stm32f1/lib/i2c_master.h

133 lines
5.9 KiB
C

/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/** library to communicate using I2C as master (API)
* @file i2c_master.h
* @author King Kévin <kingkevin@cuvoodoo.info>
* @date 2017-2018
* @note peripherals used: I2C
*/
#pragma once
/** I2C return codes */
enum i2c_master_rc {
I2C_MASTER_RC_NONE = 0, /**< no error */
I2C_MASTER_RC_START_STOP_IN_PROGESS, /**< a start or stop condition is already in progress */
I2C_MASTER_RC_NOT_MASTER, /**< not in master mode */
I2C_MASTER_RC_NOT_TRANSMIT, /**< not in transmit mode */
I2C_MASTER_RC_NOT_RECEIVE, /**< not in receive mode */
I2C_MASTER_RC_NOT_READY, /**< slave is not read (previous operations has been nacked) */
I2C_MASTER_RC_NAK, /**< not acknowledge received */
I2C_MASTER_RC_BUS_ERROR, /**< an error on the I2C bus occurred */
};
/** setup I2C peripheral
* @param[in] i2c I2C base address
* @param[in] frequency frequency to use in kHz (1-400)
* @note Standard mode (Sm) is used for frequencies up to 100 kHz, and Fast mode (Fm) is used for frequencies up to 400 kHz
*/
void i2c_master_setup(uint32_t i2c, uint16_t frequency);
/** release I2C peripheral
* @param[in] i2c I2C base address
*/
void i2c_master_release(uint32_t i2c);
/** reset I2C peripheral, fixing any locked state
* @warning the I2C peripheral needs to be re-setup
* @note to be used after failed start or stop, and bus error
* @param[in] i2c I2C base address
*/
void i2c_master_reset(uint32_t i2c);
/** check if SDA and SCL signals are high
* @param[in] i2c I2C base address
* @return SDA and SCL signals are high
*/
bool i2c_master_check_signals(uint32_t i2c);
/** send start condition
* @param[in] i2c I2C base address
* @return I2C return code
*/
enum i2c_master_rc i2c_master_start(uint32_t i2c);
/** select I2C slave device
* @warning a start condition should be sent before this operation
* @param[in] i2c I2C base address
* @param[in] slave I2C address of slave device to select
* @param[in] address_10bit if the I2C slave address is 10 bits wide
* @param[in] write this transaction will be followed by a read (false) or write (true) operation
* @return I2C return code
*/
enum i2c_master_rc i2c_master_select_slave(uint32_t i2c, uint16_t slave, bool address_10bit, bool write);
/** read data over I2C
* @warning the slave device must be selected before this operation
* @param[in] i2c I2C base address
* @param[out] data array to store bytes read
* @param[in] data_size number of bytes to read
* @return I2C return code
*/
enum i2c_master_rc i2c_master_read(uint32_t i2c, uint8_t* data, size_t data_size);
/** write data over I2C
* @warning the slave device must be selected before this operation
* @param[in] i2c I2C base address
* @param[in] data array of byte to write to slave
* @param[in] data_size number of bytes to write
* @return I2C return code
*/
enum i2c_master_rc i2c_master_write(uint32_t i2c, const uint8_t* data, size_t data_size);
/** sent stop condition
* @param[in] i2c I2C base address
* @return I2C return code
*/
enum i2c_master_rc i2c_master_stop(uint32_t i2c);
/** read data from slave device
* @warning the slave device must be selected before this operation
* @param[in] i2c I2C base address
* @param[in] slave I2C address of slave device to select
* @param[in] address_10bit if the I2C slave address is 10 bits wide
* @param[out] data array to store bytes read
* @param[in] data_size number of bytes to read
* @return I2C return code
*/
enum i2c_master_rc i2c_master_slave_read(uint32_t i2c, uint16_t slave, bool address_10bit, uint8_t* data, size_t data_size);
/** write data to slave device
* @warning the slave device must be selected before this operation
* @param[in] i2c I2C base address
* @param[in] slave I2C address of slave device to select
* @param[in] address_10bit if the I2C slave address is 10 bits wide
* @param[in] data array of byte to write to slave
* @param[in] data_size number of bytes to write
* @return I2C return code
*/
enum i2c_master_rc i2c_master_slave_write(uint32_t i2c, uint16_t slave, bool address_10bit, const uint8_t* data, size_t data_size);
/** read data at specific address from an I2C memory slave
* @param[in] i2c I2C base address
* @param[in] slave I2C address of slave device to select
* @param[in] address_10bit if the I2C slave address is 10 bits wide
* @param[in] address memory address of slave to read from
* @param[in] address_size address size in bytes
* @param[out] data array to store bytes read
* @param[in] data_size number of bytes to read
* @return I2C return code
*/
enum i2c_master_rc i2c_master_address_read(uint32_t i2c, uint16_t slave, bool address_10bit, const uint8_t* address, size_t address_size, uint8_t* data, size_t data_size);
/** write data at specific address on an I2C memory slave
* @param[in] i2c I2C base address
* @param[in] slave I2C address of slave device to select
* @param[in] address_10bit if the I2C slave address is 10 bits wide
* @param[in] address memory address of slave to write to
* @param[in] address_size address size in bytes
* @param[in] data array of byte to write to slave
* @param[in] data_size number of bytes to write
* @return I2C return code
*/
enum i2c_master_rc i2c_master_address_write(uint32_t i2c, uint16_t slave, bool address_10bit, const uint8_t* address, size_t address_size, const uint8_t* data, size_t data_size);