stm32f1/lib/uart_soft.c

435 lines
26 KiB
C

/** library to control up to 4 independent receive and transmit software UART ports
* @file
* @author King Kévin <kingkevin@cuvoodoo.info>
* @copyright SPDX-License-Identifier: GPL-3.0-or-later
* @date 2016-2020
* @note peripherals used: GPIO @ref uart_soft_gpio, timer @ref uart_soft_timer
*/
/* standard libraries */
#include <stdint.h> // standard integer types
#include <stdlib.h> // general utilities
#include <string.h> // memory utilisites
/* STM32 (including CM3) libraries */
#include <libopencm3/stm32/rcc.h> // real-time control clock library
#include <libopencm3/stm32/gpio.h> // general purpose input output library
#include <libopencm3/stm32/timer.h> // timer library
#include <libopencm3/cm3/nvic.h> // interrupt handler
#include <libopencm3/stm32/exti.h> // external interrupt defines
#include <libopencmsis/core_cm3.h> // Cortex M3 utilities
#include "uart_soft.h" // software UART library API
#include "global.h" // common methods
/** @defgroup uart_soft_gpio GPIO used for the software 4 UART ports
* @note comment if unused
* @warning only one port must be used per line (pin number)
* @{
*/
#define UART_SOFT_RX0_GPIO PB14 /**< pin for receive signal for UART port 0 */
//#define UART_SOFT_RX1_GPIO PA0 /**< pin for receive signal for UART port 1 */
//#define UART_SOFT_RX2_GPIO PA0 /**< pin for receive signal for UART port 2 */
//#define UART_SOFT_RX3_GPIO PA0 /**< pin for receive signal for UART port 3 */
#define UART_SOFT_TX0_GPIO PB13 /**< pin for transmit signal for UART port 0 */
//#define UART_SOFT_TX1_GPIO PA0 /**< pin for transmit signal for UART port 1 */
//#define UART_SOFT_TX2_GPIO PA0 /**< pin for transmit signal for UART port 2 */
//#define UART_SOFT_TX3_GPIO PA0 /**< pin for transmit signal for UART port 3 */
/** @} */
#if defined(UART_SOFT_RX3_GPIO) || defined(UART_SOFT_TX3_GPIO)
#define UART_NB 4 /*< number of UART ports */
#elif defined(UART_SOFT_RX2_GPIO) || defined(UART_SOFT_TX2_GPIO)
#define UART_NB 3 /*< number of UART ports */
#elif defined(UART_SOFT_RX1_GPIO) || defined(UART_SOFT_TX1_GPIO)
#define UART_NB 2 /*< number of UART ports */
#elif defined(UART_SOFT_RX0_GPIO) || defined(UART_SOFT_TX0_GPIO)
#define UART_NB 1 /*< number of UART ports */
#else
#define UART_NB 0 /*< number of UART ports */
#endif
/** buffer size for receive and transmit buffers (must be a power of 2) */
#define UART_SOFT_BUFFER 128
/** UART receive state definition */
struct soft_uart_rx_state {
uint32_t port; /**< UART receive port */
uint16_t pin; /**< UART receive pin */
uint32_t rcc; /**< UART receive port peripheral clock */
uint32_t exti; /**< UART receive external interrupt */
uint32_t irq; /**< UART receive interrupt request */
uint32_t baudrate; /**< UART receive baud rate (in timer ticks, not bps) */
volatile uint16_t state; /**< GPIO state for receive pin */
volatile uint8_t bit; /**< next UART frame bit to receive */
volatile uint8_t byte; /**< byte being received */
volatile uint8_t buffer[UART_SOFT_BUFFER]; /**< receive buffer */
volatile uint8_t buffer_i; /**< index of current data to be read out */
volatile uint8_t buffer_used; /**< how much data is available */
};
/** UART transmit state definition */
struct soft_uart_tx_state {
uint32_t port; /**< UART receive port */
uint16_t pin; /**< UART receive pin */
