Merge branch 'master' of github.com:hathach/tinyusb

This commit is contained in:
hathach 2019-09-20 13:08:29 +07:00
commit 6fb142b0ae
4 changed files with 391 additions and 222 deletions

4
.gitignore vendored
View File

@ -15,3 +15,7 @@ latex
test_old/
tests_obsolete/
_build
# coverity intermediate files
cov-int
# cppcheck build directories
*-build-dir

View File

@ -53,6 +53,9 @@
// for declaration of reserved field, make use of _TU_COUNTER_
#define TU_RESERVED TU_XSTRCAT(reserved, _TU_COUNTER_)
#define TU_LITTLE_ENDIAN (0x12u)
#define TU_BIG_ENDIAN (0x21u)
//--------------------------------------------------------------------+
// Compiler porting with Attribute and Endian
//--------------------------------------------------------------------+
@ -67,20 +70,68 @@
// Endian conversion use well-known host to network (big endian) naming
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define tu_htonl(u32) __builtin_bswap32(u32)
#define tu_ntohl(u32) __builtin_bswap32(u32)
#define tu_htons(u16) __builtin_bswap16(u16)
#define tu_ntohs(u16) __builtin_bswap16(u16)
#define TU_BYTE_ORDER TU_LITTLE_ENDIAN
#else
#define tu_htonl(u32) (u32)
#define tu_ntohl(u32) (u32)
#define tu_htons(u16) (u16)
#define tu_ntohs(u16) (u16)
#define TU_BYTE_ORDER TU_BIG_ENDIAN
#endif
#define TU_BSWAP16(u16) (__builtin_bswap16(u16))
#define TU_BSWAP32(u32) (__builtin_bswap32(u32))
#elif defined(__TI_COMPILER_VERSION__)
#define TU_ATTR_ALIGNED(Bytes) __attribute__ ((aligned(Bytes)))
#define TU_ATTR_SECTION(sec_name) __attribute__ ((section(#sec_name)))
#define TU_ATTR_PACKED __attribute__ ((packed))
#define TU_ATTR_PREPACKED
#define TU_ATTR_WEAK __attribute__ ((weak))
#define TU_ATTR_DEPRECATED(mess) __attribute__ ((deprecated(mess))) // warn if function with this attribute is used
#define TU_ATTR_UNUSED __attribute__ ((unused)) // Function/Variable is meant to be possibly unused
// __BYTE_ORDER is defined in the TI ARM compiler, but not MSP430 (which is little endian)
#if ((__BYTE_ORDER__) == (__ORDER_LITTLE_ENDIAN__)) || defined(__MSP430__)
#define TU_BYTE_ORDER TU_LITTLE_ENDIAN
#else
#define TU_BYTE_ORDER TU_BIG_ENDIAN
#endif
#define TU_BSWAP16(u16) (__builtin_bswap16(u16))
#define TU_BSWAP32(u32) (__builtin_bswap32(u32))
#else
#error "Compiler attribute porting are required"
#error "Compiler attribute porting is required"
#endif
#if (TU_BYTE_ORDER == TU_LITTLE_ENDIAN)
#define tu_htons(u16) (TU_BSWAP16(u16))
#define tu_ntohs(u16) (TU_BSWAP16(u16))
#define tu_htonl(u32) (TU_BSWAP32(u32))
#define tu_ntohl(u32) (TU_BSWAP32(u32))
#define tu_htole16(u16) (u16)
#define tu_le16toh(u16) (u16)
#define tu_htole32(u32) (u32)
#define tu_le32toh(u32) (u32)
#elif (TU_BYTE_ORDER == TU_BIG_ENDIAN)
#define tu_htons(u16) (u16)
#define tu_ntohs(u16) (u16)
#define tu_htonl(u32) (u32)
#define tu_ntohl(u32) (u32)
#define tu_htole16(u16) (tu_bswap16(u16))
#define tu_le16toh(u16) (tu_bswap16(u16))
#define tu_htole32(u32) (tu_bswap32(u32))
#define tu_le32toh(u32) (tu_bswap32(u32))
#else
#error Byte order is undefined
#endif
#endif /* _TUSB_COMPILER_H_ */

View File

@ -147,31 +147,33 @@
* Checks, structs, defines, function definitions, etc.
*/
TU_VERIFY_STATIC((MAX_EP_COUNT) <= STFSDEV_EP_COUNT,"Only 8 endpoints supported on the hardware");
TU_VERIFY_STATIC((MAX_EP_COUNT) <= STFSDEV_EP_COUNT, "Only 8 endpoints supported on the hardware");
TU_VERIFY_STATIC(((DCD_STM32_BTABLE_BASE) + (DCD_STM32_BTABLE_LENGTH))<=(PMA_LENGTH),
"BTABLE does not fit in PMA RAM");
TU_VERIFY_STATIC(((DCD_STM32_BTABLE_BASE) % 8) == 0, "BTABLE base must be aligned to 8 bytes");
// Max size of a USB FS packet is 64...
#define MAX_PACKET_SIZE 64
// One of these for every EP IN & OUT, uses a bit of RAM....
typedef struct
{
uint8_t * buffer;
uint16_t total_len;
uint16_t queued_len;
uint16_t max_packet_size;
} xfer_ctl_t;
static xfer_ctl_t xfer_status[MAX_EP_COUNT][2];
#define XFER_CTL_BASE(_epnum, _dir) &xfer_status[_epnum][_dir]
static xfer_ctl_t xfer_status[MAX_EP_COUNT][2];
static xfer_ctl_t* xfer_ctl_ptr(uint32_t epnum, uint32_t dir)
{
return &xfer_status[epnum][dir];
}
static TU_ATTR_ALIGNED(4) uint32_t _setup_packet[6];
static uint8_t newDADDR; // Used to set the new device address during the CTR IRQ handler
static uint8_t remoteWakeCountdown; // When wake is requested
// EP Buffers assigned from end of memory location, to minimize their chance of crashing
// into the stack.
@ -224,7 +226,7 @@ void dcd_init (uint8_t rhport)
for(uint32_t i=0; i<STFSDEV_EP_COUNT; i++)
{
// This doesn't clear all bits since some bits are "toggle", but does set the type to DISABLED.
