stm8s/main.c

598 lines
23 KiB
C

/* firmware template for STM8S microcontroller
* Copyright (C) 2019-2022 King Kévin <kingkevin@cuvoodoo.info>
* SPDX-License-Identifier: GPL-3.0-or-later
* for HDMI firewall v2.37
*/
#include <stdint.h>
#include <stdbool.h>
#include <stdlib.h>
#include "stm8s.h"
#include "main.h"
#include "softi2c_master.h"
// enable UART debug
#define DEBUG 1
#define EEPROM_ADDR 0x4000 // EEPROM start address
static bool eeprom_valid = true; // if the EDID can be read from EEPROM
// LED pin (sink for on)
#define LED_PORT GPIO_PA
#define LED_PIN PA3
// I²C pins (sink and source)
#define SDA_SRC_PORT GPIO_PB
#define SDA_SRC_PIN PB5
#define SCL_SRC_PORT GPIO_PB
#define SCL_SRC_PIN PB4
#define SDA_SRC_PU_PORT GPIO_PC
#define SDA_SRC_PU_PIN PC3
#define SCL_SRC_PU_PORT GPIO_PC
#define SCL_SRC_PU_PIN PC4
#define SDA_SNK_PORT GPIO_PD
#define SDA_SNK_PIN PD2
#define SCL_SNK_PORT GPIO_PD
#define SCL_SNK_PIN PD3
#define SDA_SNK_PU_PORT GPIO_PD
#define SDA_SNK_PU_PIN PD6
#define SCL_SNK_PU_PORT GPIO_PC
#define SCL_SNK_PU_PIN PC5
static bool i2c_fwd = false; // if the I²C source lines are connected to sink
// hot plug detect pull up
#define HPD_PORT GPIO_PC
#define HPD_PIN PC6
static bool hpd_fwd = false; // if the I²C source line is connected to sink
// copy EDID setting
#define EDID_PORT GPIO_PC
#define EDID_PIN PC7
// if an I²C transaction started
static volatile bool i2c_transaction_new = false;
// if an I²C transaction with incoming data started
static volatile bool i2c_input_new = false;
// if the byte should be programmed
static volatile bool i2c_prog = false;
// the address of the byte to be read or programmed
static volatile uint8_t i2c_addr = 0;
// the data to be programmed
static volatile uint8_t i2c_data = 0;
// blocking wait (in 10 us steps, up to UINT32_MAX / 10)
static void wait_10us(uint32_t us10)
{
us10 = ((us10 / (1 << CLK->CKDIVR.fields.HSIDIV)) * 1000) / 206; // calibrated for 1 ms
while (us10--); // burn energy
}
void putc(char c)
{
(void)c;
IWDG_KR = IWDG_KR_KEY_REFRESH; // reset watchdog
#if DEBUG
while (!UART1->SR.fields.TXE); // wait until TX buffer is empty
UART1->DR.reg = c; // put character in buffer to be transmitted
// don't wait until the transmission is complete
#endif
}
void puts(const char* s)
{
if (NULL == s) {
return;
}
while (*s) {
putc(*s++);
}
}
void putn(uint8_t n)
{
n &= 0x0f; // ensure it's a nibble
if (n < 0xa) {
n += '0';
} else {
n = 'a' + (n - 0x0a);
}
putc(n);
}
void puth(uint8_t h)
{
putn(h >> 4);
putn(h & 0x0f);
}
// verify (E-)EDID checksums
// the sum of the bytes (including checksum at the end) must be 0
static bool checksum_ok(const uint8_t* data, uint16_t length)
{
uint8_t checksum = 0;
for (uint16_t i = 0; i < length; i++) {
checksum += data[i];
}
return (0 == checksum);
}
// return if the current EDID its length (including extensions), or 0 if invalid
/* from HDMI 1.3a specification
* All Sinks shall contain an CEA-861-D compliant E-EDID data structure.
* A Source shall read the EDID 1.3 and first CEA Extension to determine the capabilities supported by the Sink.
* The first 128 bytes of the E-EDID shall contain an EDID 1.3 structure. The contents of this structure shall also meet the requirements of CEA-861-D.
