stm32f1/lib/microwire_master.c

316 lines
13 KiB
C

/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/** library to communicate using microwore as master (code)
* @file microwire_master.c
* @author King Kévin <kingkevin@cuvoodoo.info>
* @date 2017
* @note peripherals used: GPIO @ref microwire_master_gpio, timer @ref microwire_master_timer
* microwire is a 3-Wire half-duplex synchronous bus. It is very similar to SPI without fixed length messages (bit-wised).
* @note the user has to handle the slave select pin (high during operations) so to be able to handle multiple slaves.
* @warning this library implements the M93Cx8 EEPROM operation codes. Other microwire-based ICs might use different ones.
*/
/* standard libraries */
#include <stdint.h> // standard integer types
#include <stdlib.h> // general utilities
/* STM32 (including CM3) libraries */
#include <libopencmsis/core_cm3.h> // Cortex M3 utilities
#include <libopencm3/stm32/rcc.h> // real-time control clock library
#include <libopencm3/stm32/gpio.h> // general purpose input output library
#include <libopencm3/stm32/timer.h> // timer utilities
#include "global.h" // global utilities
#include "microwire_master.h" // microwire header and definitions
/** @defgroup microwire_master_gpio GPIO peripheral used to communicate
* @{
*/
#define MICROWIRE_MASTER_SDO_PORT A /**< SDO output signal port (to be connected on D slave signal) */
#define MICROWIRE_MASTER_SDO_PIN 0 /**< SDO output signal pin (to be connected on D slave signal) */
#define MICROWIRE_MASTER_SDI_PORT A /**< SDO input signal port (to be connected on Q slave signal) */
#define MICROWIRE_MASTER_SDI_PIN 2 /**< SDO input signal pin (to be connected on Q slave signal) */
#define MICROWIRE_MASTER_SCK_PORT A /**< SCK output signal port (to be connected on C slave signal) */
#define MICROWIRE_MASTER_SCK_PIN 4 /**< SCK output signal pin (to be connected on C slave signal) */
/** @} */
/** @defgroup microwire_master_timer timer peripheral used to generate timing for the signal
* @{
*/
#define MICROWIRE_MASTER_TIMER 4 /**< timer peripheral */
/** @} */
/** address size used in operations (slave specific) */
uint8_t mirowire_master_address_size = 0;
/** organization used (true=x16, false=x8) */
bool mirowire_master_organization_x16 = true;
void microwire_master_setup(uint32_t frequency, bool organization_x16, uint8_t address_size)
{
// sanity checks
if (0==frequency || 0==address_size) {
return;
}
mirowire_master_address_size = address_size; // save address size
mirowire_master_organization_x16 = organization_x16; // save organisation
// setup GPIO
rcc_periph_clock_enable(RCC_GPIO(MICROWIRE_MASTER_SDO_PORT)); // enable clock for GPIO domain for SDO signal
gpio_set_mode(GPIO(MICROWIRE_MASTER_SDO_PORT), GPIO_MODE_OUTPUT_10_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, GPIO(MICROWIRE_MASTER_SDO_PIN)); // set SDO signal as output (controlled by the master)
gpio_clear(GPIO(MICROWIRE_MASTER_SDO_PORT), GPIO(MICROWIRE_MASTER_SDO_PIN)); // SDO is idle low
rcc_periph_clock_enable(RCC_GPIO(MICROWIRE_MASTER_SDI_PORT)); // enable clock for GPIO domain for SDI signal
gpio_set_mode(GPIO(MICROWIRE_MASTER_SDI_PORT), GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, GPIO(MICROWIRE_MASTER_SDI_PIN)); // set SDI signal as output (controlled by the slave)
rcc_periph_clock_enable(RCC_GPIO(MICROWIRE_MASTER_SCK_PORT)); // enable clock for GPIO domain for SCK signal
gpio_set_mode(GPIO(MICROWIRE_MASTER_SCK_PORT), GPIO_MODE_OUTPUT_10_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, GPIO(MICROWIRE_MASTER_SCK_PIN)); // set SCK signal as output (controlled by the master)
gpio_clear(GPIO(MICROWIRE_MASTER_SCK_PORT), GPIO(MICROWIRE_MASTER_SCK_PIN)); // SCK is idle low
// setup timer to generate timing for the signal
rcc_periph_clock_enable(RCC_TIM(MICROWIRE_MASTER_TIMER)); // enable clock for timer domain
timer_reset(TIM(MICROWIRE_MASTER_TIMER)); // reset timer state
timer_set_mode(TIM(MICROWIRE_MASTER_TIMER), TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP); // set timer mode, use undivided timer clock, edge alignment (simple count), and count up
uint16_t prescaler = rcc_ahb_frequency/(frequency*2)/(uint32_t)(1<<16)+1; // calculate prescaler for most accurate timing for this speed