PCD_GET_ENDPOINT(USB,i) = 0u;
pcd_set_endpoint(USB,i,0u);
}
// Initialize the BTABLE for EP0 at this point (though setting up the EP0R is unneeded)
@ -233,7 +235,7 @@ void dcd_init (uint8_t rhport)
{
pma[PMA_STRIDE*(DCD_STM32_BTABLE_BASE + i)] = 0u;
}
USB->CNTR |= USB_CNTR_RESETM | USB_CNTR_SOFM | USB_CNTR_CTRM | USB_CNTR_SUSPM | USB_CNTR_WKUPM;
USB->CNTR |= USB_CNTR_RESETM | USB_CNTR_SOFM | USB_CNTR_ESOFM | USB_CNTR_CTRM | USB_CNTR_SUSPM | USB_CNTR_WKUPM;
dcd_handle_bus_reset();
// And finally enable pull-up, which may trigger the RESET IRQ if the host is connected.
@ -251,12 +253,8 @@ void dcd_int_enable (uint8_t rhport)
{
(void)rhport;
#if defined(STM32F0)
NVIC_SetPriority(USB_IRQn, 0);
NVIC_EnableIRQ(USB_IRQn);
#elif defined(STM32F3)
NVIC_SetPriority(USB_HP_CAN_TX_IRQn, 0);
NVIC_SetPriority(USB_LP_CAN_RX0_IRQn, 0);
NVIC_SetPriority(USBWakeUp_IRQn, 0);
NVIC_EnableIRQ(USB_HP_CAN_TX_IRQn);
NVIC_EnableIRQ(USB_LP_CAN_RX0_IRQn);
NVIC_EnableIRQ(USBWakeUp_IRQn);
@ -276,6 +274,10 @@ void dcd_int_disable(uint8_t rhport)
#else
#error Unknown arch in USB driver
#endif
// I'm not convinced that memory synchronization is completely necessary, but
// it isn't a bad idea.
__DSB();
__ISB();
}
// Receive Set Address request, mcu port must also include status IN response
@ -302,6 +304,9 @@ void dcd_set_config (uint8_t rhport, uint8_t config_num)
void dcd_remote_wakeup(uint8_t rhport)
{
(void) rhport;
USB->CNTR |= (uint16_t)USB_CNTR_RESUME;
remoteWakeCountdown = 4u; // required to be 1 to 15 ms, ESOF should trigger every 1ms.
}
// I'm getting a weird warning about missing braces here that I don't
@ -334,7 +339,7 @@ static void dcd_handle_bus_reset(void)
// Clear all EPREG (or maybe this is automatic? I'm not sure)
for(uint32_t i=0; i<STFSDEV_EP_COUNT; i++)
{
PCD_GET_ENDPOINT(USB,i) = 0u;
pcd_set_endpoint(USB,i,0u);
}
ep_buf_ptr = DCD_STM32_BTABLE_BASE + 8*MAX_EP_COUNT; // 8 bytes per endpoint (two TX and two RX words, each)
@ -342,13 +347,13 @@ static void dcd_handle_bus_reset(void)
dcd_edpt_open (0, &ep0IN_desc);
newDADDR = 0u;
USB->DADDR = USB_DADDR_EF; // Set enable flag, and leaving the device address as zero.
PCD_SET_EP_RX_STATUS(USB, 0, USB_EP_RX_VALID); // And start accepting SETUP on EP0
pcd_set_ep_rx_status(USB, 0, USB_EP_RX_VALID); // And start accepting SETUP on EP0
}
// FIXME: Defined to return uint16 so that ASSERT can be used, even though a return value is not needed.
static uint16_t dcd_ep_ctr_handler(void)
{
uint16_t count=0U;
uint32_t count=0U;
uint8_t EPindex;
__IO uint16_t wIstr;
__IO uint16_t wEPVal = 0U;
@ -370,9 +375,9 @@ static uint16_t dcd_ep_ctr_handler(void)
{
/* DIR = 0 => IN int */
/* DIR = 0 implies that (EP_CTR_TX = 1) always */
PCD_CLEAR_TX_EP_CTR(USB, 0);
pcd_clear_tx_ep_ctr(USB, 0);
xfer_ctl_t * xfer = XFER_CTL_BASE(EPindex,TUSB_DIR_IN);
xfer_ctl_t * xfer = xfer_ctl_ptr(EPindex,TUSB_DIR_IN);
if((xfer->total_len == xfer->queued_len))
{
@ -381,12 +386,12 @@ static uint16_t dcd_ep_ctr_handler(void)
{
// Delayed setting of the DADDR after the 0-len DATA packet acking the request is sent.
reg16_clear_bits(&USB->DADDR, USB_DADDR_ADD);
USB->DADDR |= (uint16_t)newDADDR; // leave the enable bit set
USB->DADDR = (uint16_t)(USB->DADDR | newDADDR); // leave the enable bit set
newDADDR = 0;
}
if(xfer->total_len == 0) // Probably a status message?
{
PCD_CLEAR_RX_DTOG(USB,EPindex);
pcd_clear_rx_dtog(USB,EPindex);
}
}
else
@ -399,10 +404,10 @@ static uint16_t dcd_ep_ctr_handler(void)
/* DIR = 1 & CTR_RX => SETUP or OUT int */
/* DIR = 1 & (CTR_TX | CTR_RX) => 2 int pending */
xfer_ctl_t *xfer = XFER_CTL_BASE(EPindex,TUSB_DIR_OUT);
xfer_ctl_t *xfer = xfer_ctl_ptr(EPindex,TUSB_DIR_OUT);
//ep = &hpcd->OUT_ep[0];
wEPVal = PCD_GET_ENDPOINT(USB, EPindex);
wEPVal = pcd_get_endpoint(USB, EPindex);
if ((wEPVal & USB_EP_SETUP) != 0U) // SETUP
{
@ -410,38 +415,38 @@ static uint16_t dcd_ep_ctr_handler(void)
// user memory, to allow for the 32-bit access that memcpy performs.
uint8_t userMemBuf[8];
/* Get SETUP Packet*/
count = PCD_GET_EP_RX_CNT(USB, EPindex);
count = pcd_get_ep_rx_cnt(USB, EPindex);
//TU_ASSERT_ERR(count == 8);
dcd_read_packet_memory(userMemBuf, *PCD_EP_RX_ADDRESS_PTR(USB,EPindex), 8);
dcd_read_packet_memory(userMemBuf, *pcd_ep_rx_address_ptr(USB,EPindex), 8);
/* SETUP bit kept frozen while CTR_RX = 1*/
dcd_event_setup_received(0, (uint8_t*)userMemBuf, true);
PCD_CLEAR_RX_EP_CTR(USB, EPindex);
pcd_clear_rx_ep_ctr(USB, EPindex);
}
else if ((wEPVal & USB_EP_CTR_RX) != 0U) // OUT
{
PCD_CLEAR_RX_EP_CTR(USB, EPindex);
pcd_clear_rx_ep_ctr(USB, EPindex);
/* Get Control Data OUT Packet */
count = PCD_GET_EP_RX_CNT(USB,EPindex);
count = pcd_get_ep_rx_cnt(USB,EPindex);
if (count != 0U)
{
dcd_read_packet_memory(xfer->buffer, *PCD_EP_RX_ADDRESS_PTR(USB,EPindex), count);
dcd_read_packet_memory(xfer->buffer, *pcd_ep_rx_address_ptr(USB,EPindex), count);
xfer->queued_len = (uint16_t)(xfer->queued_len + count);
}
/* Process Control Data OUT status Packet*/
if(EPindex == 0u && xfer->total_len == 0u)
{
PCD_CLEAR_EP_KIND(USB,0); // Good, so allow non-zero length packets now.
pcd_clear_ep_kind(USB,0); // Good, so allow non-zero length packets now.