*
* HDMI 2.1 uses CTA-861-G
* this uses EDID 1.4 structure
* EDID 1.3/1.4 is 128 bytes long, and can point to 128 bytes extension
* EDID 2.0 with its 256 bytes does not seem to be used in HDMI at all (and is deprecated, replaced by E-EDID)
* DisplayID with its variable-length structure meant to replace E-EDID only seems to be used in DisplayPort
*/
static uint16_t edid_length(const uint8_t* edid)
{
puts("EDID check: ");
// check EDID 1.3/1.4 fixed pattern header
if (0x00 != edid[0] || 0xff != edid[1] || 0xff != edid[2] || 0xff != edid[3] || 0xff != edid[4] || 0xff != edid[5] || 0xff != edid[6] || 0x00 != edid[7]) {
puts("invalid header\r\n");
return 0;
}
if (1 == edid[18]) { // EDID 1.3/1.4 128-byte structure
if (checksum_ok(&edid[0], 128)) { // ensure checksum of base EDID is ok
const uint16_t length = 128 + edid[126] * 128; // get length with all extensions
puts("(v1.3/1.4, ");
putn(edid[126] / 100);
putn((edid[126] / 10) % 10);
putn(edid[126] % 10);
puts(" extension) ");
if (edid[126]) { // extensions are present
for (uint16_t i = 128; i < length && i < 256; i += 128) { // verify checksum of each extension (we actually only support one extension)
if (!checksum_ok(&edid[i], 128)) {
puts("extension CRC error\r\n");
return 0; // EDID is broken
}
}
}
puts("CRC OK\r\n");
return length;
} else {
puts("base CRC error\r\n");
return 0;
}
} else if (2 == edid[18]) { // EDID 2.0 256-byte structure
if (checksum_ok(&edid[0], 256)) {
puts("(v2) CRC ok\r\n");
return 256;
} else {
puts("CRC error\r\n");
return 0;
}
}
return 0;
}
// modify EDID to indicate firewall
static void edid_modify(uint8_t* edid)
{
// modify EDID to include the character indicating the firewall
const char firewall_indicator = '|'; // pipe/wall character to indicate the firewall
// ensure we only have up to one extension
if (edid[126] > 1) {
edid[126] = 1;
}
for (uint8_t i = 0; i < 4; i++) { // go through descriptors
if ((0 != edid[54 + i * 18 + 0]) || (0 != edid[54 + i * 18 + 1]) || (0 != edid[54 + i * 18 + 2]) || (0xfc != edid[54 + i * 18 + 3]) || (0 != edid[54 + i * 18 + 4])) { // ensure descriptor is for Display name
continue;
}
uint8_t last_c; // position of last character
for (last_c = 54 + i * 18 + 5; last_c < 54 + i * 18 + 18 && edid[last_c] != '\n'; last_c++); // find position for inserting our character
if (firewall_indicator != edid[last_c - 1]) { // the last character is not yet the pipe
if (last_c > 54 + i * 18 + 17) { // ensure we insert as the last possible character
last_c = 54 + i * 18 + 17;
}
edid[last_c++] = firewall_indicator; // insert pipe
if (last_c < 54 + i * 18 + 17) {
edid[last_c++] = '\n'; // insert LF to terminate string
}
while (last_c < 54 + i * 18 + 18) {
edid[last_c++] = ' '; // insert padding space
}
}
}
// calculate new checksum
uint8_t checksum = 0;
for (uint8_t i = 0; i < 127; i++) {
checksum += edid[i];
}
edid[127] = (256 - checksum);
}
void main(void)
{
sim(); // disable interrupts (while we reconfigure them)
CLK->CKDIVR.fields.HSIDIV = CLK_CKDIVR_HSIDIV_DIV0; // don't divide internal 16 MHz clock
CLK->CKDIVR.fields.CPUDIV = CLK_CKDIVR_CPUDIV_DIV0; // don't divide CPU frequency to 16 MHz
while (!CLK->ICKR.fields.HSIRDY); // wait for internal oscillator to be ready
// configure LED
LED_PORT->DDR.reg |= LED_PIN; // switch pin to output
LED_PORT->CR1.reg &= ~LED_PIN; // use in open-drain mode
LED_PORT->ODR.reg |= LED_PIN; // switch LED off
// configure auto-wakeup (AWU) to be able to refresh the watchdog