uint32_t rcc; /**< UART receive port peripheral clock */
uint32_t baudrate; /**< UART receive baud rate (in timer ticks, not bps) */
volatile uint8_t bit; /**< next UART frame bit to transmit */
volatile uint8_t byte; /**< byte being transmitted */
volatile uint8_t buffer[UART_SOFT_BUFFER]; /**< receive buffer */
volatile uint8_t buffer_i; /**< index of current data to be read out */
volatile uint8_t buffer_used; /**< how much data is available */
volatile bool transmit; /**< flag to know it transmission is ongoing */
};
static struct soft_uart_rx_state uart_soft_rx_states[UART_NB]; /**< states of UART receive ports */
static struct soft_uart_tx_state uart_soft_tx_states[UART_NB]; /**< states of UART transmit ports */
volatile bool uart_soft_received[4] = {false, false, false, false};
/** @defgroup uart_soft_timer timer used to sample UART signals
* @{
*/
#if defined(UART_SOFT_RX0_GPIO) || defined(UART_SOFT_RX1_GPIO) || defined(UART_SOFT_RX2_GPIO) || defined(UART_SOFT_RX3_GPIO)
#define UART_SOFT_RX_TIMER 3 /**< timer peripheral for receive signals */
#endif
#if defined(UART_SOFT_TX0_GPIO) || defined(UART_SOFT_TX1_GPIO) || defined(UART_SOFT_TX2_GPIO) || defined(UART_SOFT_TX3_GPIO)
#define UART_SOFT_TX_TIMER 4 /**< timer peripheral for transmit signals */
#endif
/** @} */
static const uint32_t timer_flags[4] = {TIM_SR_CC1IF, TIM_SR_CC2IF, TIM_SR_CC3IF, TIM_SR_CC4IF}; /**< the interrupt flags for the compare units */
static const uint32_t timer_interrupt[4] = {TIM_DIER_CC1IE, TIM_DIER_CC2IE, TIM_DIER_CC3IE, TIM_DIER_CC4IE}; /**< the interrupt enable for the compare units */
static const enum tim_oc_id timer_oc[4] = {TIM_OC1, TIM_OC2, TIM_OC3, TIM_OC4}; /**< the output compares for the compare units */
bool uart_soft_setup(const uint32_t* rx_baudrates, const uint32_t* tx_baudrates)
{
// save UART receive definition
memset(&uart_soft_rx_states, 0, sizeof(uart_soft_rx_states)); // initialize receiver configuration array
#if defined(UART_SOFT_RX0_GPIO)
uart_soft_rx_states[0].port = GPIO_PORT(UART_SOFT_RX0_GPIO); // save receive port
uart_soft_rx_states[0].pin = GPIO_PIN(UART_SOFT_RX0_GPIO); // save receive pin
uart_soft_rx_states[0].rcc = GPIO_RCC(UART_SOFT_RX0_GPIO); // save receive port peripheral clock
uart_soft_rx_states[0].exti = GPIO_EXTI(UART_SOFT_RX0_GPIO); // save receive external interrupt
uart_soft_rx_states[0].irq = GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX0_GPIO); // save receive interrupt request
#endif
#if defined(UART_SOFT_RX1_GPIO)
uart_soft_rx_states[1].port = GPIO_PORT(UART_SOFT_RX1_GPIO); // save receive port
uart_soft_rx_states[1].pin = GPIO_PIN(UART_SOFT_RX1_GPIO); // save receive pin
uart_soft_rx_states[1].rcc = GPIO_RCC(UART_SOFT_RX1_GPIO); // save receive port peripheral clock
uart_soft_rx_states[1].exti = GPIO_EXTI(UART_SOFT_RX1_GPIO); // save receive external interrupt
uart_soft_rx_states[1].irq = GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX1_GPIO); // save receive interrupt request
#endif
#if defined(UART_SOFT_RX2_GPIO)
uart_soft_rx_states[2].port = GPIO_PORT(UART_SOFT_RX2_GPIO); // save receive port
uart_soft_rx_states[2].pin = GPIO_PIN(UART_SOFT_RX2_GPIO); // save receive pin
uart_soft_rx_states[2].rcc = GPIO_RCC(UART_SOFT_RX2_GPIO); // save receive port peripheral clock