}
dcd_event_xfer_complete(0, EPindex, xfer->total_len, XFER_RESULT_SUCCESS, true);
PCD_SET_EP_RX_CNT(USB, EPindex, CFG_TUD_ENDPOINT0_SIZE);
pcd_set_ep_rx_cnt(USB, EPindex, CFG_TUD_ENDPOINT0_SIZE);
if(EPindex == 0u && xfer->total_len == 0u)
{
PCD_SET_EP_RX_STATUS(USB, EPindex, USB_EP_RX_VALID);// Await next SETUP
pcd_set_ep_rx_status(USB, EPindex, USB_EP_RX_VALID);// Await next SETUP
}
}
@ -452,27 +457,27 @@ static uint16_t dcd_ep_ctr_handler(void)
{
/* process related endpoint register */
wEPVal = PCD_GET_ENDPOINT(USB, EPindex);
wEPVal = pcd_get_endpoint(USB, EPindex);
if ((wEPVal & USB_EP_CTR_RX) != 0U) // OUT
{
/* clear int flag */
PCD_CLEAR_RX_EP_CTR(USB, EPindex);
pcd_clear_rx_ep_ctr(USB, EPindex);
xfer_ctl_t * xfer = XFER_CTL_BASE(EPindex,TUSB_DIR_OUT);
xfer_ctl_t * xfer = xfer_ctl_ptr(EPindex,TUSB_DIR_OUT);
//ep = &hpcd->OUT_ep[EPindex];
count = PCD_GET_EP_RX_CNT(USB, EPindex);
count = pcd_get_ep_rx_cnt(USB, EPindex);
if (count != 0U)
{
dcd_read_packet_memory(&(xfer->buffer[xfer->queued_len]),
*PCD_EP_RX_ADDRESS_PTR(USB,EPindex), count);
*pcd_ep_rx_address_ptr(USB,EPindex), count);
}
/*multi-packet on the NON control OUT endpoint */
xfer->queued_len = (uint16_t)(xfer->queued_len + count);
if ((count < 64) || (xfer->queued_len == xfer->total_len))
if ((count < xfer->max_packet_size) || (xfer->queued_len == xfer->total_len))
{
/* RX COMPLETE */
dcd_event_xfer_complete(0, EPindex, xfer->queued_len, XFER_RESULT_SUCCESS, true);
@ -481,14 +486,14 @@ static uint16_t dcd_ep_ctr_handler(void)
}
else
{
uint16_t remaining = (uint16_t)(xfer->total_len - xfer->queued_len);
if(remaining >=64) {
PCD_SET_EP_RX_CNT(USB, EPindex,64);
uint32_t remaining = (uint32_t)xfer->total_len - (uint32_t)xfer->queued_len;
if(remaining >= xfer->max_packet_size) {
pcd_set_ep_rx_cnt(USB, EPindex,xfer->max_packet_size);
} else {
PCD_SET_EP_RX_CNT(USB, EPindex,remaining);
pcd_set_ep_rx_cnt(USB, EPindex,remaining);
}
PCD_SET_EP_RX_STATUS(USB, EPindex, USB_EP_RX_VALID);
pcd_set_ep_rx_status(USB, EPindex, USB_EP_RX_VALID);
}
} /* if((wEPVal & EP_CTR_RX) */
@ -496,9 +501,9 @@ static uint16_t dcd_ep_ctr_handler(void)
if ((wEPVal & USB_EP_CTR_TX) != 0U) // IN
{
/* clear int flag */
PCD_CLEAR_TX_EP_CTR(USB, EPindex);
pcd_clear_tx_ep_ctr(USB, EPindex);
xfer_ctl_t * xfer = XFER_CTL_BASE(EPindex,TUSB_DIR_IN);
xfer_ctl_t * xfer = xfer_ctl_ptr(EPindex,TUSB_DIR_IN);
if (xfer->queued_len != xfer->total_len) // data remaining in transfer?
{
@ -532,10 +537,10 @@ static void dcd_fs_irqHandler(void) {
}
if (int_status & USB_ISTR_WKUP)
{
reg16_clear_bits(&USB->CNTR, USB_CNTR_LPMODE);
reg16_clear_bits(&USB->CNTR, USB_CNTR_FSUSP);
reg16_clear_bits(&USB->ISTR, USB_ISTR_WKUP);
dcd_event_bus_signal(0, DCD_EVENT_RESUME, true);
}
if (int_status & USB_ISTR_SUSP)
@ -546,12 +551,25 @@ static void dcd_fs_irqHandler(void) {
/* clear of the ISTR bit must be done after setting of CNTR_FSUSP */
reg16_clear_bits(&USB->ISTR, USB_ISTR_SUSP);
dcd_event_bus_signal(0, DCD_EVENT_SUSPEND, true);
}
if(int_status & USB_ISTR_SOF) {
reg16_clear_bits(&USB->ISTR, USB_ISTR_SOF);
dcd_event_bus_signal(0, DCD_EVENT_SOF, true);
}
if(int_status & USB_ISTR_ESOF) {
if(remoteWakeCountdown == 1u)
{
USB->CNTR &= (uint16_t)(~USB_CNTR_RESUME);
}
if(remoteWakeCountdown > 0u)
{
remoteWakeCountdown--;
}
reg16_clear_bits(&USB->ISTR, USB_ISTR_ESOF);
}
}
//--------------------------------------------------------------------+
@ -566,47 +584,55 @@ bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc
(void)rhport;
uint8_t const epnum = tu_edpt_number(p_endpoint_desc->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(p_endpoint_desc->bEndpointAddress);
const uint16_t epMaxPktSize = p_endpoint_desc->wMaxPacketSize.size;
// Isochronous not supported (yet), and some other driver assumptions.