// 128 kHz LSI used by default in option bytes CKAWUSEL
// we skip measuring the LS clock frequency since there is no need to be precise
AWU->TBR.fields.AWUTB = 10; // interval range: 128-256 ms
AWU->APR.fields.APR = 0x3e; // set time to 256 ms
AWU_CSR |= AWU_CSR_AWUEN; // enable AWU (start only when entering wait or active halt mode)
// configure independent watchdog (very loose, just it case the firmware hangs)
IWDG->KR.fields.KEY = IWDG_KR_KEY_REFRESH; // reset watchdog
IWDG->KR.fields.KEY = IWDG_KR_KEY_ENABLE; // start watchdog
IWDG->KR.fields.KEY = IWDG_KR_KEY_ACCESS; // allows changing the prescale
IWDG->PR.fields.PR = IWDG_PR_DIV256; // set prescale to longest time (1.02s)
IWDG->KR.fields.KEY = IWDG_KR_KEY_REFRESH; // reset watchdog
// configure UART for debug output
UART1->CR1.fields.M = 0; // 8 data bits
UART1->CR3.fields.STOP = 0; // 1 stop bit
UART1->BRR2.reg = 0x0B; // set baud rate to 115200 (at 16 MHz)
UART1->BRR1.reg = 0x08; // set baud rate to 115200 (at 16 MHz)
UART1->CR2.fields.TEN = 1; // enable TX
// configure I²C lines (sink and source sides)
SDA_SRC_PU_PORT->ODR.reg |= SDA_SRC_PU_PIN; // pull up SDA line
SDA_SRC_PU_PORT->CR1.reg |= SDA_SRC_PU_PIN; // switch pin to push pull
SDA_SRC_PU_PORT->DDR.reg |= SDA_SRC_PU_PIN; // switch pin to output
SCL_SRC_PU_PORT->ODR.reg |= SCL_SRC_PU_PIN; // pull up SCL line
SCL_SRC_PU_PORT->CR1.reg |= SCL_SRC_PU_PIN; // switch pin to push pull
SCL_SRC_PU_PORT->DDR.reg |= SCL_SRC_PU_PIN; // switch pin to output
SCL_SRC_PORT->ODR.reg |= SCL_SRC_PIN; // release SCL line
SCL_SRC_PORT->CR1.reg &= ~SCL_SRC_PIN; // switch pin to open-drain
SCL_SRC_PORT->DDR.reg |= SCL_SRC_PIN; // switch pin to output
SDA_SRC_PORT->ODR.reg |= SDA_SRC_PIN; // release SDA line
SDA_SRC_PORT->CR1.reg &= ~SDA_SRC_PIN; // switch pin to open-drain
SDA_SRC_PORT->DDR.reg |= SDA_SRC_PIN; // switch pin to output
SCL_SNK_PORT->ODR.reg |= SCL_SNK_PIN; // release SCL line
SCL_SNK_PORT->CR1.reg &= ~SCL_SNK_PIN; // switch pin to open-drain
SCL_SNK_PORT->DDR.reg |= SCL_SNK_PIN; // switch pin to output
SDA_SNK_PORT->ODR.reg |= SDA_SNK_PIN; // release SDA line
SDA_SNK_PORT->CR1.reg &= ~SDA_SNK_PIN; // switch pin to open-drain
SDA_SNK_PORT->DDR.reg |= SDA_SNK_PIN; // switch pin to output
// test I²C forwarding
SDA_SNK_PORT->ODR.reg &= ~SDA_SNK_PIN; // assert SDA line (send start condition)
SCL_SNK_PORT->ODR.reg &= ~SCL_SNK_PIN; // assert SCL line (send start condition)
wait_10us(1); // wait 1 clock cycle
if (0 == (SCL_SRC_PORT->IDR.reg & SCL_SRC_PIN) || 0 == (SDA_SRC_PORT->IDR.reg & SDA_SRC_PIN)) {
i2c_fwd = true; // remember the I²C line(s) are forwarded
puts("I²C lines forwarded\r\n");
}
SCL_SNK_PORT->ODR.reg |= SCL_SNK_PIN; // release SCL line (send stop condition)
SDA_SNK_PORT->ODR.reg |= SDA_SNK_PIN; // release SDA line (send stop condition)
// configure I²C pull-ups
if (i2c_fwd) { // I²C lines are not pulled up
SDA_SRC_PU_PORT->CR1.reg &= ~SDA_SRC_PU_PIN; // disable pull up
SDA_SRC_PU_PORT->DDR.reg &= ~SDA_SRC_PU_PIN; // switch pin to input
SCL_SRC_PU_PORT->CR1.reg &= ~SCL_SRC_PU_PIN; // disable pull up
SCL_SRC_PU_PORT->DDR.reg &= ~SCL_SRC_PU_PIN; // switch pin to input
}
// configure I²C
if (!i2c_fwd) { // we will act as I²C slave EEPROM
/*
HDMI 1.3 spec:
The Sink shall be capable of responding with EDID 1.3 data and up to 255 extension blocks, each 128 bytes long (up to 32K bytes total E-EDID memory) whenever the Hot Plug Detect signal is asserted.
