stm32f1/application.c

331 lines
14 KiB
C

/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/** STM32F1 application example
* @file application.c
* @author King Kévin <kingkevin@cuvoodoo.info>
* @date 2016-2017
*/
/* standard libraries */
#include <stdint.h> // standard integer types
#include <stdlib.h> // standard utilities
#include <string.h> // string utilities
#include <time.h> // date/time utilities
/* STM32 (including CM3) libraries */
#include <libopencmsis/core_cm3.h> // Cortex M3 utilities
#include <libopencm3/cm3/scb.h> // vector table definition
#include <libopencm3/cm3/nvic.h> // interrupt utilities
#include <libopencm3/stm32/gpio.h> // general purpose input output library
#include <libopencm3/stm32/rcc.h> // real-time control clock library
#include <libopencm3/stm32/exti.h> // external interrupt utilities
#include <libopencm3/stm32/rtc.h> // real time clock utilities
#include <libopencm3/stm32/iwdg.h> // independent watchdog utilities
#include <libopencm3/stm32/dbgmcu.h> // debug utilities
#include <libopencm3/stm32/flash.h> // flash utilities
/* own libraries */
#include "global.h" // board definitions
#include "print.h" // printing utilities
#include "usart.h" // USART utilities
#include "usb_cdcacm.h" // USB CDC ACM utilities
#include "onewire_slave.h" // 1-Wire utilities
#define WATCHDOG_PERIOD 10000 /**< watchdog period in ms */
/** @defgroup main_flags flag set in interrupts to be processed in main task
* @{
*/
volatile bool rtc_internal_tick_flag = false; /**< flag set when internal RTC ticked */
/** @} */
time_t time_rtc = 0; /**< time (seconds since Unix Epoch) */
struct tm* time_tm; /**< time in tm format (time zones are not handled for non-POSIX environments) */
size_t putc(char c)
{
size_t length = 0; // number of characters printed
static char newline = 0; // to remember on which character we sent the newline
if (0==c) {
length = 0; // don't print string termination character
} else if ('\r' == c || '\n' == c) { // send CR+LF newline for most carriage return and line feed combination
if (0==newline || c==newline) { // send newline only if not already send (and only once on \r\n or \n\r)
usart_putchar_nonblocking('\r'); // send CR over USART
usb_cdcacm_putchar('\r'); // send CR over USB
usart_putchar_nonblocking('\n'); // send LF over USART
usb_cdcacm_putchar('\n'); // send LF over USB
length += 2; // remember we printed 2 characters
newline = c; // remember on which character we sent the newline
} else {
length = 0; // the \r or \n of \n\r or \r\n has already been printed
}
} else {
usart_putchar_nonblocking(c); // send byte over USART
usb_cdcacm_putchar(c); // send byte over USB
newline = 0; // clear new line
length++; // remember we printed 1 character
}
return length; // return number of characters printed
}
/** user input command */
static char command[32] = {0};
/** user input command index */
uint8_t command_i = 0;
/** process user command
* @param[in] str user command string (\0 ended)
*/
static void process_command(char* str)
{
// split command
const char* delimiter = " ";
char* word = strtok(str,delimiter);
if (!word) {
goto error;
}
// parse command
if (0==strcmp(word,"h") || 0==strcmp(word,"help") || 0==strcmp(word,"?")) {
printf("available commands:\n");
printf("led [on|off|toggle]\n");
} else if (0==strcmp(word,"l") || 0==strcmp(word,"led")) {
word = strtok(NULL,delimiter);
if (!word) {
printf("LED is ");
if (gpio_get(GPIO(LED_PORT), GPIO(LED_PIN))) {
printf("on\n");
} else {
printf("off\n");
}
} else if (0==strcmp(word,"on")) {
led_on(); // switch LED on
printf("LED switched on\n"); // notify user
} else if (0==strcmp(word,"off")) {
led_off(); // switch LED off
printf("LED switched off\n"); // notify user
} else if (0==strcmp(word,"toggle")) {
led_toggle(); // toggle LED
printf("LED toggled\n"); // notify user
} else {
goto error;
}
} else if (0==strcmp(word,"time")) {
word = strtok(NULL,delimiter);
if (!word) {
time_rtc = rtc_get_counter_val(); // get time from internal RTC
time_tm = localtime(&time_rtc); // convert time
printf("time: %02d:%02d:%02d\n", time_tm->tm_hour, time_tm->tm_min, time_tm->tm_sec);