TU_ASSERT(p_endpoint_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS);
TU_ASSERT(p_endpoint_desc->wMaxPacketSize.size <= MAX_PACKET_SIZE);
TU_ASSERT(epnum < MAX_EP_COUNT);
TU_ASSERT((p_endpoint_desc->wMaxPacketSize.size %2) == 0);
// __IO uint16_t * const epreg = &(EPREG(epnum));
TU_ASSERT(p_endpoint_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS);
TU_ASSERT(epnum < MAX_EP_COUNT);
// Set type
switch(p_endpoint_desc->bmAttributes.xfer) {
case TUSB_XFER_CONTROL:
PCD_SET_EPTYPE(USB, epnum, USB_EP_CONTROL); break;
case TUSB_XFER_ISOCHRONOUS:
PCD_SET_EPTYPE(USB, epnum, USB_EP_ISOCHRONOUS); break;
pcd_set_eptype(USB, epnum, USB_EP_CONTROL);
break;
#if (0)
case TUSB_XFER_ISOCHRONOUS: // FIXME: Not yet supported
pcd_set_eptype(USB, epnum, USB_EP_ISOCHRONOUS); break;
break;
#endif
case TUSB_XFER_BULK:
PCD_SET_EPTYPE(USB, epnum, USB_EP_BULK); break;
pcd_set_eptype(USB, epnum, USB_EP_BULK);
break;
case TUSB_XFER_INTERRUPT:
PCD_SET_EPTYPE(USB, epnum, USB_EP_INTERRUPT); break;
pcd_set_eptype(USB, epnum, USB_EP_INTERRUPT);
break;
default:
TU_ASSERT(false);
return false;
}
PCD_SET_EP_ADDRESS(USB, epnum, epnum);
PCD_CLEAR_EP_KIND(USB,0); // Be normal, for now, instead of only accepting zero-byte packets
pcd_set_ep_address(USB, epnum, epnum);
pcd_clear_ep_kind(USB,0); // Be normal, for now, instead of only accepting zero-byte packets
if(dir == TUSB_DIR_IN)
{
*PCD_EP_TX_ADDRESS_PTR(USB, epnum) = ep_buf_ptr;
PCD_SET_EP_RX_CNT(USB, epnum, p_endpoint_desc->wMaxPacketSize.size);
PCD_CLEAR_TX_DTOG(USB, epnum);
PCD_SET_EP_TX_STATUS(USB,epnum,USB_EP_TX_NAK);
*pcd_ep_tx_address_ptr(USB, epnum) = ep_buf_ptr;
pcd_set_ep_tx_cnt(USB, epnum, p_endpoint_desc->wMaxPacketSize.size);
pcd_clear_tx_dtog(USB, epnum);
pcd_set_ep_tx_status(USB,epnum,USB_EP_TX_NAK);
}
else
{
*PCD_EP_RX_ADDRESS_PTR(USB, epnum) = ep_buf_ptr;
PCD_SET_EP_RX_CNT(USB, epnum, p_endpoint_desc->wMaxPacketSize.size);
PCD_CLEAR_RX_DTOG(USB, epnum);
PCD_SET_EP_RX_STATUS(USB, epnum, USB_EP_RX_NAK);
*pcd_ep_rx_address_ptr(USB, epnum) = ep_buf_ptr;
pcd_set_ep_rx_cnt(USB, epnum, p_endpoint_desc->wMaxPacketSize.size);
pcd_clear_rx_dtog(USB, epnum);
pcd_set_ep_rx_status(USB, epnum, USB_EP_RX_NAK);
}
xfer_ctl_ptr(epnum, dir)->max_packet_size = epMaxPktSize;
ep_buf_ptr = (uint16_t)(ep_buf_ptr + p_endpoint_desc->wMaxPacketSize.size); // increment buffer pointer
return true;
@ -618,15 +644,16 @@ static void dcd_transmit_packet(xfer_ctl_t * xfer, uint16_t ep_ix)
{
uint16_t len = (uint16_t)(xfer->total_len - xfer->queued_len);
if(len > 64u) // max packet size for FS transfer
if(len > xfer->max_packet_size) // max packet size for FS transfer
{
len = 64u;
len = xfer->max_packet_size;
}
dcd_write_packet_memory(*PCD_EP_TX_ADDRESS_PTR(USB,ep_ix), &(xfer->buffer[xfer->queued_len]), len);
uint16_t oldAddr = *pcd_ep_tx_address_ptr(USB,ep_ix);
dcd_write_packet_memory(oldAddr, &(xfer->buffer[xfer->queued_len]), len);
xfer->queued_len = (uint16_t)(xfer->queued_len + len);
PCD_SET_EP_TX_CNT(USB,ep_ix,len);
PCD_SET_EP_TX_STATUS(USB, ep_ix, USB_EP_TX_VALID);
pcd_set_ep_tx_cnt(USB,ep_ix,len);
pcd_set_ep_tx_status(USB, ep_ix, USB_EP_TX_VALID);
}
bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes)
@ -636,7 +663,7 @@ bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t * xfer = XFER_CTL_BASE(epnum,dir);
xfer_ctl_t * xfer = xfer_ctl_ptr(epnum,dir);
xfer->buffer = buffer;
xfer->total_len = total_bytes;
@ -649,15 +676,15 @@ bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t
if (epnum == 0 && buffer == NULL)
{
xfer->buffer = (uint8_t*)_setup_packet;
PCD_SET_EP_KIND(USB,0); // Expect a zero-byte INPUT
pcd_set_ep_kind(USB,0); // Expect a zero-byte INPUT
}
if(total_bytes > 64)
if(total_bytes > xfer->max_packet_size)
{
PCD_SET_EP_RX_CNT(USB,epnum,64);
pcd_set_ep_rx_cnt(USB,epnum,xfer->max_packet_size);
} else {
PCD_SET_EP_RX_CNT(USB,epnum,total_bytes);
pcd_set_ep_rx_cnt(USB,epnum,total_bytes);
}
PCD_SET_EP_RX_STATUS(USB, epnum, USB_EP_RX_VALID);
pcd_set_ep_rx_status(USB, epnum, USB_EP_RX_VALID);
}
else // IN
{
@ -671,14 +698,14 @@ void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr)
(void)rhport;
if (ep_addr == 0) { // CTRL EP0 (OUT for setup)
PCD_SET_EP_TX_STATUS(USB,ep_addr, USB_EP_TX_STALL);
pcd_set_ep_tx_status(USB,ep_addr, USB_EP_TX_STALL);
}
if (ep_addr & 0x80) { // IN
ep_addr &= 0x7F;
PCD_SET_EP_TX_STATUS(USB,ep_addr, USB_EP_TX_STALL);
pcd_set_ep_tx_status(USB,ep_addr, USB_EP_TX_STALL);
} else { // OUT
PCD_SET_EP_RX_STATUS(USB,ep_addr, USB_EP_RX_STALL);
pcd_set_ep_rx_status(USB,ep_addr, USB_EP_RX_STALL);
}
}
@ -687,24 +714,24 @@ void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
(void)rhport;
if (ep_addr == 0)
{
PCD_SET_EP_TX_STATUS(USB,ep_addr, USB_EP_TX_NAK);
pcd_set_ep_tx_status(USB,ep_addr, USB_EP_TX_NAK);
}
if (ep_addr & 0x80)
{ // IN
ep_addr &= 0x7F;
PCD_SET_EP_TX_STATUS(USB,ep_addr, USB_EP_TX_NAK);
pcd_set_ep_tx_status(USB,ep_addr, USB_EP_TX_NAK);
/* Reset to DATA0 if clearing stall condition. */
