocol = desc_itf->bInterfaceProtocol;
p_hid->boot_mode = false; // default mode is REPORT
p_hid->itf_num = desc_itf->bInterfaceNumber;
memcpy(&p_hid->report_desc_len, &(p_hid->hid_descriptor->wReportLength), 2);
*p_len = sizeof(tusb_desc_interface_t) + sizeof(tusb_hid_descriptor_hid_t) + desc_itf->bNumEndpoints*sizeof(tusb_desc_endpoint_t);
// Use offsetof to avoid pointer to the odd/misaligned address
memcpy(&p_hid->report_desc_len, (uint8_t*) p_hid->hid_descriptor + offsetof(tusb_hid_descriptor_hid_t, wReportLength), 2);
// Prepare for output endpoint
if (p_hid->ep_out) TU_ASSERT(usbd_edpt_xfer(rhport, p_hid->ep_out, p_hid->epout_buf, sizeof(p_hid->epout_buf)));
if (p_hid->ep_out)
{
if ( !usbd_edpt_xfer(rhport, p_hid->ep_out, p_hid->epout_buf, sizeof(p_hid->epout_buf)) )
{
TU_LOG1_FAILED();
TU_BREAKPOINT();
}
}
return true;
return drv_len;
}
// Handle class control request

View File

@ -300,12 +300,12 @@ TU_ATTR_WEAK bool tud_hid_set_idle_cb(uint8_t idle_rate);
//--------------------------------------------------------------------+
// Internal Class Driver API
//--------------------------------------------------------------------+
void hidd_init (void);
void hidd_reset (uint8_t rhport);
bool hidd_open (uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_length);
bool hidd_control_request (uint8_t rhport, tusb_control_request_t const * request);
bool hidd_control_complete (uint8_t rhport, tusb_control_request_t const * request);
bool hidd_xfer_cb (uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
void hidd_init (void);
void hidd_reset (uint8_t rhport);
uint16_t hidd_open (uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len);
bool hidd_control_request (uint8_t rhport, tusb_control_request_t const * request);
bool hidd_control_complete (uint8_t rhport, tusb_control_request_t const * request);
bool hidd_xfer_cb (uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
#ifdef __cplusplus
}

View File

@ -290,31 +290,30 @@ void midid_reset(uint8_t rhport)
}
}
bool midid_open(uint8_t rhport, tusb_desc_interface_t const * desc_itf, uint16_t *p_length)
uint16_t midid_open(uint8_t rhport, tusb_desc_interface_t const * desc_itf, uint16_t max_len)
{
// 1st Interface is Audio Control v1
TU_VERIFY(TUSB_CLASS_AUDIO == desc_itf->bInterfaceClass &&
AUDIO_SUBCLASS_CONTROL == desc_itf->bInterfaceSubClass &&
AUDIO_PROTOCOL_V1 == desc_itf->bInterfaceProtocol);
AUDIO_PROTOCOL_V1 == desc_itf->bInterfaceProtocol, 0);
uint16_t drv_len = tu_desc_len(desc_itf);
uint8_t const * p_desc = tu_desc_next(desc_itf);
// Skip Class Specific descriptors
while ( TUSB_DESC_CS_INTERFACE == tu_desc_type(p_desc) )
while ( TUSB_DESC_CS_INTERFACE == tu_desc_type(p_desc) && drv_len <= max_len )
{
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
p_desc = tu_desc_next(p_desc);
}
// 2nd Interface is MIDI Streaming
TU_VERIFY(TUSB_DESC_INTERFACE == tu_desc_type(p_desc));
TU_VERIFY(TUSB_DESC_INTERFACE == tu_desc_type(p_desc), 0);
tusb_desc_interface_t const * desc_midi = (tusb_desc_interface_t const *) p_desc;
TU_VERIFY(TUSB_CLASS_AUDIO == desc_midi->bInterfaceClass &&
AUDIO_SUBCLASS_MIDI_STREAMING == desc_midi->bInterfaceSubClass &&
AUDIO_PROTOCOL_V1 == desc_midi->bInterfaceProtocol );
AUDIO_PROTOCOL_V1 == desc_midi->bInterfaceProtocol, 0);
// Find available interface
midid_interface_t * p_midi = NULL;
@ -327,40 +326,46 @@ bool midid_open(uint8_t rhport, tusb_desc_interface_t const * desc_itf, uint16_t
}
}
p_midi->itf_num = desc_midi->bInterfaceNumber;
p_midi->itf_num = desc_midi->bInterfaceNumber;
// next descriptor
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
p_desc = tu_desc_next(p_desc);
// Find and open endpoint descriptors
uint8_t found_endpoints = 0;
while (found_endpoints < desc_midi->bNumEndpoints)
while ( (found_endpoints < desc_midi->bNumEndpoints) && (drv_len <= max_len) )
{
if ( TUSB_DESC_ENDPOINT == p_desc[DESC_OFFSET_TYPE])
if ( TUSB_DESC_ENDPOINT == tu_desc_type(p_desc) )
{
TU_ASSERT( usbd_edpt_open(rhport, (tusb_desc_endpoint_t const *) p_desc), false);
uint8_t ep_addr = ((tusb_desc_endpoint_t const *) p_desc)->bEndpointAddress;
if (tu_edpt_dir(ep_addr) == TUSB_DIR_IN) {
p_midi->ep_in = ep_addr;
} else {
p_midi->ep_out = ep_addr;
}
TU_ASSERT(usbd_edpt_open(rhport, (tusb_desc_endpoint_t const *) p_desc), 0);
uint8_t ep_addr = ((tusb_desc_endpoint_t const *) p_desc)->bEndpointAddress;
drv_len += p_desc[DESC_OFFSET_LEN];
p_desc = tu_desc_next(p_desc);
found_endpoints += 1;
if (tu_edpt_dir(ep_addr) == TUSB_DIR_IN)
{
p_midi->ep_in = ep_addr;
} else {
p_midi->ep_out = ep_addr;
}
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
found_endpoints += 1;
}
drv_len += p_desc[DESC_OFFSET_LEN];
p_desc = tu_desc_next(p_desc);
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
}
*p_length = drv_len;
// Prepare for incoming data
TU_ASSERT( usbd_edpt_xfer(rhport, p_midi->ep_out, p_midi->epout_buf, CFG_TUD_MIDI_EPSIZE), false);
if ( !usbd_edpt_xfer(rhport, p_midi->ep_out, p_midi->epout_buf, CFG_TUD_MIDI_EPSIZE) )
{
TU_LOG1_FAILED();
TU_BREAKPOINT();
}
return true;
return drv_len;
}
bool midid_control_complete(uint8_t rhport, tusb_control_request_t const * p_request)

View File

@ -136,12 +136,12 @@ static inline bool tud_midi_send (uint8_t const packet[4])
//--------------------------------------------------------------------+
// Internal Class Driver API
//--------------------------------------------------------------------+
void midid_init (void);
void midid_reset (uint8_t rhport);
bool midid_open (uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_length);
bool midid_control_request (uint8_t rhport, tusb_control_request_t const * request);
bool midid_control_complete (uint8_t rhport, tusb_control_request_t const * request);
bool midid_xfer_cb (uint8_t rhport, uint8_t edpt_addr, xfer_result_t result, uint32_t xferred_bytes);
void midid_init (void);
void midid_reset (uint8_t rhport);
uint16_t midid_open (uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len);
bool midid_control_request (uint8_t rhport, tusb_control_request_t const * request);
bool midid_control_complete (uint8_t rhport, tusb_control_request_t const * request);
bool midid_xfer_cb (uint8_t rhport, uint8_t edpt_addr, xfer_result_t result, uint32_t xferred_bytes);
#ifdef __cplusplus
}

