stm32f1/lib/onewire_master.c

507 lines
23 KiB
C

/** library for 1-wire protocol as master
* @file
* @author King Kévin <kingkevin@cuvoodoo.info>
* @copyright SPDX-License-Identifier: GPL-3.0-or-later
* @date 2017-2020
* @note peripherals used: timer @ref onewire_master_timer, GPIO @ref onewire_master_gpio
* @note overdrive mode is not provided
* @implements 1-Wire protocol description from Book of iButton Standards
*/
/* standard libraries */
#include <stdint.h> // standard integer types
#include <stdbool.h> // boolean type
#include <stddef.h> // NULL definition
/* STM32 (including CM3) libraries */
#include <libopencmsis/core_cm3.h> // Cortex M3 utilities
#include <libopencm3/cm3/nvic.h> // interrupt handler
#include <libopencm3/stm32/rcc.h> // real-time control clock library
#include <libopencm3/stm32/gpio.h> // general purpose input output library
#include <libopencm3/stm32/timer.h> // timer library
/* own libraries */
#include "global.h" // help macros
#include "interrupt.h" // runtime interrupt table
#include "onewire_master.h" // own definitions
/** @defgroup onewire_master_gpio GPIO used for 1-wire signal
* @note external pull-up resistor on pin is required (< 5 kOhm)
* @{
*/
#define ONEWIRE_MASTER_PIN PC9 /**< GPIO pin */
/** @} */
/** @defgroup onewire_master_timer timer used to measure 1-wire signal timing
* @{
*/
#define ONEWIRE_MASTER_TIMER 5 /**< timer ID */
/** @} */
/** set if the timer ISR should be set in the interrupt table instead of the vector table
* @note the vector table is faster, but doesn't allow to change the ISR
*/
#define ONEWIRE_MASTER_TIMER_USE_INTERRUPT_TABLE false
/** state of 1-Wire communication */
volatile enum {
ONEWIRE_STATE_IDLE, /**< no current communication */
ONEWIRE_STATE_DONE, /**< communication complete */
ONEWIRE_STATE_ERROR, /**< communication error */
ONEWIRE_STATE_MASTER_RESET, /**< reset pulse started */
ONEWIRE_STATE_SLAVE_PRESENCE, /**< waiting for slave response to reset pulse */
ONEWIRE_STATE_MASTER_WRITE, /**< master is writing bits */
ONEWIRE_STATE_MASTER_READ, /**< master is reading bits */
ONEWIRE_MAX /** to count the number of possible states */
} onewire_master_state = ONEWIRE_STATE_IDLE;
static volatile bool slave_presence = false; /**< if slaves have been detected */
static uint8_t* buffer = NULL; /**< input/output buffer for read/write commands/functions */
static uint32_t buffer_size = 0; /**< size of buffer in bits */
static volatile uint32_t buffer_bit = 0; /**< number of bits read/written */
#if defined(ONEWIRE_MASTER_TIMER_USE_INTERRUPT_TABLE) && ONEWIRE_MASTER_TIMER_USE_INTERRUPT_TABLE
static void (*isr_backup)(void) = NULL; /**< backup for the existing timer ISR */
static bool irq_backup = false; /**< backup for the existing timer IRQ */
#endif
/** interrupt service routine called for timer */
#if defined(ONEWIRE_MASTER_TIMER_USE_INTERRUPT_TABLE) && ONEWIRE_MASTER_TIMER_USE_INTERRUPT_TABLE
static void onewire_master_timer_isr(void)
#else
void TIM_ISR(ONEWIRE_MASTER_TIMER)(void)
#endif
{
if (timer_get_flag(TIM(ONEWIRE_MASTER_TIMER), TIM_SR_UIF)) { // overflow update event happened
timer_clear_flag(TIM(ONEWIRE_MASTER_TIMER), TIM_SR_UIF); // clear flag
switch (onewire_master_state) {
case ONEWIRE_STATE_MASTER_RESET: // reset pulse has been started
timer_clear_flag(TIM(ONEWIRE_MASTER_TIMER), TIM_SR_CC4IF); // clear output compare flag
timer_enable_irq(TIM(ONEWIRE_MASTER_TIMER), TIM_DIER_CC4IE); // enable compare interrupt for presence detection
gpio_set(GPIO_PORT(ONEWIRE_MASTER_PIN),GPIO_PIN(ONEWIRE_MASTER_PIN)); // set signal high again for slaves to respond
onewire_master_state = ONEWIRE_STATE_SLAVE_PRESENCE; // set new state
break;
case ONEWIRE_STATE_SLAVE_PRESENCE: // waiting for slave presence but none received
timer_disable_counter(TIM(ONEWIRE_MASTER_TIMER)); // disable timer
timer_disable_irq(TIM(ONEWIRE_MASTER_TIMER), TIM_DIER_CC4IE); // disable compare interrupt for presence detection
onewire_master_state = ONEWIRE_STATE_DONE; // go to next state
break;
case ONEWIRE_STATE_MASTER_READ: // end of time slot and recovery time for reading bit
case ONEWIRE_STATE_MASTER_WRITE: // end of time slot and recovery time for writing bit
if (buffer_bit < buffer_size) { // check if byte to read/write are remaining