uart_soft_rx_states[2].exti = GPIO_EXTI(UART_SOFT_RX2_GPIO); // save receive external interrupt
uart_soft_rx_states[2].irq = GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX2_GPIO); // save receive interrupt request
#endif
#if defined(UART_SOFT_RX3_GPIO)
uart_soft_rx_states[3].port = GPIO_PORT(UART_SOFT_RX3_GPIO); // save receive port
uart_soft_rx_states[3].pin = GPIO_PIN(UART_SOFT_RX3_GPIO); // save receive pin
uart_soft_rx_states[3].rcc = GPIO_RCC(UART_SOFT_RX3_GPIO); // save receive port peripheral clock
uart_soft_rx_states[3].exti = GPIO_EXTI(UART_SOFT_RX3_GPIO); // save receive external interrupt
uart_soft_rx_states[3].irq = GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX3_GPIO); // save receive interrupt request
#endif
// setup UART receive GPIO
for (uint8_t rx = 0; rx < UART_NB; rx++) {
if (0 == uart_soft_rx_states[rx].port) { // verify is receive UART is defined
continue; // skip configuration if not defined
}
if (!rx_baudrates || 0 == rx_baudrates[rx]) { // verify if receive baud rate has been defined
return false;
}
uart_soft_rx_states[rx].baudrate = rcc_ahb_frequency / rx_baudrates[rx] - 1; // save baud rate
rcc_periph_clock_enable(uart_soft_rx_states[rx].rcc); // enable clock for GPIO peripheral
gpio_set(uart_soft_rx_states[rx].port, uart_soft_rx_states[rx].pin); // pull up to avoid noise when not connected
gpio_set_mode(uart_soft_rx_states[rx].port, GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, uart_soft_rx_states[rx].pin); // setup GPIO pin UART receive
rcc_periph_clock_enable(RCC_AFIO); // enable alternate function clock for external interrupt
exti_select_source(uart_soft_rx_states[rx].exti, uart_soft_rx_states[rx].port); // mask external interrupt of this pin only for this port
exti_enable_request(uart_soft_rx_states[rx].exti); // enable external interrupt
exti_set_trigger(uart_soft_rx_states[rx].exti, EXTI_TRIGGER_BOTH); // trigger when button is pressed
nvic_enable_irq(uart_soft_rx_states[rx].irq); // enable interrupt
uart_soft_rx_states[rx].state = gpio_get(uart_soft_rx_states[rx].port, uart_soft_rx_states[rx].pin); // save state of GPIO
uart_soft_rx_states[rx].bit = 0; // reset bits received
}
// save UART transmit definition
memset(&uart_soft_tx_states, 0, sizeof(uart_soft_tx_states)); // initialize transmitter configuration array
#if defined(UART_SOFT_TX0_GPIO)
uart_soft_tx_states[0].port = GPIO_PORT(UART_SOFT_TX0_GPIO); // save receive port
uart_soft_tx_states[0].pin = GPIO_PIN(UART_SOFT_TX0_GPIO); // save receive pin
uart_soft_tx_states[0].rcc = GPIO_RCC(UART_SOFT_TX0_GPIO); // save receive port peripheral clock
#endif
#if defined(UART_SOFT_TX1_GPIO)
uart_soft_tx_states[1].port = GPIO_PORT(UART_SOFT_TX1_GPIO); // save receive port
uart_soft_tx_states[1].pin = GPIO_PIN(UART_SOFT_TX1_GPIO); // save receive pin
uart_soft_tx_states[1].rcc = GPIO_RCC(UART_SOFT_TX1_GPIO); // save receive port peripheral clock
#endif
#if defined(UART_SOFT_TX2_GPIO)
uart_soft_tx_states[2].port = GPIO_PORT(UART_SOFT_TX2_GPIO); // save receive port
uart_soft_tx_states[2].pin = GPIO_PIN(UART_SOFT_TX2_GPIO); // save receive pin
uart_soft_tx_states[2].rcc = GPIO_RCC(UART_SOFT_TX2_GPIO); // save receive port peripheral clock
#endif
#if defined(UART_SOFT_TX3_GPIO)
uart_soft_tx_states[3].port = GPIO_PORT(UART_SOFT_TX3_GPIO); // save receive port