The Sink should be capable of providing E-EDID information over the Enhanced DDC channel whenever the +5V Power signal is provided. This should be available within 20msec after the +5V Power signal is provided.
firewall:
we will only be able to provide 1 extension block since we can only respond to one I²C address 0x50 for the EDID, and not to the 0x30 Segment Pointer (for the other pages/extension blocks)
*/
GPIO_PB->CR1.reg |= (PB4 | PB5); // enable internal pull-up on SCL/SDA
GPIO_PB->DDR.reg &= ~(PB4 | PB5); // set SCL/SDA as input before it is used as alternate function by the peripheral
I2C_CR1 |= I2C_CR1_PE; // enable I²C peripheral (must be done before any other register is written)
I2C_CR2 |= I2C_CR2_STOP; // release lines
I2C_CR2 |= I2C_CR2_SWRST; // reset peripheral, in case we got stuck and the dog bit
while (0 == (GPIO_PB->IDR.reg & PB4)); // wait for SCL line to be released
while (0 == (GPIO_PB->IDR.reg & PB5)); // wait for SDA line to be released
I2C_CR2 &= ~I2C_CR2_SWRST; // release reset
I2C_CR1 |= I2C_CR1_PE; // re-enable I²C peripheral
I2C_FREQR = 16; // the peripheral frequency is 4 MHz (must match CPU frequency)
I2C_CR2 |= I2C_CR2_ACK; // enable acknowledgement if address matches
// since we are slave and not master, we don't have to set CCR
I2C_OARL = (0x50U << 1U); // set slave address for EEPROM
I2C_ITR |= (I2C_ITR_ITBUFEN | I2C_ITR_ITEVTEN); // enable buffer and event interrupts
}
// configure hot plug detect
HPD_PORT->DDR.reg |= HPD_PIN; // switch pin to output
HPD_PORT->CR1.reg &= ~HPD_PIN; // switch pin to open drain
HPD_PORT->ODR.reg &= ~HPD_PIN; // drain line
wait_10us(0); // wait shortly to clear tristate
HPD_PORT->DDR.reg &= ~HPD_PIN; // switch pin to input (already floating)
if (HPD_PORT->IDR.reg & HPD_PIN) { // line is pulled up
hpd_fwd = true; // remember the HPD line is pulled up
}
if (!hpd_fwd) { // we have to pull up
HPD_PORT->DDR.reg |= HPD_PIN; // switch pin to output
HPD_PORT->CR1.reg |= HPD_PIN; // switch pin to push pull
HPD_PORT->ODR.reg |= HPD_PIN; // pull up HPD line to indicate EDID is ready
}
rim(); // re-enable interrupts
// even if we don't pull up HPD ourself, we should be able to respond to I²C within 20 ms
if (!i2c_fwd) {
puts("I²C source ready\r\n");
}
// check if EDID should be copied
EDID_PORT->DDR.reg &= ~EDID_PIN; // switch pin to output
EDID_PORT->CR1.reg |= EDID_PIN; // enable pull up
wait_10us(1); // wait for pull up to take effect
if (EDID_PORT->IDR.reg & EDID_PIN) { // EDID switched off
puts("EDID protected\r\n");
} else if (i2c_fwd) { // we are not the only master on the I²C sink lines
puts("can't read EDID: I²C lines forwarded\r\n");
LED_PORT->ODR.reg &= ~LED_PIN; // switch LED on to indicate error
} else {
IWDG_KR = IWDG_KR_KEY_REFRESH; // reset watchdog
puts("reading sink EDID: ");
LED_PORT->ODR.reg &= ~LED_PIN; // switch LED on to indicate we are saving EDID
SDA_SNK_PU_PORT->ODR.reg |= SDA_SNK_PU_PIN; // pull up SDA line
SDA_SNK_PU_PORT->CR1.reg |= SDA_SNK_PU_PIN; // switch pin to push pull