View File

@ -80,7 +80,8 @@ static inline uint32_t rdwr10_get_lba(uint8_t const command[])
// copy first to prevent mis-aligned access
uint32_t lba;
memcpy(&lba, &p_rdwr10->lba, 4);
// use offsetof to avoid pointer to the odd/misaligned address
memcpy(&lba, (uint8_t*) p_rdwr10 + offsetof(scsi_write10_t, lba), 4);
// lba is in Big Endian format
return tu_ntohl(lba);
@ -93,7 +94,8 @@ static inline uint16_t rdwr10_get_blockcount(uint8_t const command[])
// copy first to prevent mis-aligned access
uint16_t block_count;
memcpy(&block_count, &p_rdwr10->block_count, 2);
// use offsetof to avoid pointer to the odd/misaligned address
memcpy(&block_count, (uint8_t*) p_rdwr10 + offsetof(scsi_write10_t, block_count), 2);
return tu_ntohs(block_count);
}
@ -154,25 +156,33 @@ void mscd_reset(uint8_t rhport)
tu_memclr(&_mscd_itf, sizeof(mscd_interface_t));
}
bool mscd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_len)
uint16_t mscd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len)
{
// only support SCSI's BOT protocol
TU_VERIFY(TUSB_CLASS_MSC == itf_desc->bInterfaceClass &&
MSC_SUBCLASS_SCSI == itf_desc->bInterfaceSubClass &&
MSC_PROTOCOL_BOT == itf_desc->bInterfaceProtocol);
MSC_PROTOCOL_BOT == itf_desc->bInterfaceProtocol, 0);
// msc driver length is fixed
uint16_t const drv_len = sizeof(tusb_desc_interface_t) + 2*sizeof(tusb_desc_endpoint_t);
// Max length mus be at least 1 interface + 2 endpoints
TU_ASSERT(max_len >= drv_len, 0);
mscd_interface_t * p_msc = &_mscd_itf;
p_msc->itf_num = itf_desc->bInterfaceNumber;
// Open endpoint pair
TU_ASSERT( usbd_open_edpt_pair(rhport, tu_desc_next(itf_desc), 2, TUSB_XFER_BULK, &p_msc->ep_out, &p_msc->ep_in) );
p_msc->itf_num = itf_desc->bInterfaceNumber;
(*p_len) = sizeof(tusb_desc_interface_t) + 2*sizeof(tusb_desc_endpoint_t);
TU_ASSERT( usbd_open_edpt_pair(rhport, tu_desc_next(itf_desc), 2, TUSB_XFER_BULK, &p_msc->ep_out, &p_msc->ep_in), 0 );
// Prepare for Command Block Wrapper
TU_ASSERT( usbd_edpt_xfer(rhport, p_msc->ep_out, (uint8_t*) &p_msc->cbw, sizeof(msc_cbw_t)) );
if ( !usbd_edpt_xfer(rhport, p_msc->ep_out, (uint8_t*) &p_msc->cbw, sizeof(msc_cbw_t)) )
{
TU_LOG1_FAILED();
TU_BREAKPOINT();
}
return true;
return drv_len;
}
// Handle class control request

View File

@ -151,12 +151,12 @@ TU_ATTR_WEAK bool tud_msc_is_writable_cb(uint8_t lun);
//--------------------------------------------------------------------+
// Internal Class Driver API
//--------------------------------------------------------------------+
void mscd_init (void);
void mscd_reset (uint8_t rhport);
bool mscd_open (uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_length);
bool mscd_control_request (uint8_t rhport, tusb_control_request_t const * p_request);
bool mscd_control_complete (uint8_t rhport, tusb_control_request_t const * p_request);
bool mscd_xfer_cb (uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
void mscd_init (void);
void mscd_reset (uint8_t rhport);
uint16_t mscd_open (uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len);
bool mscd_control_request (uint8_t rhport, tusb_control_request_t const * p_request);
bool mscd_control_complete (uint8_t rhport, tusb_control_request_t const * p_request);
bool mscd_xfer_cb (uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
#ifdef __cplusplus
}

View File

@ -135,7 +135,7 @@ void netd_reset(uint8_t rhport)
netd_init();
}
bool netd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_length)
uint16_t netd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len)
{
bool const is_rndis = (TUD_RNDIS_ITF_CLASS == itf_desc->bInterfaceClass &&
TUD_RNDIS_ITF_SUBCLASS == itf_desc->bInterfaceSubClass &&
@ -145,10 +145,10 @@ bool netd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t
CDC_COMM_SUBCLASS_ETHERNET_NETWORKING_CONTROL_MODEL == itf_desc->bInterfaceSubClass &&
0x00 == itf_desc->bInterfaceProtocol);
TU_VERIFY ( is_rndis || is_ecm );
TU_VERIFY(is_rndis || is_ecm, 0);
// confirm interface hasn't already been allocated
TU_ASSERT(0 == _netd_itf.ep_notif);
TU_ASSERT(0 == _netd_itf.ep_notif, 0);
// sanity check the descriptor
_netd_itf.ecm_mode = is_ecm;
@ -156,25 +156,25 @@ bool netd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t
//------------- Management Interface -------------//
_netd_itf.itf_num = itf_desc->bInterfaceNumber;
(*p_length) = sizeof(tusb_desc_interface_t);
uint16_t drv_len = sizeof(tusb_desc_interface_t);
uint8_t const * p_desc = tu_desc_next( itf_desc );
// Communication Functional Descriptors
while ( TUSB_DESC_CS_INTERFACE == tu_desc_type(p_desc) )
while ( TUSB_DESC_CS_INTERFACE == tu_desc_type(p_desc) && drv_len <= max_len )
{
(*p_length) += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
}
// notification endpoint (if any)
if ( TUSB_DESC_ENDPOINT == tu_desc_type(p_desc) )
{
TU_ASSERT( usbd_edpt_open(rhport, (tusb_desc_endpoint_t const *) p_desc) );
TU_ASSERT( usbd_edpt_open(rhport, (tusb_desc_endpoint_t const *) p_desc), 0 );
_netd_itf.ep_notif = ((tusb_desc_endpoint_t const *) p_desc)->bEndpointAddress;
(*p_length) += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
}
//------------- Data Interface -------------//
@ -182,19 +182,19 @@ bool netd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t
// - CDC-ECM data interface has 2 alternate settings
// - 0 : zero endpoints for inactive (default)
// - 1 : IN & OUT endpoints for active networking
TU_ASSERT(TUSB_DESC_INTERFACE == tu_desc_type(p_desc));
TU_ASSERT(TUSB_DESC_INTERFACE == tu_desc_type(p_desc), 0);
do
{
tusb_desc_interface_t const * data_itf_desc = (tusb_desc_interface_t const *) p_desc;
TU_ASSERT(TUSB_CLASS_CDC_DATA == data_itf_desc->bInterfaceClass);
TU_ASSERT(TUSB_CLASS_CDC_DATA == data_itf_desc->bInterfaceClass, 0);
(*p_length) += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
}while( _netd_itf.ecm_mode && (TUSB_DESC_INTERFACE == tu_desc_type(p_desc)) );
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
}while( _netd_itf.ecm_mode && (TUSB_DESC_INTERFACE == tu_desc_type(p_desc)) && (drv_len <= max_len) );
// Pair of endpoints
TU_ASSERT(TUSB_DESC_ENDPOINT == tu_desc_type(p_desc));
TU_ASSERT(TUSB_DESC_ENDPOINT == tu_desc_type(p_desc), 0);
if ( _netd_itf.ecm_mode )
{
@ -204,7 +204,7 @@ bool netd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t
}else
{
// Open endpoint pair for RNDIS
TU_ASSERT( usbd_open_edpt_pair(rhport, p_desc, 2, TUSB_XFER_BULK, &_netd_itf.ep_out, &_netd_itf.ep_in) );
TU_ASSERT( usbd_open_edpt_pair(rhport, p_desc, 2, TUSB_XFER_BULK, &_netd_itf.ep_out, &_netd_itf.ep_in), 0 );
tud_network_init_cb();
@ -215,9 +215,9 @@ bool netd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t
tud_network_recv_renew();
}
(*p_length) += 2*sizeof(tusb_desc_endpoint_t);
drv_len += 2*sizeof(tusb_desc_endpoint_t);
return true;
return drv_len;
}
// Invoked when class request DATA stage is finished.