} else if (strlen(word)!=8 || word[0]<'0' || word[0]>'2' || word[1]<'0' || word[1]>'9' || word[3]<'0' || word[3]>'5' || word[4]<'0' || word[4]>'9' || word[6]<'0' || word[6]>'5' || word[7]<'0' || word[7]>'9') { // time format is incorrect
goto error;
} else {
time_rtc = rtc_get_counter_val(); // get time from internal RTC
time_tm = localtime(&time_rtc); // convert time
time_tm->tm_hour = (word[0]-'0')*10+(word[1]-'0')*1; // set hours
time_tm->tm_min = (word[3]-'0')*10+(word[4]-'0')*1; // set minutes
time_tm->tm_sec = (word[6]-'0')*10+(word[7]-'0')*1; // set seconds
time_rtc = mktime(time_tm); // get back seconds
rtc_set_counter_val(time_rtc); // save time to internal RTC
printf("time set\n");
}
} else if (0==strcmp(word,"date")) {
word = strtok(NULL,delimiter);
if (!word) {
time_rtc = rtc_get_counter_val(); // get time from internal RTC
time_tm = localtime(&time_rtc); // convert time
printf("date: %d-%02d-%02d\n", 1900+time_tm->tm_year, time_tm->tm_mon+1, time_tm->tm_mday);
} else if (strlen(word)!=10 || word[0]!='2' || word[1]!='0' || word[2]<'0' || word[2]>'9' || word[3]<'0' || word[3]>'9' || word[5]<'0' || word[5]>'1' || word[6]<'0' || word[6]>'9' || word[8]<'0' || word[8]>'3' || word[9]<'0' || word[9]>'9') {
goto error;
} else {
time_rtc = rtc_get_counter_val(); // get time from internal RTC
time_tm = localtime(&time_rtc); // convert time
time_tm->tm_year = ((word[0]-'0')*1000+(word[1]-'0')*100+(word[2]-'0')*10+(word[3]-'0')*1)-1900; // set year
time_tm->tm_mon = (word[5]-'0')*10+(word[6]-'0')*1-1; // set month
time_tm->tm_mday = (word[8]-'0')*10+(word[9]-'0')*1; // set day
time_rtc = mktime(time_tm); // get back seconds
rtc_set_counter_val(time_rtc); // save time to internal RTC
printf("date set\n");
}
} else {
goto error;
}
return; // command successfully processed
error:
printf("command not recognized. enter help to list commands\n");
return;
}
/** program entry point
* this is the firmware function started by the micro-controller
*/
void main(void);
void main(void)
{
rcc_clock_setup_in_hse_8mhz_out_72mhz(); // use 8 MHz high speed external clock to generate 72 MHz internal clock
#if DEBUG
// enable functionalities for easier debug
DBGMCU_CR |= DBGMCU_CR_IWDG_STOP; // stop independent watchdog counter when code is halted
DBGMCU_CR |= DBGMCU_CR_WWDG_STOP; // stop window watchdog counter when code is halted
DBGMCU_CR |= DBGMCU_CR_STANDBY; // allow debug also in standby mode (keep digital part and clock powered)
DBGMCU_CR |= DBGMCU_CR_STOP; // allow debug also in stop mode (keep clock powered)
DBGMCU_CR |= DBGMCU_CR_SLEEP; // allow debug also in sleep mode (keep clock powered)
#else
// setup watchdog to reset in case we get stuck (i.e. when an error occurred)
iwdg_set_period_ms(WATCHDOG_PERIOD); // set independent watchdog period
iwdg_start(); // start independent watchdog
#endif
board_setup(); // setup board
usart_setup(); // setup USART (for printing)
usb_cdcacm_setup(); // setup USB CDC ACM (for printing)
printf("welcome to the CuVoodoo STM32F1 1-Wire salve example application\n"); // print welcome message
#if !(DEBUG)
// show watchdog information
printf("watchdog set to (%.2fs)\n",WATCHDOG_PERIOD/1000.0);
if (FLASH_OBR&FLASH_OBR_OPTERR) {
printf("option bytes not set in flash: software wachtdog used (not started at reset)\n");
} else if (FLASH_OBR&FLASH_OBR_WDG_SW) {
printf("software wachtdog used (not started at reset)\n");
} else {
printf("hardware wachtdog used (started at reset)\n");
}
#endif
// setup RTC
printf("setup internal RTC: ");
rtc_auto_awake(RCC_LSE, 32768-1); // ensure internal RTC is on, uses the 32.678 kHz LSE, and the prescale is set to our tick speed, else update backup registers accordingly (power off the micro-controller for the change to take effect)
rtc_interrupt_enable(RTC_SEC); // enable RTC interrupt on "seconds"
nvic_enable_irq(NVIC_RTC_IRQ); // allow the RTC to interrupt
printf("OK\n");
time_rtc= rtc_get_counter_val(); // get time from internal RTC
time_tm = localtime(&time_rtc); // convert time
printf("date: %d-%02d-%02d %02d:%02d:%02d\n", 1900+time_tm->tm_year, time_tm->tm_mon+1, time_tm->tm_mday, time_tm->tm_hour, time_tm->tm_min, time_tm->tm_sec);
printf("setup 1-Wire bus: ");
onewire_slave_setup(0xb3, 0x0047414feedb); // setup 1-Wire peripheral to act as slave
printf("OK\n");
uint8_t onewire_slave_data[2] = {0}; // data to be transferred