PCD_CLEAR_TX_DTOG(USB,ep_addr);
pcd_clear_tx_dtog(USB,ep_addr);
}
else
{ // OUT
/* Reset to DATA0 if clearing stall condition. */
PCD_CLEAR_RX_DTOG(USB,ep_addr);
pcd_clear_rx_dtog(USB,ep_addr);
PCD_SET_EP_RX_STATUS(USB,ep_addr, USB_EP_RX_VALID);
pcd_set_ep_rx_status(USB,ep_addr, USB_EP_RX_VALID);
}
}
@ -721,18 +748,11 @@ void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr)
*/
static bool dcd_write_packet_memory(uint16_t dst, const void *__restrict src, size_t wNBytes)
{
uint32_t n = ((uint32_t)((uint32_t)wNBytes + 1U)) >> 1U;
uint32_t n = ((uint32_t)wNBytes + 1U) >> 1U;
uint32_t i;
uint16_t temp1, temp2;
const uint8_t * srcVal;
#ifdef DEBUG
# if (DCD_STM32_BTABLE_BASE > 0u)
TU_ASSERT(dst >= DCD_STM32_BTABLE_BASE);
# endif
TU_ASSERT(((dst%2) == 0) && (dst + wNBytes) <= (DCD_STM32_BTABLE_BASE + DCD_STM32_BTABLE_LENGTH));
#endif
// The GCC optimizer will combine access to 32-bit sizes if we let it. Force
// it volatile so that it won't do that.
__IO uint16_t *pdwVal;
@ -767,14 +787,6 @@ static bool dcd_read_packet_memory(void *__restrict dst, uint16_t src, size_t wN
__IO const uint16_t *pdwVal;
uint32_t temp;
#ifdef DEBUG
# if (DCD_STM32_BTABLE_BASE > 0u)
TU_ASSERT(src >= DCD_STM32_BTABLE_BASE);
# endif
TU_ASSERT(((src%2) == 0) && (src + wNBytes) <= (DCD_STM32_BTABLE_BASE + DCD_STM32_BTABLE_LENGTH));
#endif
pdwVal = &pma[PMA_STRIDE*(src>>1)];
uint8_t *dstVal = (uint8_t*)dst;

View File

@ -46,7 +46,7 @@
defined(STM32F072xB) | \
defined(STM32F078xx)
#include "stm32f0xx.h"
#define PMA_LENGTH 1024
#define PMA_LENGTH (1024u)
// F0x2 models are crystal-less
// All have internal D+ pull-up
// 070RB: 2 x 16 bits/word memory LPM Support, BCD Support
@ -55,7 +55,7 @@
defined(STM32F103x6) | defined(STM32F103xB) | \
defined(STM32F103xE) | defined(STM32F103xB)
#include "stm32f1xx.h"
#define PMA_LENGTH 512u
#define PMA_LENGTH (512u)
// NO internal Pull-ups
// *B, and *C: 2 x 16 bits/word
#error The F102/F103 driver is expected not to work, but it might? Try it?
@ -64,7 +64,7 @@
defined(STM32F303xB) | defined(STM32F303xC) | \
defined(STM32F373xC)
#include "stm32f3xx.h"
#define PMA_LENGTH 512u
#define PMA_LENGTH (512u)
// NO internal Pull-ups
// *B, and *C: 1 x 16 bits/word
// PMA dedicated to USB (no sharing with CAN)
@ -72,7 +72,7 @@
defined(STM32F302xD) | defined(STM32F302xE) | \
defined(STM32F303xD) | defined(STM32F303xE) | \
#include "stm32f3xx.h"
#define PMA_LENGTH 1024u
#define PMA_LENGTH (1024u)
// NO internal Pull-ups
// *6, *8, *D, and *E: 2 x 16 bits/word LPM Support
// When CAN clock is enabled, USB can use first 768 bytes ONLY.
@ -83,9 +83,9 @@
// For purposes of accessing the packet
#if ((PMA_LENGTH) == 512u)
# define PMA_STRIDE (2u)
#define PMA_STRIDE (2u)
#elif ((PMA_LENGTH) == 1024u)
# define PMA_STRIDE (1u)
#define PMA_STRIDE (1u)
#endif
// And for type-safety create a new macro for the volatile address of PMAADDR
@ -93,32 +93,75 @@
// Volatile is also needed to prevent the optimizer from changing access to 32-bit (as 32-bit access is forbidden)
static __IO uint16_t * const pma = (__IO uint16_t*)USB_PMAADDR;
/* SetENDPOINT */
#define PCD_SET_ENDPOINT(USBx, bEpNum,wRegValue) (*((__IO uint16_t *)(((uint32_t)(&(USBx)->EP0R + (bEpNum) * 2U))))= (uint16_t)(wRegValue))
/* GetENDPOINT */
#define PCD_GET_ENDPOINT(USBx, bEpNum) (*((__IO uint16_t *)(((uint32_t)(&(USBx)->EP0R + (bEpNum) * 2U)))))
#define PCD_SET_EPTYPE(USBx, bEpNum,wType) (PCD_SET_ENDPOINT((USBx), (bEpNum),\
(((((uint32_t)(PCD_GET_ENDPOINT((USBx), (bEpNum)))) & ((uint32_t)(USB_EP_T_MASK))) | ((uint32_t)(wType))) | USB_EP_CTR_RX | USB_EP_CTR_TX)))
#define PCD_GET_EPTYPE(USBx, bEpNum) (((uint16_t)(PCD_GET_ENDPOINT((USBx), (bEpNum)))) & USB_EP_T_FIELD)
// prototypes
static inline __IO uint16_t* pcd_ep_rx_cnt_ptr(USB_TypeDef * USBx, uint32_t bEpNum);
static inline __IO uint16_t* pcd_ep_tx_cnt_ptr(USB_TypeDef * USBx, uint32_t bEpNum);
static inline void pcd_set_endpoint(USB_TypeDef * USBx, uint32_t bEpNum, uint32_t wRegValue);
/* SetENDPOINT */
static inline void pcd_set_endpoint(USB_TypeDef * USBx, uint32_t bEpNum, uint32_t wRegValue)
{
__O uint16_t *reg = (__O uint16_t *)((&USBx->EP0R) + bEpNum*2u);
*reg = (uint16_t)wRegValue;
}
/* GetENDPOINT */
static inline uint16_t pcd_get_endpoint(USB_TypeDef * USBx, uint32_t bEpNum) {
__I uint16_t *reg = (__I uint16_t *)((&USBx->EP0R) + bEpNum*2u);
return *reg;
}
static inline void pcd_set_eptype(USB_TypeDef * USBx, uint32_t bEpNum, uint32_t wType)
{
uint32_t regVal = pcd_get_endpoint(USBx, bEpNum);
regVal &= (uint32_t)USB_EP_T_MASK;
regVal |= wType;
regVal |= USB_EP_CTR_RX | USB_EP_CTR_TX; // These clear on write0, so must set high
pcd_set_endpoint(USBx, bEpNum, regVal);
}
static inline uint32_t pcd_get_eptype(USB_TypeDef * USBx, uint32_t bEpNum)
{
uint32_t regVal = pcd_get_endpoint(USBx, bEpNum);
regVal &= USB_EP_T_FIELD;
return regVal;
}
/**
* @brief Clears bit CTR_RX / CTR_TX in the endpoint register.