View File

@ -72,13 +72,13 @@ void tud_network_xmit(struct pbuf *p);
//--------------------------------------------------------------------+
// INTERNAL USBD-CLASS DRIVER API
//--------------------------------------------------------------------+
void netd_init (void);
void netd_reset (uint8_t rhport);
bool netd_open (uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_length);
bool netd_control_request (uint8_t rhport, tusb_control_request_t const * request);
bool netd_control_complete (uint8_t rhport, tusb_control_request_t const * request);
bool netd_xfer_cb (uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes);
void netd_report (uint8_t *buf, uint16_t len);
void netd_init (void);
void netd_reset (uint8_t rhport);
uint16_t netd_open (uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len);
bool netd_control_request (uint8_t rhport, tusb_control_request_t const * request);
bool netd_control_complete (uint8_t rhport, tusb_control_request_t const * request);
bool netd_xfer_cb (uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes);
void netd_report (uint8_t *buf, uint16_t len);
#ifdef __cplusplus
}

View File

@ -260,37 +260,39 @@ void usbtmcd_init_cb(void)
usbtmcLock = osal_mutex_create(&usbtmcLockBuffer);
}
bool usbtmcd_open_cb(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_length)
uint16_t usbtmcd_open_cb(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len)
{
(void)rhport;
uint16_t drv_len;
uint8_t const * p_desc;
uint8_t found_endpoints = 0;
TU_VERIFY(itf_desc->bInterfaceClass == TUD_USBTMC_APP_CLASS);
TU_VERIFY(itf_desc->bInterfaceSubClass == TUD_USBTMC_APP_SUBCLASS);
TU_VERIFY(itf_desc->bInterfaceClass == TUD_USBTMC_APP_CLASS , 0);
TU_VERIFY(itf_desc->bInterfaceSubClass == TUD_USBTMC_APP_SUBCLASS, 0);
#ifndef NDEBUG
// Only 2 or 3 endpoints are allowed for USBTMC.
TU_ASSERT((itf_desc->bNumEndpoints == 2) || (itf_desc->bNumEndpoints ==3));
TU_ASSERT((itf_desc->bNumEndpoints == 2) || (itf_desc->bNumEndpoints ==3), 0);
#endif
TU_ASSERT(usbtmc_state.state == STATE_CLOSED);
TU_ASSERT(usbtmc_state.state == STATE_CLOSED, 0);
// Interface
(*p_length) = 0u;
drv_len = 0u;
p_desc = (uint8_t const *) itf_desc;
usbtmc_state.itf_id = itf_desc->bInterfaceNumber;
usbtmc_state.rhport = rhport;
while (found_endpoints < itf_desc->bNumEndpoints)
while (found_endpoints < itf_desc->bNumEndpoints && drv_len <= max_len)
{
if ( TUSB_DESC_ENDPOINT == p_desc[DESC_OFFSET_TYPE])
{
tusb_desc_endpoint_t const *ep_desc = (tusb_desc_endpoint_t const *)p_desc;
switch(ep_desc->bmAttributes.xfer) {
case TUSB_XFER_BULK:
TU_ASSERT(ep_desc->wMaxPacketSize.size == USBTMCD_MAX_PACKET_SIZE);
TU_ASSERT(ep_desc->wMaxPacketSize.size == USBTMCD_MAX_PACKET_SIZE, 0);
if (tu_edpt_dir(ep_desc->bEndpointAddress) == TUSB_DIR_IN)
{
usbtmc_state.ep_bulk_in = ep_desc->bEndpointAddress;
@ -301,45 +303,46 @@ bool usbtmcd_open_cb(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uin
break;
case TUSB_XFER_INTERRUPT:
#ifndef NDEBUG
TU_ASSERT(tu_edpt_dir(ep_desc->bEndpointAddress) == TUSB_DIR_IN);
TU_ASSERT(usbtmc_state.ep_int_in == 0);
TU_ASSERT(tu_edpt_dir(ep_desc->bEndpointAddress) == TUSB_DIR_IN, 0);
TU_ASSERT(usbtmc_state.ep_int_in == 0, 0);
#endif
usbtmc_state.ep_int_in = ep_desc->bEndpointAddress;
break;
default:
TU_ASSERT(false);
TU_ASSERT(false, 0);
}
TU_VERIFY( usbd_edpt_open(rhport, ep_desc));
TU_ASSERT( usbd_edpt_open(rhport, ep_desc), 0);
found_endpoints++;
}
(*p_length) = (uint8_t)((*p_length) + p_desc[DESC_OFFSET_LEN]);
p_desc = tu_desc_next(p_desc);
drv_len += tu_desc_len(p_desc);
p_desc = tu_desc_next(p_desc);
}
// bulk endpoints are required, but interrupt IN is optional
#ifndef NDEBUG
TU_ASSERT(usbtmc_state.ep_bulk_in != 0);
TU_ASSERT(usbtmc_state.ep_bulk_out != 0);
TU_ASSERT(usbtmc_state.ep_bulk_in != 0, 0);
TU_ASSERT(usbtmc_state.ep_bulk_out != 0, 0);
if (itf_desc->bNumEndpoints == 2)
{
TU_ASSERT(usbtmc_state.ep_int_in == 0);
TU_ASSERT(usbtmc_state.ep_int_in == 0, 0);
}
else if (itf_desc->bNumEndpoints == 3)
{
TU_ASSERT(usbtmc_state.ep_int_in != 0);
TU_ASSERT(usbtmc_state.ep_int_in != 0, 0);
}
#if (CFG_TUD_USBTMC_ENABLE_488)
if(usbtmc_state.capabilities->bmIntfcCapabilities488.is488_2 ||
usbtmc_state.capabilities->bmDevCapabilities488.SR1)
{
TU_ASSERT(usbtmc_state.ep_int_in != 0);
TU_ASSERT(usbtmc_state.ep_int_in != 0, 0);
}
#endif
#endif
atomicChangeState(STATE_CLOSED, STATE_NAK);
tud_usbtmc_open_cb(itf_desc->iInterface);
return true;
return drv_len;
}
// Tell USBTMC class to set its bulk-in EP to ACK so that it can
// receive USBTMC commands.