uart_soft_tx_states[3].pin = GPIO_PIN(UART_SOFT_TX3_GPIO); // save receive pin
uart_soft_tx_states[3].rcc = GPIO_RCC(UART_SOFT_TX3_GPIO); // save receive port peripheral clock
#endif
// setup UART transmit GPIO
for (uint8_t tx = 0; tx < UART_NB; tx++) {
if (0 == uart_soft_tx_states[tx].port) { // verify is transmit UART is defined
continue; // skip configuration if not defined
}
if (!tx_baudrates || 0 == tx_baudrates[tx]) { // verify if transmit baud rate has been defined
return false;
}
uart_soft_tx_states[tx].baudrate = rcc_ahb_frequency / tx_baudrates[tx] - 1; // save baud rate
rcc_periph_clock_enable(uart_soft_tx_states[tx].rcc); // enable clock for GPIO peripheral
gpio_set_mode(uart_soft_tx_states[tx].port, GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, uart_soft_tx_states[tx].pin); // setup GPIO UART transmit pin
gpio_set(uart_soft_tx_states[tx].port, uart_soft_tx_states[tx].pin); // idle high
}
rcc_periph_clock_enable(GPIO_RCC(PB12));
gpio_set_mode(GPIO_PORT(PB12), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, GPIO_PIN(PB12));
// setup timer
#if defined(UART_SOFT_RX_TIMER)
rcc_periph_clock_enable(RCC_TIM(UART_SOFT_RX_TIMER)); // enable clock for timer peripheral
rcc_periph_reset_pulse(RST_TIM(UART_SOFT_RX_TIMER)); // reset timer state
timer_set_mode(TIM(UART_SOFT_RX_TIMER), TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP); // set timer mode, use undivided timer clock, edge alignment (simple count), and count up
timer_set_prescaler(TIM(UART_SOFT_RX_TIMER), 0); // prescaler to be able to sample 2400-115200 bps (72MHz/2^16=1099<2400bps)
nvic_enable_irq(NVIC_TIM_IRQ(UART_SOFT_RX_TIMER)); // allow interrupt for timer
timer_enable_counter(TIM(UART_SOFT_RX_TIMER)); // start timer to generate interrupts for the receive pins
#endif
#if defined(UART_SOFT_TX_TIMER)
rcc_periph_clock_enable(RCC_TIM(UART_SOFT_TX_TIMER)); // enable clock for timer peripheral
rcc_periph_reset_pulse(RST_TIM(UART_SOFT_TX_TIMER)); // reset timer state
timer_set_mode(TIM(UART_SOFT_TX_TIMER), TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP); // set timer mode, use undivided timer clock, edge alignment (simple count), and count up
timer_set_prescaler(TIM(UART_SOFT_TX_TIMER), 0); // prescaler to be able to output 2400-115200 bps (72MHz/2^16=1099<2400bps)
nvic_enable_irq(NVIC_TIM_IRQ(UART_SOFT_TX_TIMER)); // allow interrupt for timer
timer_enable_counter(TIM(UART_SOFT_TX_TIMER)); // start timer to generate interrupts for the transmit pins
#endif
return true; // setup completed
}
#if defined(UART_SOFT_RX_TIMER)
uint8_t uart_soft_getbyte(uint8_t uart)
{
if (uart >= UART_NB || 0 == uart_soft_rx_states[uart].port) { // ensure receive UART port is defined
return 0;
}
if (0 == uart_soft_rx_states[uart].buffer_used) { // there is no data in the buffer
return 0;
}
nvic_disable_irq(uart_soft_rx_states[uart].irq); // disable interrupt to protect the state of the buffer (interrupt can still get pending)
uint8_t to_return = uart_soft_rx_states[uart].buffer[uart_soft_rx_states[uart].buffer_i]; // get the next available character
uart_soft_rx_states[uart].buffer_i = (uart_soft_rx_states[uart].buffer_i + 1) & (LENGTH(uart_soft_rx_states[uart].buffer) - 1); // update used buffer
uart_soft_rx_states[uart].buffer_used--; // update used buffer