SDA_SNK_PU_PORT->DDR.reg |= SDA_SNK_PU_PIN; // switch pin to output
SCL_SNK_PU_PORT->ODR.reg |= SCL_SNK_PU_PIN; // pull up SCL line
SCL_SNK_PU_PORT->CR1.reg |= SCL_SNK_PU_PIN; // switch pin to push pull
SCL_SNK_PU_PORT->DDR.reg |= SCL_SNK_PU_PIN; // switch pin to output
if (0 == (SDA_SNK_PORT->IDR.reg & SDA_SNK_PIN)) { // SDA line is stuck
puts ("bus clear ");
// perform bus clear
for (uint8_t i = 0; i < 9; i++) {
SCL_SNK_PORT->ODR.reg &= ~SCL_SNK_PIN;
wait_10us(1);
SCL_SNK_PORT->ODR.reg |= SCL_SNK_PIN;
wait_10us(1);
}
}
uint8_t i2c_rc = 1; // if the complete read succeeded
if (!softi2c_master_setup(400)) { // start the I²C master to talk to sink
i2c_rc = 2;
goto i2c_end;
}
if (!softi2c_master_start()) { // start transaction
i2c_rc = 3;
goto i2c_end;
}
if (!softi2c_master_select_slave(0x50, true)) { // select EDID
i2c_rc = 4;
goto i2c_end;
}
const uint8_t edid_addr = 0x00; // EDID address to read
if (!softi2c_master_write(&edid_addr, 1)) { // write address to read
i2c_rc = 5;
goto i2c_end;
}
if (!softi2c_master_start()) { // re-start transaction
i2c_rc = 6;
goto i2c_end;
}
if (!softi2c_master_select_slave(0x50, false)) { // re-select EDID
puts("sink not present ");
i2c_rc = 7;
goto i2c_end;
}
uint8_t edid_sink[256]; // buffer for sink EDID
if (!softi2c_master_read(edid_sink, ARRAY_LENGTH(edid_sink))) { // read EDID
i2c_rc = 8;
goto i2c_end;
}
i2c_rc = 0; // complete read succeeded
i2c_end:
softi2c_master_stop();
if (0 == i2c_rc) {
puts("success\r\n");
uint16_t edid_len = edid_length(edid_sink); // get length
if (edid_len > 256) { // we only support up to one extension
edid_len = 256;
}
if (edid_len) { // EDID is valid
edid_modify(edid_sink); // modify EDID to include firewall indication
// compare saved/source and sink EDID
bool edid_equal = true;
for (uint16_t i = 0; i < edid_len && edid_equal; i++) {
if (*(uint8_t*)(EEPROM_ADDR + i) != edid_sink[i]) {
edid_equal = false;
}
}
if (edid_equal) {
LED_PORT->ODR.reg |= LED_PIN; // switch LED off to indicate EDID is same
puts("EDID not changed\r\n");
} else {
puts("saving EDID: ");
// note: the STM8S103 does not support RWW
// try to make fast small operations to not stall I²C communication
eeprom_valid = false; // invalidate saved EDID while re-programming it
bool flash_success = true;
// disable DATA (e.g. EEPROM) write protection
if (0 == (FLASH_IAPSR & FLASH_IAPSR_DUL)) {
FLASH_DUKR = FLASH_DUKR_KEY1;
FLASH_DUKR = FLASH_DUKR_KEY2;
}
// erase EEPROM (we don't do faster block erase since it needs to be done from RAM)
for (uint16_t i = 0; i < 256; i += 4U) { // go through word
IWDG_KR = IWDG_KR_KEY_REFRESH; // reset watchdog
FLASH_CR2 |= FLASH_CR2_WPRG; // set word programming
FLASH_NCR2 &= ~FLASH_NCR2_NWPRG; // set word programming
*(uint32_t*)(EEPROM_ADDR + i) = 0; // erase word
while (FLASH_CR2 & FLASH_CR2_WPRG); // wait for erase to complete
// check if programming failed
// we don't check for WR_PG_DIS (while checking EOP) because EEPROM isn't (and can't be) write protected