View File

@ -108,12 +108,12 @@ bool tud_usbtmc_start_bus_read(void);
/* "callbacks" from USB device core */
bool usbtmcd_open_cb(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_length);
void usbtmcd_reset_cb(uint8_t rhport);
bool usbtmcd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes);
bool usbtmcd_control_request_cb(uint8_t rhport, tusb_control_request_t const * request);
bool usbtmcd_control_complete_cb(uint8_t rhport, tusb_control_request_t const * request);
void usbtmcd_init_cb(void);
uint16_t usbtmcd_open_cb(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len);
void usbtmcd_reset_cb(uint8_t rhport);
bool usbtmcd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes);
bool usbtmcd_control_request_cb(uint8_t rhport, tusb_control_request_t const * request);
bool usbtmcd_control_complete_cb(uint8_t rhport, tusb_control_request_t const * request);
void usbtmcd_init_cb(void);
/************************************************************
* USBTMC Descriptor Templates

View File

@ -166,9 +166,12 @@ void vendord_reset(uint8_t rhport)
}
}
bool vendord_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_len)
uint16_t vendord_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len)
{
TU_VERIFY(TUSB_CLASS_VENDOR_SPECIFIC == itf_desc->bInterfaceClass);
TU_VERIFY(TUSB_CLASS_VENDOR_SPECIFIC == itf_desc->bInterfaceClass, 0);
uint16_t const drv_len = sizeof(tusb_desc_interface_t) + itf_desc->bNumEndpoints*sizeof(tusb_desc_endpoint_t);
TU_VERIFY(max_len >= drv_len, 0);
// Find available interface
vendord_interface_t* p_vendor = NULL;
@ -180,18 +183,21 @@ bool vendord_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16
break;
}
}
TU_VERIFY(p_vendor);
TU_VERIFY(p_vendor, 0);
// Open endpoint pair with usbd helper
TU_ASSERT(usbd_open_edpt_pair(rhport, tu_desc_next(itf_desc), 2, TUSB_XFER_BULK, &p_vendor->ep_out, &p_vendor->ep_in));
TU_ASSERT(usbd_open_edpt_pair(rhport, tu_desc_next(itf_desc), 2, TUSB_XFER_BULK, &p_vendor->ep_out, &p_vendor->ep_in), 0);
p_vendor->itf_num = itf_desc->bInterfaceNumber;
(*p_len) = sizeof(tusb_desc_interface_t) + 2*sizeof(tusb_desc_endpoint_t);
// Prepare for incoming data
TU_ASSERT(usbd_edpt_xfer(rhport, p_vendor->ep_out, p_vendor->epout_buf, sizeof(p_vendor->epout_buf)));
if ( !usbd_edpt_xfer(rhport, p_vendor->ep_out, p_vendor->epout_buf, sizeof(p_vendor->epout_buf)) )
{
TU_LOG1_FAILED();
TU_BREAKPOINT();
}
return true;
return drv_len;
}
bool vendord_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes)

View File

@ -118,10 +118,10 @@ static inline uint32_t tud_vendor_write_available (void)
//--------------------------------------------------------------------+
// Internal Class Driver API
//--------------------------------------------------------------------+
void vendord_init(void);
void vendord_reset(uint8_t rhport);
bool vendord_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_length);
bool vendord_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
void vendord_init(void);
void vendord_reset(uint8_t rhport);
uint16_t vendord_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len);
bool vendord_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
#ifdef __cplusplus
}

View File

@ -235,6 +235,7 @@ void tu_print_var(uint8_t const* buf, uint32_t bufsize)
#define TU_LOG1_INT(_x) tu_printf(#_x " = %ld\n", (uint32_t) (_x) )
#define TU_LOG1_HEX(_x) tu_printf(#_x " = %lX\n", (uint32_t) (_x) )
#define TU_LOG1_LOCATION() tu_printf("%s: %d:\r\n", __PRETTY_FUNCTION__, __LINE__)
#define TU_LOG1_FAILED() tu_printf("%s: %d: Failed\r\n", __PRETTY_FUNCTION__, __LINE__)
// Log with debug level 2
#if CFG_TUSB_DEBUG > 1
@ -278,6 +279,7 @@ static inline char const* lookup_find(lookup_table_t const* p_table, uint32_t ke
#define TU_LOG1_INT(...)
#define TU_LOG1_HEX(...)
#define TU_LOG1_LOCATION()
#define TU_LOG1_FAILED()
#endif
#ifndef TU_LOG2