nvic_enable_irq(uart_soft_rx_states[uart].irq); // re-enable interrupt since critical part is finished
uart_soft_received[uart] = (0 != uart_soft_rx_states[uart].buffer_used); // notify user if data is available
return to_return;
}
/** timer interrupt service routine to generate parse receive signal */
void TIM_ISR(UART_SOFT_RX_TIMER)(void)
{
for (uint8_t rx = 0; rx < UART_NB; rx++) {
if (timer_interrupt_source(TIM(UART_SOFT_RX_TIMER), timer_flags[rx])) { // got a match on compare for receive pin
timer_clear_flag(TIM(UART_SOFT_RX_TIMER), timer_flags[rx]); // clear flag
if (0 == uart_soft_rx_states[rx].port) { // verify if RX exists
continue; // skip if receive port is not defined it
}
gpio_toggle(GPIO_PORT(PB12), GPIO_PIN(PB12));
uart_soft_rx_states[rx].byte += ((0 == gpio_get(uart_soft_rx_states[rx].port, uart_soft_rx_states[rx].pin) ? 0 : 1) << (uart_soft_rx_states[rx].bit - 1)); // save bit value
if (uart_soft_rx_states[rx].bit < 8) { // not the last bit received
timer_set_oc_value(TIM(UART_SOFT_RX_TIMER), timer_oc[rx], timer_get_counter(TIM(UART_SOFT_RX_TIMER)) + uart_soft_rx_states[rx].baudrate); // set timer to next bit
uart_soft_rx_states[rx].bit++; // wait for next bit
} else { // last bit received
if (uart_soft_rx_states[rx].buffer_used >= LENGTH(uart_soft_rx_states[rx].buffer)) { // buffer is full
uart_soft_rx_states[rx].buffer_i = (uart_soft_rx_states[rx].buffer_i + 1) & (LENGTH(uart_soft_rx_states[rx].buffer) - 1); // drop oldest byte
uart_soft_rx_states[rx].buffer_used--; // update buffer usage
}
uart_soft_rx_states[rx].buffer[(uart_soft_rx_states[rx].buffer_i + uart_soft_rx_states[rx].buffer_used) & (LENGTH(uart_soft_rx_states[rx].buffer) - 1)] = uart_soft_rx_states[rx].byte; // put byte in buffer
uart_soft_rx_states[rx].buffer_used++; // update used buffer
uart_soft_received[rx] = true; // notify user data is available
timer_disable_irq(TIM(UART_SOFT_RX_TIMER), timer_interrupt[rx]); // stop interrupting
uart_soft_rx_states[rx].bit = 0; // next bit should be first bit of next byte
}
}
}
}
#endif
#if defined(UART_SOFT_TX_TIMER)
void uart_soft_flush(uint8_t uart)
{
if (uart >= UART_NB || 0 == uart_soft_tx_states[uart].port) { // ensure transmit UART port is defined
return; // return
}
while (uart_soft_tx_states[uart].buffer_used) { // idle until buffer is empty
__WFI(); // sleep until interrupt
}
while (uart_soft_tx_states[uart].transmit) { // idle until transmission is complete
__WFI(); // sleep until interrupt
}
}
/** start transmitting a byte from the buffer
* @param[in] uart UART port used for transmission
*/
static void uart_soft_transmit(uint8_t uart) {
if (uart >= UART_NB || 0 == uart_soft_tx_states[uart].port) { // ensure transmit UART port is defined
return; // UART transmit port not defined
}
if (uart_soft_tx_states[uart].transmit) { // already transmitting
return; // transmission is already ongoing
}
if (!uart_soft_tx_states[uart].buffer_used) { // no buffered data to transmit
return; // nothing to transmit
}
timer_disable_irq(TIM(UART_SOFT_TX_TIMER), timer_interrupt[uart]); // disable interrupt to protect the state of the buffer (interrupt can still get pending)
uart_soft_tx_states[uart].byte = uart_soft_tx_states[uart].buffer[uart_soft_tx_states[uart].buffer_i]; // get byte
