stm32f1/lib/sensor_pzem.c

215 lines
9.8 KiB
C

/* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/** library to query measurements from peacefair PZEM-004 and PZEM-004T electricity meter (code)
* @file sensor_pzem.c
* @author King Kévin <kingkevin@cuvoodoo.info>
* @date 2016
* @note peripherals used: USART @ref sensor_pzem_usart, timer @ref sensor_pzem_timer
*/
/* standard libraries */
#include <stdint.h> // standard integer types
#include <stdlib.h> // general utilities
/* STM32 (including CM3) libraries */
#include <libopencmsis/core_cm3.h> // Cortex M3 utilities
#include <libopencm3/cm3/nvic.h> // interrupt handler
#include <libopencm3/stm32/rcc.h> // real-time control clock library
#include <libopencm3/stm32/gpio.h> // general purpose input output library
#include <libopencm3/stm32/usart.h> // universal synchronous asynchronous receiver transmitter library
#include <libopencm3/stm32/timer.h> // timer utilities
/* own libraries */
#include "sensor_pzem.h" // PZEM electricity meter header and definitions
#include "global.h" // common methods
/** @defgroup sensor_pzem_usart USART peripheral used for communication with electricity meter
* @{
*/
#define SENSOR_PZEM_USART 2 /**< USART peripheral */
/** @} */
/** @defgroup sensor_pzem_timer timer peripheral used for waiting before sending the next request
* @{
*/
#define SENSOR_PZEM_TIMER 2 /**< timer peripheral */
/** @} */
/* input and output ring buffer, indexes, and available memory */
static uint8_t rx_buffer[7] = {0}; /**< buffer for received response */
static volatile uint8_t rx_i = 0; /**< current position of read received data */
static uint8_t tx_buffer[7] = {0}; /**< buffer for request to transmit */
static volatile uint8_t tx_i = 0; /**< current position of transmitted data */
volatile bool sensor_pzem_measurement_received = false;
void sensor_pzem_setup(void)
{
/* enable USART I/O peripheral */
rcc_periph_clock_enable(RCC_AFIO); // enable pin alternate function (USART)
rcc_periph_clock_enable(USART_PORT_RCC(SENSOR_PZEM_USART)); // enable clock for USART port peripheral
rcc_periph_clock_enable(USART_RCC(SENSOR_PZEM_USART)); // enable clock for USART peripheral
gpio_set_mode(USART_PORT(SENSOR_PZEM_USART), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, USART_PIN_TX(SENSOR_PZEM_USART)); // setup GPIO pin USART transmit
gpio_set_mode(USART_PORT(SENSOR_PZEM_USART), GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, USART_PIN_RX(SENSOR_PZEM_USART)); // setup GPIO pin USART receive
gpio_set(USART_PORT(SENSOR_PZEM_USART), USART_PIN_RX(SENSOR_PZEM_USART)); // pull up to avoid noise when not connected
/* setup USART parameters for electricity meter: 9600 8N1 */
usart_set_baudrate(USART(SENSOR_PZEM_USART), 9600); // the electricity meter uses a fixed baud rate of 9600 bps
usart_set_databits(USART(SENSOR_PZEM_USART), 8);
usart_set_stopbits(USART(SENSOR_PZEM_USART), USART_STOPBITS_1);
usart_set_mode(USART(SENSOR_PZEM_USART), USART_MODE_TX_RX);
usart_set_parity(USART(SENSOR_PZEM_USART), USART_PARITY_NONE);
usart_set_flow_control(USART(SENSOR_PZEM_USART), USART_FLOWCONTROL_NONE);
nvic_enable_irq(USART_IRQ(SENSOR_PZEM_USART)); // enable the USART interrupt
usart_enable_rx_interrupt(USART(SENSOR_PZEM_USART)); // enable receive interrupt
usart_enable(USART(SENSOR_PZEM_USART)); // enable USART
// setup timer to wait for minimal time before next transmission (after previous transmission or reception)
rcc_periph_clock_enable(RCC_TIM(SENSOR_PZEM_TIMER)); // enable clock for timer block
timer_reset(TIM(SENSOR_PZEM_TIMER)); // reset timer state
timer_set_mode(TIM(SENSOR_PZEM_TIMER), TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP); // set timer mode, use undivided timer clock,edge alignment (simple count), and count up
timer_one_shot_mode(TIM(SENSOR_PZEM_TIMER)); // stop counter after update event (we only need to count down once)
timer_set_prescaler(TIM(SENSOR_PZEM_TIMER), 550-1); // set the prescaler so this 16 bits timer allows to wait for maximum 500 ms ( 1/(72E6/550/(2**16))=500.62ms )
timer_set_period(TIM(SENSOR_PZEM_TIMER), 0xffff/2); // the timing is not defined in the specification. I tested until the communication was reliable (all requests get an response)
timer_clear_flag(TIM(SENSOR_PZEM_TIMER), TIM_SR_UIF); // clear flag
timer_enable_irq(TIM(SENSOR_PZEM_TIMER), TIM_DIER_UIE); // enable update interrupt for timer
nvic_enable_irq(NVIC_TIM_IRQ(SENSOR_PZEM_TIMER)); // catch interrupt in service routine
/* reset buffer states */
tx_i = LENGTH(tx_buffer);
rx_i = 0;
sensor_pzem_measurement_received = false;
}
void sensor_pzem_measurement_request(uint32_t address, enum sensor_pzem_measurement_type_t type)