View File

@ -88,13 +88,13 @@ typedef struct
char const* name;
#endif
void (* init ) (void);
void (* reset ) (uint8_t rhport);
bool (* open ) (uint8_t rhport, tusb_desc_interface_t const * desc_intf, uint16_t* p_length);
bool (* control_request ) (uint8_t rhport, tusb_control_request_t const * request);
bool (* control_complete ) (uint8_t rhport, tusb_control_request_t const * request);
bool (* xfer_cb ) (uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
void (* sof ) (uint8_t rhport); /* optional */
void (* init ) (void);
void (* reset ) (uint8_t rhport);
uint16_t (* open ) (uint8_t rhport, tusb_desc_interface_t const * desc_intf, uint16_t max_len);
bool (* control_request ) (uint8_t rhport, tusb_control_request_t const * request);
bool (* control_complete ) (uint8_t rhport, tusb_control_request_t const * request);
bool (* xfer_cb ) (uint8_t rhport, uint8_t ep_addr, xfer_result_t event, uint32_t xferred_bytes);
void (* sof ) (uint8_t rhport); /* optional */
} usbd_class_driver_t;
static usbd_class_driver_t const _usbd_driver[] =
@ -202,6 +202,19 @@ static usbd_class_driver_t const _usbd_driver[] =
.sof = NULL,
},
#endif
#if CFG_TUD_BTH
{
DRIVER_NAME("BTH")
.init = btd_init,
.reset = btd_reset,
.open = btd_open,
.control_request = btd_control_request,
.control_complete = btd_control_complete,
.xfer_cb = btd_xfer_cb,
.sof = NULL
},
#endif
};
enum { USBD_CLASS_DRIVER_COUNT = TU_ARRAY_SIZE(_usbd_driver) };
@ -432,7 +445,7 @@ void tud_task (void)
if ( 0 == epnum )
{
usbd_control_xfer_cb(event.rhport, ep_addr, event.xfer_complete.result, event.xfer_complete.len);
usbd_control_xfer_cb(event.rhport, ep_addr, (xfer_result_t)event.xfer_complete.result, event.xfer_complete.len);
}
else
{
@ -440,7 +453,7 @@ void tud_task (void)
TU_ASSERT(drv_id < USBD_CLASS_DRIVER_COUNT,);
TU_LOG2(" %s xfer callback\r\n", _usbd_driver[drv_id].name);
_usbd_driver[drv_id].xfer_cb(event.rhport, ep_addr, event.xfer_complete.result, event.xfer_complete.len);
_usbd_driver[drv_id].xfer_cb(event.rhport, ep_addr, (xfer_result_t)event.xfer_complete.result, event.xfer_complete.len);
}
}
break;
@ -519,6 +532,18 @@ static bool process_control_request(uint8_t rhport, tusb_control_request_t const
{
//------------- Device Requests e.g in enumeration -------------//
case TUSB_REQ_RCPT_DEVICE:
if ( TUSB_REQ_TYPE_CLASS == p_request->bmRequestType_bit.type )
{
uint8_t const itf = tu_u16_low(p_request->wIndex);
TU_VERIFY(itf < TU_ARRAY_SIZE(_usbd_dev.itf2drv));
uint8_t const drvid = _usbd_dev.itf2drv[itf];
TU_VERIFY(drvid < USBD_CLASS_DRIVER_COUNT);
// forward to class driver: "non-STD request to Interface"
TU_VERIFY(invoke_class_control(rhport, drvid, p_request));
return true;
}
if ( TUSB_REQ_TYPE_STANDARD != p_request->bmRequestType_bit.type )
{
// Non standard request is not supported
@ -725,6 +750,8 @@ static bool process_set_config(uint8_t rhport, uint8_t cfg_num)
TU_ASSERT( TUSB_DESC_INTERFACE == tu_desc_type(p_desc) );
tusb_desc_interface_t const * desc_itf = (tusb_desc_interface_t const*) p_desc;
uint16_t const remaining_len = desc_end-p_desc;
uint8_t drv_id;
uint16_t drv_len;
@ -732,23 +759,25 @@ static bool process_set_config(uint8_t rhport, uint8_t cfg_num)
{
usbd_class_driver_t const *driver = &_usbd_driver[drv_id];
drv_len = 0;
if ( driver->open(rhport, desc_itf, &drv_len) )
drv_len = driver->open(rhport, desc_itf, remaining_len);
if ( drv_len > 0 )
{
// Open successfully, check if length is correct
TU_ASSERT( sizeof(tusb_desc_interface_t) <= drv_len && drv_len <= remaining_len);
// Interface number must not be used already
TU_ASSERT( DRVID_INVALID == _usbd_dev.itf2drv[desc_itf->bInterfaceNumber] );
TU_LOG2(" %s opened\r\n", _usbd_driver[drv_id].name);
TU_LOG2(" %s opened\r\n", driver->name);
_usbd_dev.itf2drv[desc_itf->bInterfaceNumber] = drv_id;
// If IAD exist, assign all interfaces to the same driver
if (desc_itf_assoc)
{
// IAD's first interface number and class/subclass/protocol should match with opened interface
TU_ASSERT(desc_itf_assoc->bFirstInterface == desc_itf->bInterfaceNumber &&
desc_itf_assoc->bFunctionClass == desc_itf->bInterfaceClass &&
desc_itf_assoc->bFunctionSubClass == desc_itf->bInterfaceSubClass &&
desc_itf_assoc->bFunctionProtocol == desc_itf->bInterfaceProtocol);
// IAD's first interface number and class should match with opened interface
TU_ASSERT(desc_itf_assoc->bFirstInterface == desc_itf->bInterfaceNumber &&
desc_itf_assoc->bFunctionClass == desc_itf->bInterfaceClass);
for(uint8_t i=1; i<desc_itf_assoc->bInterfaceCount; i++)
{
@ -760,8 +789,8 @@ static bool process_set_config(uint8_t rhport, uint8_t cfg_num)
}
}
// Assert if cannot find supported driver
TU_ASSERT( drv_id < USBD_CLASS_DRIVER_COUNT && drv_len >= sizeof(tusb_desc_interface_t) );
// Failed if cannot find supported driver
TU_ASSERT(drv_id < USBD_CLASS_DRIVER_COUNT);
mark_interface_endpoint(_usbd_dev.ep2drv, p_desc, drv_len, drv_id); // TODO refactor
@ -829,8 +858,10 @@ static bool process_get_descriptor(uint8_t rhport, tusb_control_request_t const
if (!tud_descriptor_bos_cb) return false;
tusb_desc_bos_t const* desc_bos = (tusb_desc_bos_t const*) tud_descriptor_bos_cb();
uint16_t total_len;
memcpy(&total_len, &desc_bos->wTotalLength, 2); // possibly mis-aligned memory
// Use offsetof to avoid pointer to the odd/misaligned address
memcpy(&total_len, (uint8_t*) desc_bos + offsetof(tusb_desc_bos_t, wTotalLength), 2);
return tud_control_xfer(rhport, p_request, (void*) desc_bos, total_len);
}
@ -844,7 +875,8 @@ static bool process_get_descriptor(uint8_t rhport, tusb_control_request_t const
TU_ASSERT(desc_config);
uint16_t total_len;
memcpy(&total_len, &desc_config->wTotalLength, 2); // possibly mis-aligned memory
// Use offsetof to avoid pointer to the odd/misaligned address
memcpy(&total_len, (uint8_t*) desc_config + offsetof(tusb_desc_configuration_t, wTotalLength), 2);
return tud_control_xfer(rhport, p_request, (void*) desc_config, total_len);
}
@ -873,15 +905,31 @@ static bool process_get_descriptor(uint8_t rhport, tusb_control_request_t const
case TUSB_DESC_DEVICE_QUALIFIER:
TU_LOG2(" Device Qualifier\r\n");
// TODO If not highspeed capable stall this request otherwise
// return the descriptor that could work in highspeed
return false;
// Host sends this request to ask why our device with USB BCD from 2.0
// but is running at Full/Low Speed. If not highspeed capable stall this request,
// otherwise return the descriptor that could work in highspeed mode
if ( tud_descriptor_device_qualifier_cb )
{
uint8_t const* desc_qualifier = tud_descriptor_device_qualifier_cb();
TU_ASSERT(desc_qualifier);
// first byte of descriptor is its size
return tud_control_xfer(rhport, p_request, (void*) desc_qualifier, desc_qualifier[0]);
}else
{
return false;
}
break;
case TUSB_DESC_OTHER_SPEED_CONFIG:
TU_LOG2(" Other Speed Configuration\r\n");
// After Device Qualifier descriptor is received host will ask for this descriptor
return false; // not supported
break;
default: return false;
}
return true;
}
//--------------------------------------------------------------------+