uart_soft_tx_states[uart].buffer_i = (uart_soft_tx_states[uart].buffer_i + 1) & (LENGTH(uart_soft_tx_states[uart].buffer) - 1); // update index
uart_soft_tx_states[uart].buffer_used--; // update used buffer
uart_soft_tx_states[uart].bit = 0; // LSb is transmitted first
uart_soft_tx_states[uart].transmit = true; // start transmission
gpio_clear(uart_soft_tx_states[uart].port, uart_soft_tx_states[uart].pin); // output start bit
timer_set_oc_value(TIM(UART_SOFT_TX_TIMER), timer_oc[uart], timer_get_counter(TIM(UART_SOFT_TX_TIMER)) + uart_soft_tx_states[uart].baudrate); // set timer to output UART frame 1 (data bit 0) in 1 bit
timer_clear_flag(TIM(UART_SOFT_TX_TIMER), timer_flags[uart]); // clear flag before enabling interrupt
timer_enable_irq(TIM(UART_SOFT_TX_TIMER), timer_interrupt[uart]); // enable timer IRQ for TX for this UART
}
void uart_soft_putbyte_nonblocking(uint8_t uart, uint8_t byte)
{
if (uart >= UART_NB || 0 == uart_soft_tx_states[uart].port) { // ensure transmit UART port is defined
return; // return
}
while (uart_soft_tx_states[uart].buffer_used >= LENGTH(uart_soft_tx_states[uart].buffer)); // wait until there is place in the buffer
timer_disable_irq(TIM(UART_SOFT_TX_TIMER), timer_interrupt[uart]); // disable interrupt to protect the state of the buffer (interrupt can still get pending)
uart_soft_tx_states[uart].buffer[(uart_soft_tx_states[uart].buffer_i + uart_soft_tx_states[uart].buffer_used) & (LENGTH(uart_soft_tx_states[uart].buffer) - 1)] = byte; // save byte to be transmitted
uart_soft_tx_states[uart].buffer_used++; // update used buffer
timer_enable_irq(TIM(UART_SOFT_TX_TIMER), timer_interrupt[uart]); // re-enable interrupts to resume transmission
uart_soft_transmit(uart); // start transmission
}
void uart_soft_putbyte_blocking(uint8_t uart, uint8_t byte)
{
if (uart >= UART_NB || 0 == uart_soft_tx_states[uart].port) { // ensure transmit UART port is defined
return; // return
}
uart_soft_putbyte_nonblocking(uart, byte); // put byte in queue
uart_soft_flush(uart); // wait for all byte to be transmitted
}
/** timer interrupt service routine to transmit data */
void TIM_ISR(UART_SOFT_TX_TIMER)(void)
{
for (uint8_t tx = 0; tx < UART_NB; tx++) {
if (timer_interrupt_source(TIM(UART_SOFT_TX_TIMER), timer_flags[tx])) { // got a match on compare for transmit pin
timer_clear_flag(TIM(UART_SOFT_TX_TIMER), timer_flags[tx]); // clear flag
if (0 == uart_soft_tx_states[tx].port) { // verify if transmit is defined
continue; // skip if transmit port is not defined it
}
if (uart_soft_tx_states[tx].bit < 8) { // there is a data bit to transmit
if ((uart_soft_tx_states[tx].byte >> uart_soft_tx_states[tx].bit) & 0x01) { // bit to transmit is a 1
gpio_set(uart_soft_tx_states[tx].port, uart_soft_tx_states[tx].pin); // set output to high
} else { // bit to transmit is a 0
gpio_clear(uart_soft_tx_states[tx].port, uart_soft_tx_states[tx].pin); // set output to low
}
timer_set_oc_value(TIM(UART_SOFT_TX_TIMER), timer_oc[tx], timer_get_counter(TIM(UART_SOFT_TX_TIMER)) + uart_soft_tx_states[tx].baudrate); // wait for the next frame bit
uart_soft_tx_states[tx].bit++; // go to next bit
} else if (8 == uart_soft_tx_states[tx].bit) { // transmit stop bit
gpio_set(uart_soft_tx_states[tx].port, uart_soft_tx_states[tx].pin); // go idle high
timer_set_oc_value(TIM(UART_SOFT_TX_TIMER), timer_oc[tx], timer_get_counter(TIM(UART_SOFT_TX_TIMER)) + uart_soft_tx_states[tx].baudrate); // wait for 1 stop bit