* @param USBx USB peripheral instance register address.
* @param bEpNum Endpoint Number.
* @retval None
*/
#define PCD_CLEAR_RX_EP_CTR(USBx, bEpNum) (PCD_SET_ENDPOINT((USBx), (bEpNum),\
PCD_GET_ENDPOINT((USBx), (bEpNum)) & 0x7FFFU & USB_EPREG_MASK))
#define PCD_CLEAR_TX_EP_CTR(USBx, bEpNum) (PCD_SET_ENDPOINT((USBx), (bEpNum),\
PCD_GET_ENDPOINT((USBx), (bEpNum)) & 0xFF7FU & USB_EPREG_MASK))
static inline void pcd_clear_rx_ep_ctr(USB_TypeDef * USBx, uint32_t bEpNum)
{
uint32_t regVal = pcd_get_endpoint(USBx, bEpNum);
regVal &= 0x7FFFu & USB_EPREG_MASK;
pcd_set_endpoint(USBx, bEpNum, regVal);
}
static inline void pcd_clear_tx_ep_ctr(USB_TypeDef * USBx, uint32_t bEpNum)
{
uint32_t regVal = pcd_get_endpoint(USBx, bEpNum);
regVal &= regVal & 0xFF7FU & USB_EPREG_MASK;
pcd_set_endpoint(USBx, bEpNum,regVal);
}
/**
* @brief gets counter of the tx buffer.
* @param USBx USB peripheral instance register address.
* @param bEpNum Endpoint Number.
* @retval Counter value
*/
#define PCD_GET_EP_TX_CNT(USBx, bEpNum)((uint16_t)(*PCD_EP_TX_CNT_PTR((USBx), (bEpNum))) & 0x3ffU)
#define PCD_GET_EP_RX_CNT(USBx, bEpNum)((uint16_t)(*PCD_EP_RX_CNT_PTR((USBx), (bEpNum))) & 0x3ffU)
static inline uint32_t pcd_get_ep_tx_cnt(USB_TypeDef * USBx, uint32_t bEpNum)
{
__I uint16_t *regPtr = pcd_ep_tx_cnt_ptr(USBx, bEpNum);
return *regPtr & 0x3ffU;
}
static inline uint32_t pcd_get_ep_rx_cnt(USB_TypeDef * USBx, uint32_t bEpNum)
{
__I uint16_t *regPtr = pcd_ep_rx_cnt_ptr(USBx, bEpNum);
return *regPtr & 0x3ffU;
}
/**
* @brief Sets counter of rx buffer with no. of blocks.
@ -127,38 +170,30 @@ static __IO uint16_t * const pma = (__IO uint16_t*)USB_PMAADDR;
* @param wNBlocks no. of Blocks.
* @retval None
*/
#define PCD_CALC_BLK32(dwReg,wCount,wNBlocks) {\
(wNBlocks) = (uint32_t)((wCount) >> 5U);\
if(((wCount) & 0x1fU) == 0U)\
{ \
(wNBlocks)--;\
} \
*pdwReg = (uint16_t)((uint16_t)((wNBlocks) << 10U) | (uint16_t)0x8000U); \
}/* PCD_CALC_BLK32 */
#define PCD_CALC_BLK2(dwReg,wCount,wNBlocks) {\
(wNBlocks) = (uint32_t)((wCount) >> 1U); \
if(((wCount) & 0x1U) != 0U)\
{ \
(wNBlocks)++;\
} \
*pdwReg = (uint16_t)((wNBlocks) << 10U);\
}/* PCD_CALC_BLK2 */
#define PCD_SET_EP_CNT_RX_REG(dwReg,wCount) {\
uint32_t wNBlocks;\
if((wCount) > 62U) \
{ \
PCD_CALC_BLK32((dwReg),(wCount),wNBlocks) \
} \
else \
{ \
PCD_CALC_BLK2((dwReg),(wCount),wNBlocks) \
} \
}/* PCD_SET_EP_CNT_RX_REG */
static inline void pcd_set_ep_cnt_rx_reg(__O uint16_t * pdwReg, size_t wCount) {
uint32_t wNBlocks;
if(wCount > 62u)
{
wNBlocks = wCount >> 5u;
if((wCount & 0x1fU) == 0u)
{
wNBlocks--;
}
wNBlocks = wNBlocks << 10u;
wNBlocks |= 0x8000u; // Mark block size as 32byte
*pdwReg = (uint16_t)wNBlocks;
}
else
{
wNBlocks = wCount >> 1u;
if((wCount & 0x1U) != 0u)
{
wNBlocks++;
}
*pdwReg = (uint16_t)((wNBlocks) << 10u);
}
}
/**
@ -168,23 +203,52 @@ static __IO uint16_t * const pma = (__IO uint16_t*)USB_PMAADDR;
* @param bAddr Address.