View File

@ -68,6 +68,8 @@ static inline bool tud_ready(void)
// Remote wake up host, only if suspended and enabled by host
bool tud_remote_wakeup(void);
// Enable pull-up resistor on D+ D-
// Return false on unsupported MCUs
static inline bool tud_disconnect(void)
{
TU_VERIFY(dcd_disconnect);
@ -75,6 +77,8 @@ static inline bool tud_disconnect(void)
return true;
}
// Disable pull-up resistor on D+ D-
// Return false on unsupported MCUs
static inline bool tud_connect(void)
{
TU_VERIFY(dcd_connect);
@ -110,6 +114,10 @@ uint8_t const * tud_descriptor_configuration_cb(uint8_t index);
// Application return pointer to descriptor, whose contents must exist long enough for transfer to complete
uint16_t const* tud_descriptor_string_cb(uint8_t index, uint16_t langid);
// Invoked when received GET DEVICE QUALIFIER DESCRIPTOR request
// Application return pointer to descriptor, whose contents must exist long enough for transfer to complete
TU_ATTR_WEAK uint8_t const* tud_descriptor_device_qualifier_cb(void);
// Invoked when device is mounted (configured)
TU_ATTR_WEAK void tud_mount_cb(void);
@ -125,6 +133,8 @@ TU_ATTR_WEAK void tud_resume_cb(void);
// Invoked when received control request with VENDOR TYPE
TU_ATTR_WEAK bool tud_vendor_control_request_cb(uint8_t rhport, tusb_control_request_t const * request);
// Invoked when vendor control request is complete
TU_ATTR_WEAK bool tud_vendor_control_complete_cb(uint8_t rhport, tusb_control_request_t const * request);
@ -438,6 +448,60 @@ TU_ATTR_WEAK bool tud_vendor_control_complete_cb(uint8_t rhport, tusb_control_re
/* Endpoint Out */\
7, TUSB_DESC_ENDPOINT, _epout, TUSB_XFER_BULK, U16_TO_U8S_LE(_epsize), 0
//------------- BT Radio -------------//
#define TUD_BT_APP_CLASS (TUSB_CLASS_WIRELESS_CONTROLLER)
#define TUD_BT_APP_SUBCLASS 0x01
#define TUD_BT_PROTOCOL_PRIMARY_CONTROLLER 0x01
#define TUD_BT_PROTOCOL_AMP_CONTROLLER 0x02
#ifndef CFG_TUD_BTH_ISO_ALT_COUNT
#define CFG_TUD_BTH_ISO_ALT_COUNT 0
#endif
// Length of template descriptor: 30 bytes + number of ISO alternatives * 23
#define TUD_BTH_DESC_LEN (9 + 7 + 7 + 7 + (CFG_TUD_BTH_ISO_ALT_COUNT) * (9 + 7 + 7))
/* Primary Interface */
#define TUD_BTH_PRI_ITF(_itfnum, _stridx, _ep_evt, _ep_evt_size, _ep_evt_interval, _ep_in, _ep_out, _ep_size) \
9, TUSB_DESC_INTERFACE, _itfnum, _stridx, 3, TUD_BT_APP_CLASS, TUD_BT_APP_SUBCLASS, TUD_BT_PROTOCOL_PRIMARY_CONTROLLER, 0, \
/* Endpoint In for events */ \
7, TUSB_DESC_ENDPOINT, _ep_evt, TUSB_XFER_INTERRUPT, U16_TO_U8S_LE(_ep_evt_size), _ep_evt_interval, \
/* Endpoint In for ACL data */ \
7, TUSB_DESC_ENDPOINT, _ep_in, TUSB_XFER_BULK, U16_TO_U8S_LE(_ep_size), 1, \
/* Endpoint Out for ACL data */ \
7, TUSB_DESC_ENDPOINT, _ep_out, TUSB_XFER_BULK, U16_TO_U8S_LE(_ep_size), 1
#define TUD_BTH_ISO_ITF(_itfnum, _alt, _ep_in, _ep_out, _n) ,\
/* Interface with 2 endpoints */ \
9, TUSB_DESC_INTERFACE, _itfnum, _alt, 2, TUD_BT_APP_CLASS, TUD_BT_APP_SUBCLASS, TUD_BT_PROTOCOL_PRIMARY_CONTROLLER, 0, \
/* Isochronous endpoints */ \
7, TUSB_DESC_ENDPOINT, _ep_in, TUSB_XFER_ISOCHRONOUS, U16_TO_U8S_LE(_n), 1, \
7, TUSB_DESC_ENDPOINT, _ep_out, TUSB_XFER_ISOCHRONOUS, U16_TO_U8S_LE(_n), 1
#define _FIRST(a, ...) a
#define _REST(a, ...) __VA_ARGS__
#define TUD_BTH_ISO_ITF_0(_itfnum, ...)
#define TUD_BTH_ISO_ITF_1(_itfnum, _ep_in, _ep_out, ...) TUD_BTH_ISO_ITF(_itfnum, (CFG_TUD_BTH_ISO_ALT_COUNT) - 1, _ep_in, _ep_out, _FIRST(__VA_ARGS__))
#define TUD_BTH_ISO_ITF_2(_itfnum, _ep_in, _ep_out, ...) TUD_BTH_ISO_ITF(_itfnum, (CFG_TUD_BTH_ISO_ALT_COUNT) - 2, _ep_in, _ep_out, _FIRST(__VA_ARGS__)) \
TUD_BTH_ISO_ITF_1(_itfnum, _ep_in, _ep_out, _REST(__VA_ARGS__))
#define TUD_BTH_ISO_ITF_3(_itfnum, _ep_in, _ep_out, ...) TUD_BTH_ISO_ITF(_itfnum, (CFG_TUD_BTH_ISO_ALT_COUNT) - 3, _ep_in, _ep_out, _FIRST(__VA_ARGS__)) \
TUD_BTH_ISO_ITF_2(_itfnum, _ep_in, _ep_out, _REST(__VA_ARGS__))
#define TUD_BTH_ISO_ITF_4(_itfnum, _ep_in, _ep_out, ...) TUD_BTH_ISO_ITF(_itfnum, (CFG_TUD_BTH_ISO_ALT_COUNT) - 4, _ep_in, _ep_out, _FIRST(__VA_ARGS__)) \
TUD_BTH_ISO_ITF_3(_itfnum, _ep_in, _ep_out, _REST(__VA_ARGS__))
#define TUD_BTH_ISO_ITF_5(_itfnum, _ep_in, _ep_out, ...) TUD_BTH_ISO_ITF(_itfnum, (CFG_TUD_BTH_ISO_ALT_COUNT) - 5, _ep_in, _ep_out, _FIRST(__VA_ARGS__)) \
TUD_BTH_ISO_ITF_4(_itfnum, _ep_in, _ep_out, _REST(__VA_ARGS__))
#define TUD_BTH_ISO_ITF_6(_itfnum, _ep_in, _ep_out, ...) TUD_BTH_ISO_ITF(_itfnum, (CFG_TUD_BTH_ISO_ALT_COUNT) - 6, _ep_in, _ep_out, _FIRST(__VA_ARGS__)) \
TUD_BTH_ISO_ITF_5(_itfnum, _ep_in, _ep_out, _REST(__VA_ARGS__))
#define TUD_BTH_ISO_ITFS(_itfnum, _ep_in, _ep_out, ...) \
TU_XSTRCAT(TUD_BTH_ISO_ITF_, CFG_TUD_BTH_ISO_ALT_COUNT)(_itfnum, _ep_in, _ep_out, __VA_ARGS__)
// BT Primary controller descriptor
// Interface number, string index, attributes, event endpoint, event endpoint size, interval, data in, data out, data endpoint size, iso endpoint sizes
#define TUD_BTH_DESCRIPTOR(_itfnum, _stridx, _ep_evt, _ep_evt_size, _ep_evt_interval, _ep_in, _ep_out, _ep_size,...) \
TUD_BTH_PRI_ITF(_itfnum, _stridx, _ep_evt, _ep_evt_size, _ep_evt_interval, _ep_in, _ep_out, _ep_size) \
TUD_BTH_ISO_ITFS(_itfnum + 1, _ep_in + 1, _ep_out + 1, __VA_ARGS__)
#ifdef __cplusplus
}