{
if (tx_i<LENGTH(tx_buffer)) { // transmission is ongoing
return;
}
if (type>=SENSOR_PZEM_MAX) { // invalid type
return;
}
tx_buffer[0] = 0xB0+type; // set request nibble and type nibble
tx_buffer[1] = (address>>24)&0xff; // set address
tx_buffer[2] = (address>>16)&0xff; // set address
tx_buffer[3] = (address>>8)&0xff; // set address
tx_buffer[4] = (address>>0)&0xff; // set address
tx_buffer[5] = 0; // only used to set alarm
tx_buffer[6] = 0; // to calculate checksum (sum of all previous bytes)
for (uint8_t i=0; i<LENGTH(tx_buffer)-1; i++) {
tx_buffer[6] += tx_buffer[i]; // calculate buffer
}
tx_i = 0; // remember we have a message to send
if (TIM_CR1(TIM(SENSOR_PZEM_TIMER))&TIM_CR1_CEN) { // timer is already running
// at the end of the timer the transmission will start automatically
} else { // no timer is running
usart_enable_tx_interrupt(USART(SENSOR_PZEM_USART)); // enable interrupt to start sending bytes
//usart_send(USART(SENSOR_PZEM_USART),tx_buffer[tx_i++]); // start transmission
}
sensor_pzem_measurement_received = false; // reset flag
rx_i = 0; // prepare buffer to receive next measurement
}
struct sensor_pzem_measurement_t sensor_pzem_measurement_decode(void)
{
struct sensor_pzem_measurement_t measurement; // decoded measurement to return
measurement.valid = false; // wait until the end to ensure validity
if (rx_i<LENGTH(rx_buffer)) { // buffer is not full, thus no measurement received
return measurement;
}
if ((rx_buffer[0]&0xf0)!=0xa0) { // not a response received
return measurement;
}
if ((rx_buffer[0]&0x0f)>=SENSOR_PZEM_MAX) { // not a valid response type received (actually 4 and 5 are valid, but should not happen when using this code
return measurement;
}
uint8_t checksum = 0; // calculate checksum (sum of all other bytes)
for (uint8_t i=0; i<LENGTH(rx_buffer)-1; i++) {
checksum += rx_buffer[i]; // calculate buffer
}
if (checksum!=rx_buffer[6]) { // checksum does not match
return measurement;
}
measurement.valid = true; // all checks passed
measurement.type = rx_buffer[0]&0x0f; // save type
switch (measurement.type) { // decode value depending on type
case SENSOR_PZEM_VOLTAGE:
measurement.value.voltage = ((uint16_t)rx_buffer[1]<<8)+rx_buffer[2]+rx_buffer[3]*0.1;
break;
case SENSOR_PZEM_CURRENT:
measurement.value.current = rx_buffer[2]+rx_buffer[3]*0.01;
break;
case SENSOR_PZEM_POWER:
measurement.value.power = ((uint16_t)rx_buffer[1]<<8)+rx_buffer[2];
break;
case SENSOR_PZEM_ENERGY:
measurement.value.energy = ((uint32_t)rx_buffer[1]<<16)+((uint16_t)rx_buffer[2]<<8)+rx_buffer[3];
break;
/* not used in this application
case SENSOR_PZEM_ADDRESS:
case SENSOR_PZEM_ALARM:
break; // no value is returned
*/
default:
measurement.valid = false; // unexpected type
}
sensor_pzem_measurement_received = false; // reset flag
rx_i = 0; // prepare buffer to receive next measurement
return measurement;
}
/** USART interrupt service routine called when data has been transmitted or received */
void USART_ISR(SENSOR_PZEM_USART)(void)
{
if (usart_get_interrupt_source(USART(SENSOR_PZEM_USART), USART_SR_TXE)) { // data has been transmitted
if (tx_i<LENGTH(tx_buffer)) { // not all bytes transmitted
usart_send(USART(SENSOR_PZEM_USART),tx_buffer[tx_i++]); // transmit next byte
} else { // request transmitted
usart_disable_tx_interrupt(USART(SENSOR_PZEM_USART)); // disable transmit interrupt
timer_set_counter(TIM(SENSOR_PZEM_TIMER), 0); // reset timer counter to get preset waiting time
timer_enable_counter(TIM(SENSOR_PZEM_TIMER)); // start timer between requests
}
}
if (usart_get_interrupt_source(USART(SENSOR_PZEM_USART), USART_SR_RXNE)) { // data has been received
if (rx_i<LENGTH(rx_buffer)) { // receiving response
rx_buffer[rx_i++] = usart_recv(USART(SENSOR_PZEM_USART)); // put received byte in buffer
if (rx_i>=LENGTH(rx_buffer)) { // buffer full
sensor_pzem_measurement_received = true; // notify used response has been received
}
} else { // previous response not read before receiving the next
usart_recv(USART(SENSOR_PZEM_USART)); // drop received buffer
}
timer_set_counter(TIM(SENSOR_PZEM_TIMER), 0); // reset timer counter to get preset waiting time
timer_enable_counter(TIM(SENSOR_PZEM_TIMER)); // start timer between requests
}
}
/** interrupt service routine called on timeout */
void TIM_ISR(SENSOR_PZEM_TIMER)(void)
{
if (timer_get_flag(TIM(SENSOR_PZEM_TIMER), TIM_SR_UIF)) { // update event happened
timer_clear_flag(TIM(SENSOR_PZEM_TIMER), TIM_SR_UIF); // clear flag
if (tx_i<LENGTH(tx_buffer)) { // bytes are waiting to be sent
usart_enable_tx_interrupt(USART(SENSOR_PZEM_USART)); // enable interrupt to start sending bytes
}
}
}