* @retval None
*/
#define PCD_SET_EP_ADDRESS(USBx, bEpNum,bAddr) PCD_SET_ENDPOINT((USBx), (bEpNum),\
USB_EP_CTR_RX|USB_EP_CTR_TX|(((uint32_t)(PCD_GET_ENDPOINT((USBx), (bEpNum)))) & USB_EPREG_MASK) | (bAddr))
static inline void pcd_set_ep_address(USB_TypeDef * USBx, uint32_t bEpNum, uint32_t bAddr)
{
uint32_t regVal = pcd_get_endpoint(USBx, bEpNum);
regVal &= USB_EPREG_MASK;
regVal |= bAddr;
regVal |= USB_EP_CTR_RX|USB_EP_CTR_TX;
pcd_set_endpoint(USBx, bEpNum,regVal);
}
#define PCD_BTABLE_WORD_PTR(USBx,x) (&(pma[PMA_STRIDE*((((USBx)->BTABLE)>>1) + x)]))
static inline __IO uint16_t * pcd_btable_word_ptr(USB_TypeDef * USBx, size_t x)
{
size_t total_word_offset = (((USBx)->BTABLE)>>1) + x;
total_word_offset *= PMA_STRIDE;
return &(pma[total_word_offset]);
}
// Pointers to the PMA table entries (using the ARM address space)
#define PCD_EP_TX_ADDRESS_PTR(USBx, bEpNum) (PCD_BTABLE_WORD_PTR(USBx,(bEpNum)*4u + 0u))
#define PCD_EP_TX_CNT_PTR(USBx, bEpNum) (PCD_BTABLE_WORD_PTR(USBx,(bEpNum)*4u + 1u))
static inline __IO uint16_t* pcd_ep_tx_address_ptr(USB_TypeDef * USBx, uint32_t bEpNum)
{
return pcd_btable_word_ptr(USBx,(bEpNum)*4u + 0u);
}
static inline __IO uint16_t* pcd_ep_tx_cnt_ptr(USB_TypeDef * USBx, uint32_t bEpNum)
{
return pcd_btable_word_ptr(USBx,(bEpNum)*4u + 1u);
}
#define PCD_EP_RX_ADDRESS_PTR(USBx, bEpNum) (PCD_BTABLE_WORD_PTR(USBx,(bEpNum)*4u + 2u))
#define PCD_EP_RX_CNT_PTR(USBx, bEpNum) (PCD_BTABLE_WORD_PTR(USBx,(bEpNum)*4u + 3u))
static inline __IO uint16_t* pcd_ep_rx_address_ptr(USB_TypeDef * USBx, uint32_t bEpNum)
{
return pcd_btable_word_ptr(USBx,(bEpNum)*4u + 2u);
}
#define PCD_SET_EP_TX_CNT(USBx, bEpNum,wCount) (*PCD_EP_TX_CNT_PTR((USBx), (bEpNum)) = (wCount))
#define PCD_SET_EP_RX_CNT(USBx, bEpNum,wCount) do {\
__IO uint16_t *pdwReg =PCD_EP_RX_CNT_PTR((USBx),(bEpNum)); \
PCD_SET_EP_CNT_RX_REG((pdwReg), (wCount))\
} while(0)
static inline __IO uint16_t* pcd_ep_rx_cnt_ptr(USB_TypeDef * USBx, uint32_t bEpNum)
{
return pcd_btable_word_ptr(USBx,(bEpNum)*4u + 3u);
}
static inline void pcd_set_ep_tx_cnt(USB_TypeDef * USBx, uint32_t bEpNum, uint32_t wCount)
{
*pcd_ep_tx_cnt_ptr(USBx, bEpNum) = (uint16_t)wCount;
}
static inline void pcd_set_ep_rx_cnt(USB_TypeDef * USBx, uint32_t bEpNum, uint32_t wCount)
{
__IO uint16_t *pdwReg = pcd_ep_rx_cnt_ptr((USBx),(bEpNum));
pcd_set_ep_cnt_rx_reg(pdwReg, wCount);
}
/**
* @brief sets the status for tx transfer (bits STAT_TX[1:0]).
@ -193,21 +257,24 @@ static __IO uint16_t * const pma = (__IO uint16_t*)USB_PMAADDR;
* @param wState new state
* @retval None
*/
#define PCD_SET_EP_TX_STATUS(USBx, bEpNum, wState) { register uint16_t _wRegVal;\
\
_wRegVal = (uint32_t) (((uint32_t)(PCD_GET_ENDPOINT((USBx), (bEpNum)))) & USB_EPTX_DTOGMASK);\
/* toggle first bit ? */ \
if((USB_EPTX_DTOG1 & (wState))!= 0U)\
{ \
_wRegVal ^=(uint16_t) USB_EPTX_DTOG1; \
} \
/* toggle second bit ? */ \
if((USB_EPTX_DTOG2 & ((uint32_t)(wState)))!= 0U) \
{ \
_wRegVal ^=(uint16_t) USB_EPTX_DTOG2; \
} \
PCD_SET_ENDPOINT((USBx), (bEpNum), (((uint32_t)(_wRegVal)) | USB_EP_CTR_RX|USB_EP_CTR_TX));\
} /* PCD_SET_EP_TX_STATUS */
static inline void pcd_set_ep_tx_status(USB_TypeDef * USBx, uint32_t bEpNum, uint32_t wState)
{
uint32_t regVal = pcd_get_endpoint(USBx, bEpNum);
regVal &= USB_EPTX_DTOGMASK;
/* toggle first bit ? */
if((USB_EPTX_DTOG1 & (wState))!= 0U)
{
regVal ^= USB_EPTX_DTOG1;
}
/* toggle second bit ? */
if((USB_EPTX_DTOG2 & ((uint32_t)(wState)))!= 0U)
{
regVal ^= USB_EPTX_DTOG2;
}
regVal |= USB_EP_CTR_RX|USB_EP_CTR_TX;
pcd_set_endpoint(USBx, bEpNum, regVal);
} /* pcd_set_ep_tx_status */
/**
* @brief sets the status for rx transfer (bits STAT_TX[1:0])
@ -216,22 +283,25 @@ static __IO uint16_t * const pma = (__IO uint16_t*)USB_PMAADDR;
* @param wState new state
* @retval None
*/
#define PCD_SET_EP_RX_STATUS(USBx, bEpNum,wState) {\
register uint16_t _wRegVal; \
\
_wRegVal = (uint32_t) (((uint32_t)(PCD_GET_ENDPOINT((USBx), (bEpNum)))) & USB_EPRX_DTOGMASK);\
/* toggle first bit ? */ \
if((USB_EPRX_DTOG1 & (wState))!= 0U) \
{ \
_wRegVal ^= (uint16_t) USB_EPRX_DTOG1; \
} \
/* toggle second bit ? */ \
if((USB_EPRX_DTOG2 & ((uint32_t)(wState)))!= 0U) \
{ \
_wRegVal ^= (uint16_t) USB_EPRX_DTOG2; \
} \
PCD_SET_ENDPOINT((USBx), (bEpNum), (((uint32_t)(_wRegVal)) | USB_EP_CTR_RX|USB_EP_CTR_TX)); \
} /* PCD_SET_EP_RX_STATUS */
static inline void pcd_set_ep_rx_status(USB_TypeDef * USBx, uint32_t bEpNum, uint32_t wState)
{
uint32_t regVal = pcd_get_endpoint(USBx, bEpNum);
regVal &= USB_EPRX_DTOGMASK;
/* toggle first bit ? */
if((USB_EPRX_DTOG1 & wState)!= 0U)
{
regVal ^= USB_EPRX_DTOG1;
}
/* toggle second bit ? */
if((USB_EPRX_DTOG2 & wState)!= 0U)
{
regVal ^= USB_EPRX_DTOG2;
}
regVal |= USB_EP_CTR_RX|USB_EP_CTR_TX;
pcd_set_endpoint(USBx, bEpNum, regVal);
} /* pcd_set_ep_rx_status */
/**
* @brief Toggles DTOG_RX / DTOG_TX bit in the endpoint register.