if (!(FLASH_IAPSR & FLASH_IAPSR_EOP)) {
FLASH_IAPSR &= ~FLASH_IAPSR_DUL; // re-enable write protection
flash_success = false; // remember we had a flashing error
puts("failed\r\n");
break;
}
}
// save need EDID
for (uint16_t i = 0; i < edid_len && flash_success; i += 4U) { // go through word
IWDG_KR = IWDG_KR_KEY_REFRESH; // reset watchdog
FLASH_CR2 |= FLASH_CR2_WPRG; // set word programming
FLASH_NCR2 &= ~FLASH_NCR2_NWPRG; // set word programming
*(uint32_t*)(EEPROM_ADDR + i) = *(uint32_t*)(&edid_sink[i]); // write word
while (FLASH_CR2 & FLASH_CR2_WPRG); // wait for write to complete
// check if programming failed
// we don't check for WR_PG_DIS (while checking EOP) because EEPROM isn't (and can't be) write protected
if (!(FLASH_IAPSR & FLASH_IAPSR_EOP)) {
FLASH_IAPSR &= ~FLASH_IAPSR_DUL; // re-enable write protection
flash_success = false; // remember we had a flashing error
puts("failed\r\n");
break;
}
}
FLASH_IAPSR &= ~FLASH_IAPSR_DUL; // re-enable write protection
if (flash_success) {
eeprom_valid = true; // re-enable EDID reading
LED_PORT->ODR.reg |= LED_PIN; // switch LED off to indicate we are completed saving EDID
puts("done\r\n");
} else {
puts("flashing error\r\n");
}
// indicate there is a new EDID
if (!hpd_fwd) { // we have to pull up
/*
HDMI v1.3 spec:
An HDMI Sink shall indicate any change to the contents of the E-EDID by driving a low voltage
level pulse on the Hot Plug Detect pin. This pulse shall be at least 100 msec.
*/
HPD_PORT->ODR.reg &= ~HPD_PIN; // pull down HPD line to indicate EDID change
wait_10us(200 * 100); // wait over 100 ms
HPD_PORT->ODR.reg |= HPD_PIN; // pull up HPD line to indicate EDID is ready
}
}
}
} else {
LED_PORT->ODR.reg &= ~LED_PIN; // switch LED on to indicate I²C read fail
puts("fail (rc=");
putc('0' + i2c_rc);
puts(")\r\n");
}
}
// verify stored EDID validity
if (!edid_length((uint8_t*)EEPROM_ADDR)) {
LED_PORT->ODR.reg &= ~LED_PIN; // switch LED on to indicate EDID is invalid
puts("EEPROM EDID invalid\r\n");
}
bool action = false; // if an action has been performed
puts("loop\r\n");
while (true) {
IWDG_KR = IWDG_KR_KEY_REFRESH; // reset watchdog
/*
if (i2c_transaction_new) { // an I²C transaction started
i2c_transaction_new = false; // clear flag
if (i2c_input_new) {
puts("I²C write\r\n");
} else {
puts("I²C read\r\n");
}
}
*/
if (i2c_prog) { // received data over i2c to be programmed
if (EDID_PORT->IDR.reg & EDID_PIN) { // EDID switched off
puts("I²C prog disabled\r\n");
I2C_CR2 &= I2C_CR2_ACK; // NACK next received byte to indicate programming it disabled
} else { // EDID programming allowed
/*
puts("I²C prog ");
puth(i2c_data);
puts("@");
puth(i2c_addr);
puts("\r\n");
*/
IWDG_KR = IWDG_KR_KEY_REFRESH; // reset watchdog
// disable DATA (e.g. EEPROM) write protection
if (0 == (FLASH_IAPSR & FLASH_IAPSR_DUL)) {
FLASH_DUKR = FLASH_DUKR_KEY1;
FLASH_DUKR = FLASH_DUKR_KEY2;
}
// save need EDID
*(uint8_t*)(EEPROM_ADDR + i2c_addr) = i2c_data; // write byte