// main loop
printf("command input: ready\n");
bool action = false; // if an action has been performed don't go to sleep
button_flag = false; // reset button flag
char c = '\0'; // to store received character
bool char_flag = false; // a new character has been received
while (true) { // infinite loop
iwdg_reset(); // kick the dog
while (usart_received) { // data received over UART
action = true; // action has been performed
led_toggle(); // toggle LED
c = usart_getchar(); // store receive character
char_flag = true; // notify character has been received
}
while (usb_cdcacm_received) { // data received over USB
action = true; // action has been performed
led_toggle(); // toggle LED
c = usb_cdcacm_getchar(); // store receive character
char_flag = true; // notify character has been received
}
while (char_flag) { // user data received
char_flag = false; // reset flag
action = true; // action has been performed
printf("%c",c); // echo receive character
if (c=='\r' || c=='\n') { // end of command received
if (command_i>0) { // there is a command to process
command[command_i] = 0; // end string
command_i = 0; // prepare for next command
process_command(command); // process user command
}
} else { // user command input
command[command_i] = c; // save command input
if (command_i<LENGTH(command)-2) { // verify if there is place to save next character
command_i++; // save next character
}
}
}
while (button_flag) { // user pressed button
action = true; // action has been performed
led_toggle(); // toggle LED
printf("button pressed\n");
button_flag = false; // reset flag
}
while (rtc_internal_tick_flag) { // the internal RTC ticked
rtc_internal_tick_flag = false; // reset flag
action = true; // action has been performed
#if !defined(BLUE_PILL) // on the blue pill the LED is close to the 32.768 kHz oscillator and heavily influences it
//led_toggle(); // toggle LED (good to indicate if main function is stuck)
#endif
time_rtc = rtc_get_counter_val(); // get time from internal RTC (seconds since Unix Epoch)
time_tm = localtime(&time_rtc); // get time in tm format from Epoch (time zones are not handled for non-POSIX environments)
if (0==time_tm->tm_sec) { // new minute
printf("time: %02d:%02d:%02d\n", time_tm->tm_hour, time_tm->tm_min, time_tm->tm_sec);
}
}
while (onewire_slave_function_code_received) {
onewire_slave_function_code_received = false; // reset flag
action = true; // action has been performed
printf("1-Wire function command received: 0x%02x\n", onewire_slave_function_code);
if (0x55==onewire_slave_function_code) { // master will write data
onewire_slave_function_read(onewire_slave_data, LENGTH(onewire_slave_data)*8);
} else if (0xf0==onewire_slave_function_code) { // master will read data
onewire_slave_function_write(onewire_slave_data, LENGTH(onewire_slave_data)*8);
} else if (0x23==onewire_slave_function_code) { // master will first write data, then read
onewire_slave_function_read(onewire_slave_data, LENGTH(onewire_slave_data)*8);
}
}
while (onewire_slave_transfer_complete) {
onewire_slave_transfer_complete = false; // reset flag
action = true; // action has been performed
printf("1-Wire transfer complete\n");
if (0x55==onewire_slave_function_code) { // master wrote data
printf("data read: ");
for (uint8_t i=0; i<LENGTH(onewire_slave_data); i++) {
printf("0x%02x ", onewire_slave_data[i]);
}
printf("\n");
} else if (0xf0==onewire_slave_function_code) { // master read data
printf("data written: ");
for (uint8_t i=0; i<LENGTH(onewire_slave_data); i++) {
printf("0x%02x ", onewire_slave_data[i]);
}
printf("\n");
} else if (0x23==onewire_slave_function_code) { // master write then read data
printf("data read/written: ");
for (uint8_t i=0; i<LENGTH(onewire_slave_data); i++) {
printf("0x%02x ", onewire_slave_data[i]);
}
printf("\n");
onewire_slave_function_write(onewire_slave_data, LENGTH(onewire_slave_data)*8);
}
}
if (action) { // go to sleep if nothing had to be done, else recheck for activity
action = false;
} else {
__WFI(); // go to sleep
}
} // main loop
}
/** @brief interrupt service routine called when tick passed on RTC */
void rtc_isr(void)
{
rtc_clear_flag(RTC_SEC); // clear flag
rtc_internal_tick_flag = true; // notify to show new time
}