uart_soft_tx_states[tx].bit++; // go to next bit
} else { // UART frame is complete
timer_disable_irq(TIM(UART_SOFT_TX_TIMER), timer_interrupt[tx]);// enable timer IRQ for TX for this UART
uart_soft_tx_states[tx].transmit = false; // transmission finished
uart_soft_transmit(tx); // start next transmission (if there is)
}
} // compare match
} // go through UARTs
}
#endif
/** central function handling receive signal activity */
static void uart_soft_receive_activity(void)
{
for (uint8_t rx = 0; rx < UART_NB; rx++) {
if (0 == uart_soft_rx_states[rx].port) { // verify if receive port is not configured
continue; // skip if receive port is not defined it
}
const uint16_t state_new = gpio_get(uart_soft_rx_states[rx].port, uart_soft_rx_states[rx].pin); // get new state
if (uart_soft_rx_states[rx].state != state_new) { // only do something if state changed
uart_soft_rx_states[rx].state = state_new; // save new state
if (0 == uart_soft_rx_states[rx].bit) { // start bit edge detected
if (0 == uart_soft_rx_states[rx].state) { // start bit has to be low
timer_set_oc_value(TIM(UART_SOFT_RX_TIMER), timer_oc[rx], timer_get_counter(TIM(UART_SOFT_RX_TIMER)) + (uart_soft_rx_states[rx].baudrate) * 3 / 2); // set timer to sample data bit 0 in 1.5 bits
timer_clear_flag(TIM(UART_SOFT_RX_TIMER), timer_flags[rx]); // clear flag before enabling interrupt
timer_enable_irq(TIM(UART_SOFT_RX_TIMER), timer_interrupt[rx]);// enable timer IRQ for RX for this UART
uart_soft_rx_states[rx].byte = 0; // reset byte value
uart_soft_rx_states[rx].bit = 1; // wait for first bit
}
} else { // data bit detected
timer_set_oc_value(TIM(UART_SOFT_RX_TIMER), timer_oc[rx], timer_get_counter(TIM(UART_SOFT_RX_TIMER)) + (uart_soft_rx_states[rx].baudrate) / 2); // resync timer to half a bit (good for drifting transmission, bad if the line is noisy)
}
}
}
}
/** GPIO interrupt service routine to detect UART receive activity */
#if (defined(UART_SOFT_RX0_GPIO) && NVIC_EXTI0_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX0_GPIO)) || (defined(UART_SOFT_RX1_GPIO) && NVIC_EXTI0_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX1_GPIO)) || (defined(UART_SOFT_RX2_GPIO) && NVIC_EXTI0_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX2_GPIO)) || (defined(UART_SOFT_RX3_GPIO) && NVIC_EXTI0_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX3_GPIO))
void exti0_isr(void)
{
exti_reset_request(EXTI0); // clear interrupt flag for pin triggers this ISR (pin state will be checked independently)
uart_soft_receive_activity(); // check which GPIO changed
}
#endif
#if (defined(UART_SOFT_RX0_GPIO) && NVIC_EXTI1_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX0_GPIO)) || (defined(UART_SOFT_RX1_GPIO) && NVIC_EXTI1_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX1_GPIO)) || (defined(UART_SOFT_RX2_GPIO) && NVIC_EXTI1_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX2_GPIO)) || (defined(UART_SOFT_RX3_GPIO) && NVIC_EXTI1_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX3_GPIO))
void exti1_isr(void)
{
exti_reset_request(EXTI1); // clear interrupt flag for pin triggers this ISR (pin state will be checked independently)
uart_soft_receive_activity(); // check which GPIO changed
}
#endif