View File

@ -26,7 +26,8 @@
#include "tusb_option.h"
#if TUSB_OPT_DEVICE_ENABLED && (CFG_TUSB_MCU == OPT_MCU_SAMD51 || CFG_TUSB_MCU == OPT_MCU_SAMD21)
#if TUSB_OPT_DEVICE_ENABLED && \
(CFG_TUSB_MCU == OPT_MCU_SAMD21 || CFG_TUSB_MCU == OPT_MCU_SAMD51 || CFG_TUSB_MCU == OPT_MCU_SAME5X)
#include "sam.h"
#include "device/dcd.h"
@ -90,7 +91,7 @@ void dcd_init (uint8_t rhport)
USB->DEVICE.INTENSET.reg = /* USB_DEVICE_INTENSET_SOF | */ USB_DEVICE_INTENSET_EORST;
}
#if CFG_TUSB_MCU == OPT_MCU_SAMD51
#if CFG_TUSB_MCU == OPT_MCU_SAMD51 || CFG_TUSB_MCU == OPT_MCU_SAME5X
void dcd_int_enable(uint8_t rhport)
{
@ -123,6 +124,11 @@ void dcd_int_disable(uint8_t rhport)
(void) rhport;
NVIC_DisableIRQ(USB_IRQn);
}
#else
#error "No implementation available for dcd_int_enable / dcd_int_disable"
#endif
void dcd_set_address (uint8_t rhport, uint8_t dev_addr)

View File

@ -144,6 +144,12 @@
# define DCD_STM32_BTABLE_LENGTH (PMA_LENGTH - DCD_STM32_BTABLE_BASE)
#endif
// Since TinyUSB doesn't use SOF for now, and this interrupt too often (1ms interval)
// We disable SOF for now until needed later on
#ifndef USE_SOF
# define USE_SOF 0
#endif
/***************************************************
* Checks, structs, defines, function definitions, etc.
*/
@ -235,7 +241,7 @@ void dcd_init (uint8_t rhport)
pcd_set_endpoint(USB,i,0u);
}
USB->CNTR |= USB_CNTR_RESETM | USB_CNTR_SOFM | USB_CNTR_ESOFM | USB_CNTR_CTRM | USB_CNTR_SUSPM | USB_CNTR_WKUPM;
USB->CNTR |= USB_CNTR_RESETM | (USE_SOF ? USB_CNTR_SOFM : 0) | USB_CNTR_ESOFM | USB_CNTR_CTRM | USB_CNTR_SUSPM | USB_CNTR_WKUPM;
dcd_handle_bus_reset();
// Data-line pull-up is left disconnected.
@ -542,10 +548,12 @@ void dcd_int_handler(uint8_t rhport) {
dcd_event_bus_signal(0, DCD_EVENT_SUSPEND, true);
}
#if USE_SOF
if(int_status & USB_ISTR_SOF) {
reg16_clear_bits(&USB->ISTR, USB_ISTR_SOF);
dcd_event_bus_signal(0, DCD_EVENT_SOF, true);
}
#endif
if(int_status & USB_ISTR_ESOF) {
if(remoteWakeCountdown == 1u)
@ -698,7 +706,6 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc
default:
TU_ASSERT(false);
return false;
}
pcd_set_eptype(USB, epnum, wType);