while (FLASH_CR2 & FLASH_CR2_WPRG); // wait for write to complete
// check if programming failed
// we don't check for WR_PG_DIS (while checking EOP) because EEPROM isn't (and can't be) write protected
if (!(FLASH_IAPSR & FLASH_IAPSR_EOP)) {
FLASH_IAPSR &= ~FLASH_IAPSR_DUL; // re-enable write protection
LED_PORT->ODR.reg &= ~LED_PIN; // switch LED on to indicate programming failed
I2C_CR2 &= I2C_CR2_ACK; // NACK next received byte to indicate programming error
puts("EEPROM byte prog failed\r\n");
}
FLASH_IAPSR &= ~FLASH_IAPSR_DUL; // re-enable write protection
}
action = true; // re-run loop
i2c_prog = false; // clear flag
}
if (action) { // something has been performed, check if other flags have been set meanwhile
action = false; // clear flag
} else { // nothing down
wfi(); // go to sleep (wait for any interrupt, including periodic AWU)
}
}
}
void awu(void) __interrupt(IRQ_AWU) // auto wakeup
{
volatile uint8_t awuf = AWU_CSR; // clear interrupt flag by reading it (reading is required, and volatile prevents compiler optimization)
// let the main loop kick the dog
}
void i2c(void) __interrupt(IRQ_I2C) // auto wakeup
{
// make copies of status registers, since some bits might be cleared meanwhile
const uint8_t sr1 = I2C_SR1;
const uint8_t sr2 = I2C_SR2;
const uint8_t sr3 = I2C_SR3; // clears ADDR after reading SR1
if (sr1 & I2C_SR1_TXE) { // transmission buffer is empty
I2C_DR = *(uint8_t*)(EEPROM_ADDR + i2c_addr++); // transmit next byte (even if invalid)
}
if (sr1 & I2C_SR1_RXNE) { // receive buffer is full
i2c_data = I2C_DR; // read data (also clears flag)
if (i2c_input_new) { // we just received the first byte
i2c_addr = i2c_data; // we only take the first address byte
i2c_input_new = false; // next byte is not the first
} else { // received data byte
i2c_prog = true; // notify main loop data needs to be programmed
}
if (EDID_PORT->IDR.reg & EDID_PIN) { // EDID programming is not enabled
I2C_CR2 &= I2C_CR2_ACK; // NACK next received byte to indicate programming it disabled
}
}
if (sr1 & I2C_SR1_STOPF) { // stop received
I2C_CR2 |= I2C_CR2_ACK; // this is just to clear the flag
}
if (sr1 & I2C_SR1_ADDR) { // our slave address has been selected
i2c_transaction_new = true; // notify main loop transaction started
if (sr3 & I2C_SR3_TRA) { // start data transmission
I2C_DR = *(uint8_t*)(EEPROM_ADDR + i2c_addr++); // transmit selected byte
i2c_input_new = false; // notify we send data
} else { // we will receive data
if (EDID_PORT->IDR.reg & EDID_PIN) { // EDID switched off
I2C_CR2 &= I2C_CR2_ACK; // NACK next received byte to indicate programming it disabled
} else {
I2C_CR2 |= I2C_CR2_ACK; // ACK next received byte
}
i2c_input_new = true; // notify we get data
}
}
if (sr1 & I2C_SR1_BTF) { // byte transfer finished (only set when stretching has been enabled)
// cleared by reading/writing from/to DR or when stop is received
}
if (sr2 & I2C_SR2_AF) { // NACK received (e.g. end of read transaction)
I2C_SR2 &= ~I2C_SR2_AF; // clear flag
}
}