#if (defined(UART_SOFT_RX0_GPIO) && NVIC_EXTI2_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX0_GPIO)) || (defined(UART_SOFT_RX1_GPIO) && NVIC_EXTI2_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX1_GPIO)) || (defined(UART_SOFT_RX2_GPIO) && NVIC_EXTI2_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX2_GPIO)) || (defined(UART_SOFT_RX3_GPIO) && NVIC_EXTI2_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX3_GPIO))
void exti2_isr(void)
{
exti_reset_request(EXTI2); // clear interrupt flag for pin triggers this ISR (pin state will be checked independently)
uart_soft_receive_activity(); // check which GPIO changed
}
#endif
#if (defined(UART_SOFT_RX0_GPIO) && NVIC_EXTI3_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX0_GPIO)) || (defined(UART_SOFT_RX1_GPIO) && NVIC_EXTI3_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX1_GPIO)) || (defined(UART_SOFT_RX2_GPIO) && NVIC_EXTI3_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX2_GPIO)) || (defined(UART_SOFT_RX3_GPIO) && NVIC_EXTI3_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX3_GPIO))
void exti3_isr(void)
{
exti_reset_request(EXTI3); // clear interrupt flag for pin triggers this ISR (pin state will be checked independently)
uart_soft_receive_activity(); // check which GPIO changed
}
#endif
#if (defined(UART_SOFT_RX0_GPIO) && NVIC_EXTI4_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX0_GPIO)) || (defined(UART_SOFT_RX1_GPIO) && NVIC_EXTI4_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX1_GPIO)) || (defined(UART_SOFT_RX2_GPIO) && NVIC_EXTI4_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX2_GPIO)) || (defined(UART_SOFT_RX3_GPIO) && NVIC_EXTI4_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX3_GPIO))
void exti4_isr(void)
{
exti_reset_request(EXTI4); // clear interrupt flag for pin triggers this ISR (pin state will be checked independently)
uart_soft_receive_activity(); // check which GPIO changed
}
#endif
#if (defined(UART_SOFT_RX0_GPIO) && NVIC_EXTI9_5_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX0_GPIO)) || (defined(UART_SOFT_RX1_GPIO) && NVIC_EXTI9_5_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX1_GPIO)) || (defined(UART_SOFT_RX2_GPIO) && NVIC_EXTI9_5_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX2_GPIO)) || (defined(UART_SOFT_RX3_GPIO) && NVIC_EXTI9_5_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX3_GPIO))
void exti9_5_isr(void)
{
exti_reset_request(EXTI5 | EXTI6 | EXTI7 | EXTI8 | EXTI9); // clear interrupt flag for pin triggers this ISR (pin state will be checked independently)
uart_soft_receive_activity(); // check which GPIO changed
}
#endif
#if (defined(UART_SOFT_RX0_GPIO) && NVIC_EXTI15_10_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX0_GPIO)) || (defined(UART_SOFT_RX1_GPIO) && NVIC_EXTI15_10_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX1_GPIO)) || (defined(UART_SOFT_RX2_GPIO) && NVIC_EXTI15_10_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX2_GPIO)) || (defined(UART_SOFT_RX3_GPIO) && NVIC_EXTI15_10_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX3_GPIO))
void exti15_10_isr(void)
{
exti_reset_request(EXTI10 | EXTI11 | EXTI12 | EXTI13 | EXTI14 | EXTI15); // clear interrupt flag for pin triggers this ISR (pin state will be checked independently)
uart_soft_receive_activity(); // check which GPIO changed
}
#endif