View File

@ -3,6 +3,7 @@
*
* Copyright (c) 2018 Scott Shawcroft, 2019 William D. Jones for Adafruit Industries
* Copyright (c) 2019 Ha Thach (tinyusb.org)
* Copyright (c) 2020 Jan Duempelmann
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
@ -142,6 +143,9 @@ typedef volatile uint32_t * usb_fifo_t;
xfer_ctl_t xfer_status[EP_MAX][2];
#define XFER_CTL_BASE(_ep, _dir) &xfer_status[_ep][_dir]
// EP0 transfers are limited to 1 packet - larger sizes has to be split
static uint16_t ep0_pending[2]; // Index determines direction as tusb_dir_t type
// FIFO RAM allocation so far in words
static uint16_t _allocated_fifo_words;
@ -248,6 +252,41 @@ static tusb_speed_t get_speed(USB_OTG_DeviceTypeDef* dev)
return (enum_spd == DCD_HIGH_SPEED) ? TUSB_SPEED_HIGH : TUSB_SPEED_FULL;
}
static void edpt_schedule_packets(uint8_t rhport, uint8_t const epnum, uint8_t const dir, uint16_t const num_packets, uint16_t total_bytes) {
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport);
USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);
// EP0 is limited to one packet each xfer
// We use multiple transaction of xfer->max_size length to get a whole transfer done
if(epnum == 0) {
xfer_ctl_t * const xfer = XFER_CTL_BASE(epnum, dir);
total_bytes = tu_min16(ep0_pending[dir], xfer->max_size);
ep0_pending[dir] -= total_bytes;
}
// IN and OUT endpoint xfers are interrupt-driven, we just schedule them here.
if(dir == TUSB_DIR_IN) {
// A full IN transfer (multiple packets, possibly) triggers XFRC.
in_ep[epnum].DIEPTSIZ = (num_packets << USB_OTG_DIEPTSIZ_PKTCNT_Pos) |
((total_bytes << USB_OTG_DIEPTSIZ_XFRSIZ_Pos) & USB_OTG_DIEPTSIZ_XFRSIZ_Msk);
in_ep[epnum].DIEPCTL |= USB_OTG_DIEPCTL_EPENA | USB_OTG_DIEPCTL_CNAK;
// Enable fifo empty interrupt only if there are something to put in the fifo.
if(total_bytes != 0) {
dev->DIEPEMPMSK |= (1 << epnum);
}
} else {
// A full OUT transfer (multiple packets, possibly) triggers XFRC.
out_ep[epnum].DOEPTSIZ &= ~(USB_OTG_DOEPTSIZ_PKTCNT_Msk | USB_OTG_DOEPTSIZ_XFRSIZ);
out_ep[epnum].DOEPTSIZ |= (num_packets << USB_OTG_DOEPTSIZ_PKTCNT_Pos) |
((total_bytes << USB_OTG_DOEPTSIZ_XFRSIZ_Pos) & USB_OTG_DOEPTSIZ_XFRSIZ_Msk);
out_ep[epnum].DOEPCTL |= USB_OTG_DOEPCTL_EPENA | USB_OTG_DOEPCTL_CNAK;
}
}
/*------------------------------------------------------------------*/
/* Controller API
*------------------------------------------------------------------*/
@ -446,7 +485,6 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
fifo_size = tu_max16(fifo_size, fifo_remaining / (EP_MAX - opened));
}
// FIFO overflows, we probably need a better allocating scheme
TU_ASSERT(fifo_size <= fifo_remaining);
@ -473,10 +511,6 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * desc_edpt)
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
{
USB_OTG_DeviceTypeDef * dev = DEVICE_BASE(rhport);
USB_OTG_OUTEndpointTypeDef * out_ep = OUT_EP_BASE(rhport);
USB_OTG_INEndpointTypeDef * in_ep = IN_EP_BASE(rhport);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
@ -484,34 +518,24 @@ bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t
xfer->buffer = buffer;
xfer->total_len = total_bytes;
// EP0 can only handle one packet
if(epnum == 0) {
ep0_pending[dir] = total_bytes;
// Schedule the first transaction for EP0 transfer
edpt_schedule_packets(rhport, epnum, dir, 1, ep0_pending[dir]);
return true;
}
uint16_t num_packets = (total_bytes / xfer->max_size);
uint8_t short_packet_size = total_bytes % xfer->max_size;
uint8_t const short_packet_size = total_bytes % xfer->max_size;
// Zero-size packet is special case.
if(short_packet_size > 0 || (total_bytes == 0)) {
num_packets++;
}
// IN and OUT endpoint xfers are interrupt-driven, we just schedule them here.
if(dir == TUSB_DIR_IN) {
// A full IN transfer (multiple packets, possibly) triggers XFRC.
in_ep[epnum].DIEPTSIZ = (num_packets << USB_OTG_DIEPTSIZ_PKTCNT_Pos) |
((total_bytes & USB_OTG_DIEPTSIZ_XFRSIZ_Msk) << USB_OTG_DIEPTSIZ_XFRSIZ_Pos);
in_ep[epnum].DIEPCTL |= USB_OTG_DIEPCTL_EPENA | USB_OTG_DIEPCTL_CNAK;
// Enable fifo empty interrupt only if there are something to put in the fifo.
if(total_bytes != 0) {
dev->DIEPEMPMSK |= (1 << epnum);
}
} else {
// A full OUT transfer (multiple packets, possibly) triggers XFRC.
out_ep[epnum].DOEPTSIZ &= ~(USB_OTG_DOEPTSIZ_PKTCNT_Msk | USB_OTG_DOEPTSIZ_XFRSIZ);
out_ep[epnum].DOEPTSIZ |= (num_packets << USB_OTG_DOEPTSIZ_PKTCNT_Pos) |
((total_bytes << USB_OTG_DOEPTSIZ_XFRSIZ_Pos) & USB_OTG_DOEPTSIZ_XFRSIZ_Msk);
out_ep[epnum].DOEPCTL |= USB_OTG_DOEPCTL_EPENA | USB_OTG_DOEPCTL_CNAK;
}
// Schedule packets to be sent within interrupt
edpt_schedule_packets(rhport, epnum, dir, num_packets, total_bytes);
return true;
}
@ -671,12 +695,11 @@ static void handle_rxflvl_ints(uint8_t rhport, USB_OTG_OUTEndpointTypeDef * out_
{
xfer_ctl_t * xfer = XFER_CTL_BASE(epnum, TUSB_DIR_OUT);
// Use BCNT to calculate correct bytes before data entry popped out from RxFIFO
uint16_t remaining_bytes = ((out_ep[epnum].DOEPTSIZ & USB_OTG_DOEPTSIZ_XFRSIZ_Msk) \
>> USB_OTG_DOEPTSIZ_XFRSIZ_Pos) + bcnt;
// Read packet off RxFIFO
read_fifo_packet(rhport, (xfer->buffer + xfer->total_len - remaining_bytes), bcnt);
read_fifo_packet(rhport, xfer->buffer, bcnt);
// Increment pointer to xfer data
xfer->buffer += bcnt;
}
break;
case 0x03: // Out packet done (Interrupt)
@ -714,7 +737,14 @@ static void handle_epout_ints(uint8_t rhport, USB_OTG_DeviceTypeDef * dev, USB_O
// OUT XFER complete
if(out_ep[n].DOEPINT & USB_OTG_DOEPINT_XFRC) {
out_ep[n].DOEPINT = USB_OTG_DOEPINT_XFRC;
dcd_event_xfer_complete(rhport, n, xfer->total_len, XFER_RESULT_SUCCESS, true);
// EP0 can only handle one packet
if((n == 0) && ep0_pending[TUSB_DIR_OUT]) {
// Schedule another packet to be received.
edpt_schedule_packets(rhport, n, TUSB_DIR_OUT, 1, ep0_pending[TUSB_DIR_OUT]);
} else {
dcd_event_xfer_complete(rhport, n, xfer->total_len, XFER_RESULT_SUCCESS, true);
}
}
}
}
@ -733,7 +763,14 @@ static void handle_epin_ints(uint8_t rhport, USB_OTG_DeviceTypeDef * dev, USB_OT
if ( in_ep[n].DIEPINT & USB_OTG_DIEPINT_XFRC )
{
in_ep[n].DIEPINT = USB_OTG_DIEPINT_XFRC;
dcd_event_xfer_complete(rhport, n | TUSB_DIR_IN_MASK, xfer->total_len, XFER_RESULT_SUCCESS, true);
// EP0 can only handle one packet
if((n == 0) && ep0_pending[TUSB_DIR_IN]) {
// Schedule another packet to be transmitted.
edpt_schedule_packets(rhport, n, TUSB_DIR_IN, 1, ep0_pending[TUSB_DIR_IN]);
} else {
dcd_event_xfer_complete(rhport, n | TUSB_DIR_IN_MASK, xfer->total_len, XFER_RESULT_SUCCESS, true);
}
}
// XFER FIFO empty
@ -759,7 +796,10 @@ static void handle_epin_ints(uint8_t rhport, USB_OTG_DeviceTypeDef * dev, USB_OT
}
// Push packet to Tx-FIFO
write_fifo_packet(rhport, n, (xfer->buffer + xfer->total_len - remaining_bytes), packet_size);
write_fifo_packet(rhport, n, xfer->buffer, packet_size);
// Increment pointer to xfer data
xfer->buffer += packet_size;
}
// Turn off TXFE if all bytes are written.
@ -830,9 +870,8 @@ void dcd_int_handler(uint8_t rhport)
}
#endif
// Use while loop to handle more than one fifo data entry
// within a single interrupt call
while(usb_otg->GINTSTS & USB_OTG_GINTSTS_RXFLVL) {
// RxFIFO non-empty interrupt handling.
if(int_status & USB_OTG_GINTSTS_RXFLVL) {
// RXFLVL bit is read-only
// Mask out RXFLVL while reading data from FIFO

View File

@ -95,6 +95,10 @@
#if CFG_TUD_NET
#include "class/net/net_device.h"
#endif
#if CFG_TUD_BTH
#include "class/bth/bth_device.h"
#endif
#endif

View File

@ -58,6 +58,7 @@
#define OPT_MCU_SAMD21 200 ///< MicroChip SAMD21
#define OPT_MCU_SAMD51 201 ///< MicroChip SAMD51
#define OPT_MCU_SAMG 202 ///< MicroChip SAMDG series
#define OPT_MCU_SAME5X 203 ///< MicroChip SAM E5x
// STM32
#define OPT_MCU_STM32F0 300 ///< ST STM32F0
@ -222,6 +223,10 @@
#define CFG_TUD_NET 0
#endif
#ifndef CFG_TUD_BTH
#define CFG_TUD_BTH 0
#endif
//--------------------------------------------------------------------
// HOST OPTIONS
//--------------------------------------------------------------------