@ -239,10 +309,21 @@ static __IO uint16_t * const pma = (__IO uint16_t*)USB_PMAADDR;
* @param bEpNum Endpoint Number.
* @retval None
*/
#define PCD_RX_DTOG(USBx, bEpNum) (PCD_SET_ENDPOINT((USBx), (bEpNum), \
USB_EP_CTR_RX|USB_EP_CTR_TX|USB_EP_DTOG_RX | (((uint32_t)(PCD_GET_ENDPOINT((USBx), (bEpNum)))) & USB_EPREG_MASK)))
#define PCD_TX_DTOG(USBx, bEpNum) (PCD_SET_ENDPOINT((USBx), (bEpNum), \
USB_EP_CTR_RX|USB_EP_CTR_TX|USB_EP_DTOG_TX | (((uint32_t)(PCD_GET_ENDPOINT((USBx), (bEpNum)))) & USB_EPREG_MASK)))
static inline void pcd_rx_dtog(USB_TypeDef * USBx, uint32_t bEpNum)
{
uint32_t regVal = pcd_get_endpoint(USBx, bEpNum);
regVal &= USB_EPREG_MASK;
regVal |= USB_EP_CTR_RX|USB_EP_CTR_TX|USB_EP_DTOG_RX;
pcd_set_endpoint(USBx, bEpNum, regVal);
}
static inline void pcd_tx_dtog(USB_TypeDef * USBx, uint32_t bEpNum)
{
uint32_t regVal = pcd_get_endpoint(USBx, bEpNum);
regVal &= USB_EPREG_MASK;
regVal |= USB_EP_CTR_RX|USB_EP_CTR_TX|USB_EP_DTOG_TX;
pcd_set_endpoint(USBx, bEpNum, regVal);
}
/**
* @brief Clears DTOG_RX / DTOG_TX bit in the endpoint register.
@ -250,14 +331,24 @@ static __IO uint16_t * const pma = (__IO uint16_t*)USB_PMAADDR;
* @param bEpNum Endpoint Number.
* @retval None
*/
#define PCD_CLEAR_RX_DTOG(USBx, bEpNum) if((((uint32_t)(PCD_GET_ENDPOINT((USBx), (bEpNum)))) & USB_EP_DTOG_RX) != 0)\
{ \
PCD_RX_DTOG((USBx),(bEpNum));\
}
#define PCD_CLEAR_TX_DTOG(USBx, bEpNum) if((((uint32_t)(PCD_GET_ENDPOINT((USBx), (bEpNum)))) & USB_EP_DTOG_TX) != 0)\
{\
PCD_TX_DTOG((USBx),(bEpNum));\
}
static inline void pcd_clear_rx_dtog(USB_TypeDef * USBx, uint32_t bEpNum)
{
uint32_t regVal = pcd_get_endpoint(USBx, bEpNum);
if((regVal & USB_EP_DTOG_RX) != 0)
{
pcd_rx_dtog(USBx,bEpNum);
}
}
static inline void pcd_clear_tx_dtog(USB_TypeDef * USBx, uint32_t bEpNum)
{
uint32_t regVal = pcd_get_endpoint(USBx, bEpNum);
if((regVal & USB_EP_DTOG_TX) != 0)
{
pcd_tx_dtog(USBx,bEpNum);
}
}
/**
* @brief set & clear EP_KIND bit.
@ -265,11 +356,22 @@ static __IO uint16_t * const pma = (__IO uint16_t*)USB_PMAADDR;
* @param bEpNum Endpoint Number.
* @retval None
*/
#define PCD_SET_EP_KIND(USBx, bEpNum) (PCD_SET_ENDPOINT((USBx), (bEpNum), \
(USB_EP_CTR_RX|USB_EP_CTR_TX|((((uint32_t)(PCD_GET_ENDPOINT((USBx), (bEpNum)))) | USB_EP_KIND) & USB_EPREG_MASK))))
#define PCD_CLEAR_EP_KIND(USBx, bEpNum) (PCD_SET_ENDPOINT((USBx), (bEpNum), \
(USB_EP_CTR_RX|USB_EP_CTR_TX|((((uint32_t)(PCD_GET_ENDPOINT((USBx), (bEpNum)))) & USB_EPKIND_MASK)))))
static inline void pcd_set_ep_kind(USB_TypeDef * USBx, uint32_t bEpNum)
{
uint32_t regVal = pcd_get_endpoint(USBx, bEpNum);
regVal |= USB_EP_KIND;
regVal &= USB_EPREG_MASK;
regVal |= USB_EP_CTR_RX|USB_EP_CTR_TX;
pcd_set_endpoint(USBx, bEpNum, regVal);
}
static inline void pcd_clear_ep_kind(USB_TypeDef * USBx, uint32_t bEpNum)
{
uint32_t regVal = pcd_get_endpoint(USBx, bEpNum);
regVal &= USB_EPKIND_MASK;
regVal |= USB_EP_CTR_RX|USB_EP_CTR_TX;
pcd_set_endpoint(USBx, bEpNum, regVal);
}
// This checks if the device has "LPM"
#if defined(USB_ISTR_L1REQ)
@ -282,6 +384,6 @@ static __IO uint16_t * const pma = (__IO uint16_t*)USB_PMAADDR;
USB_ISTR_RESET | USB_ISTR_SOF | USB_ISTR_ESOF | USB_ISTR_L1REQ_FORCED )
// Number of endpoints in hardware
#define STFSDEV_EP_COUNT (8)
#define STFSDEV_EP_COUNT (8u)
#endif /* PORTABLE_ST_STM32F0_DCD_STM32F0_FSDEV_PVT_ST_H_ */