timer_set_prescaler(TIM(MICROWIRE_MASTER_TIMER), prescaler-1); // set calculated prescaler
uint16_t period = (rcc_ahb_frequency/prescaler)/(frequency*2); // calculate period to get most accurate timing based on the calculated prescaler
timer_set_period(TIM(MICROWIRE_MASTER_TIMER), period-1); // set calculated period
timer_update_on_overflow(TIM(MICROWIRE_MASTER_TIMER)); // only use counter overflow as UEV source (use overflow as timeout)
SCB_SCR |= SCB_SCR_SEVEONPEND; // enable wake up on event (instead of using ISR)
timer_enable_irq(TIM(MICROWIRE_MASTER_TIMER), TIM_DIER_UIE); // enable update interrupt for timer
}
/** wait for clock tick used to synchronise communication */
static void microwire_master_wait_clock(void)
{
while ( !timer_get_flag(TIM(MICROWIRE_MASTER_TIMER), TIM_SR_UIF)) { // wait for timer overflow event for clock change
__asm__("wfe"); // go to sleep and wait for event
}
timer_clear_flag(TIM(MICROWIRE_MASTER_TIMER), TIM_SR_UIF); // clear timer flag
nvic_clear_pending_irq(NVIC_TIM_IRQ(MICROWIRE_MASTER_TIMER)); // clear IRQ flag (else event doesn't wake up)
}
/** send bit over microwire
* @param[in] bit bit to send (true = '1', false = '0')
*/
static void microwire_master_send_bit(bool bit)
{
if (bit) {
gpio_set(GPIO(MICROWIRE_MASTER_SDO_PORT), GPIO(MICROWIRE_MASTER_SDO_PIN)); // set '1' on output
} else {
gpio_clear(GPIO(MICROWIRE_MASTER_SDO_PORT), GPIO(MICROWIRE_MASTER_SDO_PIN)); // set '0' on output
}
microwire_master_wait_clock(); // wait for clock timing
gpio_set(GPIO(MICROWIRE_MASTER_SCK_PORT), GPIO(MICROWIRE_MASTER_SCK_PIN)); // make rising edge for slave to sample
microwire_master_wait_clock(); // keep output signal stable while clock is high
gpio_clear(GPIO(MICROWIRE_MASTER_SCK_PORT), GPIO(MICROWIRE_MASTER_SCK_PIN)); // put clock back to idle
}
/** initialize microwire communication and send header (with leading start bit '1')
* @param[in] operation operation code to send (2 bits)
* @param[in] address slave memory address to select
*/
static void microwire_master_start(uint8_t operation, uint32_t address)
{
// to sanity checks
if (0==mirowire_master_address_size) { // can't send address
return;
}
// initial setup
gpio_clear(GPIO(MICROWIRE_MASTER_SCK_PORT), GPIO(MICROWIRE_MASTER_SCK_PIN)); // ensure clock is low (to sample on rising edge)
timer_set_counter(TIM(MICROWIRE_MASTER_TIMER),0); // reset timer counter
timer_clear_flag(TIM(MICROWIRE_MASTER_TIMER), TIM_SR_UIF); // clear timer flag
nvic_clear_pending_irq(NVIC_TIM_IRQ(MICROWIRE_MASTER_TIMER)); // clear IRQ flag (else event doesn't wake up)
timer_enable_counter(TIM(MICROWIRE_MASTER_TIMER)); // start timer to generate timing
// send '1' start bit
microwire_master_send_bit(true); // send start bit
// send two bits operation code
if (operation&0x2) { // send first bit (MSb first)
microwire_master_send_bit(true); // send '1'
} else {
microwire_master_send_bit(false); // send '2'
}
if (operation&0x1) { // send second bit (LSb last)
microwire_master_send_bit(true); // send '1'
} else {
microwire_master_send_bit(false); // send '2'
}
// send address
for (uint8_t bit = mirowire_master_address_size; bit > 0; bit--) {
if ((address>>(bit-1))&0x01) {
microwire_master_send_bit(true); // send '1' address bit
} else {
microwire_master_send_bit(false); // send '0' address bit
}
}
gpio_clear(GPIO(MICROWIRE_MASTER_SDO_PORT), GPIO(MICROWIRE_MASTER_SDO_PIN)); // ensure output is idle low (could be floating)
}
/** stop microwire communication and end all activities */
static void microwire_master_stop(void)
{
timer_disable_counter(TIM(MICROWIRE_MASTER_TIMER)); // disable timer
timer_set_counter(TIM(MICROWIRE_MASTER_TIMER),0); // reset timer counter
timer_clear_flag(TIM(MICROWIRE_MASTER_TIMER), TIM_SR_UIF); // clear timer flag
nvic_clear_pending_irq(NVIC_TIM_IRQ(MICROWIRE_MASTER_TIMER)); // clear IRQ flag
gpio_clear(GPIO(MICROWIRE_MASTER_SCK_PORT), GPIO(MICROWIRE_MASTER_SCK_PIN)); // ensure clock is idle low
gpio_clear(GPIO(MICROWIRE_MASTER_SDO_PORT), GPIO(MICROWIRE_MASTER_SDO_PIN)); // ensure output is idle low
}
/** read bit from microwire communication
* @return bit value (true = '1', false = '0')
*/
static bool microwire_master_read_bit(void)
{
microwire_master_wait_clock(); // wait for clock timing
gpio_set(GPIO(MICROWIRE_MASTER_SCK_PORT), GPIO(MICROWIRE_MASTER_SCK_PIN)); // make rising edge for slave to output data
microwire_master_wait_clock(); // wait for signal to be stable
gpio_clear(GPIO(MICROWIRE_MASTER_SCK_PORT), GPIO(MICROWIRE_MASTER_SCK_PIN)); // set clock low again
return 0!=gpio_get(GPIO(MICROWIRE_MASTER_SDI_PORT), GPIO(MICROWIRE_MASTER_SDI_PIN)); // read input signal
}
void microwire_master_read(uint32_t address, uint16_t* data, size_t length)
{
// to sanity checks
if (NULL==data || 0==length || 0==mirowire_master_address_size) { // can't save data
return;
}
microwire_master_start(0x02, address); // send '10' READ instruction and memory address
// there should already be a '0' dummy bit
if (0!=gpio_get(GPIO(MICROWIRE_MASTER_SDI_PORT), GPIO(MICROWIRE_MASTER_SDI_PIN))) { // the dummy bit wasn't '0'
goto clean;
}
// read data
for (size_t i=0; i<length; i++) {
for (uint8_t b=(mirowire_master_organization_x16 ? 16 : 8); b>0; b--) {
if (microwire_master_read_bit()) { // read bit, MSb first
data[i] |= (1<<(b-1)); // set bit
} else {
data[i] &= ~(1<<(b-1)); // clear bit
}
}
}
clean:
microwire_master_stop(); // stop communication and clean up
}
void microwire_master_write_enable(void)
{
// to sanity checks
if (mirowire_master_address_size<2) { // can't send '11...' address
return;
}
microwire_master_start(0x0, 0x3<<(mirowire_master_address_size-2)); // send '00' WEN operation code and '11...' address
microwire_master_stop(); // clean up
}
void microwire_master_write_disable(void)
{
// to sanity checks
if (mirowire_master_address_size<2) { // can't send '00...' address
return;
}
microwire_master_start(0x0, 0); // send '00' WDS operation code and '00...' address
microwire_master_stop(); // clean up
}
void microwire_master_write(uint32_t address, uint16_t data)
{
// to sanity checks
if (0==mirowire_master_address_size) { // can't send address
return;
}
microwire_master_start(0x01, address); // send '01' WRITE operation code and memory address
// write data (MSb first)
for (uint8_t b=(mirowire_master_organization_x16 ? 16 : 8); b>0; b--) {
if (data&(1<<(b-1))) { // bit is set
microwire_master_send_bit(true); // send '1' data bit
} else {
microwire_master_send_bit(false); // send '0' data bit
}
}
microwire_master_stop(); // clean up
}
void microwire_master_wait_ready(void)
{
// initial setup
gpio_clear(GPIO(MICROWIRE_MASTER_SCK_PORT), GPIO(MICROWIRE_MASTER_SCK_PIN)); // ensure clock is low (to sample on rising edge)
timer_set_counter(TIM(MICROWIRE_MASTER_TIMER),0); // reset timer counter
timer_clear_flag(TIM(MICROWIRE_MASTER_TIMER), TIM_SR_UIF); // clear timer flag
nvic_clear_pending_irq(NVIC_TIM_IRQ(MICROWIRE_MASTER_TIMER)); // clear IRQ flag (else event doesn't wake up)
timer_enable_counter(TIM(MICROWIRE_MASTER_TIMER)); // start timer to generate timing
// SDI low on busy, high on ready, clock is ignored
while (!microwire_master_read_bit()); // wait until slave is ready
microwire_master_stop(); // clean up
}
void microwire_master_erase(uint32_t address)
{
// sanity checks
if (0==mirowire_master_address_size) { // can't send address
return;
}
microwire_master_start(0x03, address); // send '11' ERASE operation code and memory address
microwire_master_stop(); // clean up
}
void microwire_master_erase_all(void)
{
// sanity checks
if (mirowire_master_address_size<2) { // can't send '11...' address
return;
}
microwire_master_start(0x00, 0x2<<(mirowire_master_address_size-2)); // send '00' ERAL operation code and '10...' address
microwire_master_stop(); // clean up
}
void microwire_master_write_all(uint16_t data)
{
// sanity checks
if (0==mirowire_master_address_size) { // can't send address
return;
}
microwire_master_start(0x00, 0x1<<(mirowire_master_address_size-2)); // send '00' WRAL operation code and '01...' address
// write data (MSb first)
for (uint8_t b=(mirowire_master_organization_x16 ? 16 : 8); b>0; b--) {
if (data&(1<<(b-1))) { // bit is set
microwire_master_send_bit(true); // send '1' data bit
} else {
microwire_master_send_bit(false); // send '0' data bit
}
}
microwire_master_stop(); // clean up
}