gpio_clear(GPIO_PORT(ONEWIRE_MASTER_PIN),GPIO_PIN(ONEWIRE_MASTER_PIN)); // pull signal low to start next slot
} else { // all bytes read/written
timer_disable_counter(TIM(ONEWIRE_MASTER_TIMER)); // disable timer
timer_disable_irq(TIM(ONEWIRE_MASTER_TIMER), TIM_DIER_CC1IE); // disable compare interrupt for master pull low
timer_disable_irq(TIM(ONEWIRE_MASTER_TIMER), TIM_DIER_CC2IE); // disable compare interrupt for read/write bit
timer_disable_irq(TIM(ONEWIRE_MASTER_TIMER), TIM_DIER_CC3IE); // disable compare interrupt for end of slot
onewire_master_state = ONEWIRE_STATE_DONE; // set end state
}
break;
default: // unknown state for this stage
timer_disable_counter(TIM(ONEWIRE_MASTER_TIMER)); // disable timer
timer_disable_irq(TIM(ONEWIRE_MASTER_TIMER), TIM_DIER_CC1IE); // disable all compare interrupt
timer_disable_irq(TIM(ONEWIRE_MASTER_TIMER), TIM_DIER_CC2IE); // disable all compare interrupt
timer_disable_irq(TIM(ONEWIRE_MASTER_TIMER), TIM_DIER_CC3IE); // disable all compare interrupt
timer_disable_irq(TIM(ONEWIRE_MASTER_TIMER), TIM_DIER_CC4IE); // disable all compare interrupt
gpio_set(GPIO_PORT(ONEWIRE_MASTER_PIN),GPIO_PIN(ONEWIRE_MASTER_PIN)); // pull signal high (idle state)
onewire_master_state = ONEWIRE_STATE_ERROR; // indicate error
}
} else if (timer_get_flag(TIM(ONEWIRE_MASTER_TIMER), TIM_SR_CC1IF)) { // compare event happened for master pull low end for read
timer_clear_flag(TIM(ONEWIRE_MASTER_TIMER), TIM_SR_CC1IF); // clear flag
switch (onewire_master_state) {
case ONEWIRE_STATE_MASTER_READ: // master has to read a bit
gpio_set(GPIO_PORT(ONEWIRE_MASTER_PIN),GPIO_PIN(ONEWIRE_MASTER_PIN)); // pull signal high to end time slot
break;
default: // unknown state for this stage
break; // let the overflow handle the error if any
}
} else if (timer_get_flag(TIM(ONEWIRE_MASTER_TIMER), TIM_SR_CC2IF)) { // compare event happened for bit sampling/setting
timer_clear_flag(TIM(ONEWIRE_MASTER_TIMER), TIM_SR_CC2IF); // clear flag
switch (onewire_master_state) {
case ONEWIRE_STATE_MASTER_WRITE: // master has to write a bit
if (buffer_bit < buffer_size) { // check if byte to send are remaining
if (buffer[buffer_bit / 8] & (1 << (buffer_bit % 8))) { // check bit (LSb first)
gpio_set(GPIO_PORT(ONEWIRE_MASTER_PIN),GPIO_PIN(ONEWIRE_MASTER_PIN)); // set signal high again to write "1"
}
buffer_bit++; // got to next bit
} else {
timer_disable_irq(TIM(ONEWIRE_MASTER_TIMER), TIM_DIER_CC2IE); // disable compare interrupt
onewire_master_state = ONEWIRE_STATE_ERROR; // indicate error
}
break;
case ONEWIRE_STATE_MASTER_READ: // master has to read a bit set by slave
if (buffer_bit<buffer_size) { // check if byte to send are remaining
if (gpio_get(GPIO_PORT(ONEWIRE_MASTER_PIN),GPIO_PIN(ONEWIRE_MASTER_PIN))) { // check if the slave kept it low
buffer[buffer_bit / 8] |= (1 << (buffer_bit % 8)); // save bit "1"
} else {
buffer[buffer_bit / 8] &= ~(1 << (buffer_bit % 8)); // save bit "0"
}
buffer_bit++; // got to next bit
} else {
timer_disable_irq(TIM(ONEWIRE_MASTER_TIMER), TIM_DIER_CC2IE); // disable compare interrupt
onewire_master_state = ONEWIRE_STATE_ERROR; // indicate error
}
break;
default: // unknown state for this stage
break; // let the overflow handle the error if any
}
} else if (timer_get_flag(TIM(ONEWIRE_MASTER_TIMER), TIM_SR_CC3IF)) { // compare event happened for end to time slot
timer_clear_flag(TIM(ONEWIRE_MASTER_TIMER), TIM_SR_CC3IF); // clear flag
gpio_set(GPIO_PORT(ONEWIRE_MASTER_PIN),GPIO_PIN(ONEWIRE_MASTER_PIN)); // pull signal high to end time slot
} else if (timer_get_flag(TIM(ONEWIRE_MASTER_TIMER), TIM_SR_CC4IF)) { // compare event happened for slave presence detection
timer_clear_flag(TIM(ONEWIRE_MASTER_TIMER), TIM_SR_CC4IF); // clear flag
if (gpio_get(GPIO_PORT(ONEWIRE_MASTER_PIN),GPIO_PIN(ONEWIRE_MASTER_PIN))) { // check is a slave let its presence know by pulling low
slave_presence = false; // remember no slave(s) responded
} else {
slave_presence = true; // remember slave(s) responded
}
} else { // no other interrupt should occur
while (true); // unhandled exception: wait for the watchdog to bite
}
}
void onewire_master_setup(void)
{
// setup GPIO with external interrupt
rcc_periph_clock_enable(GPIO_RCC(ONEWIRE_MASTER_PIN)); // enable clock for GPIO peripheral
gpio_set(GPIO_PORT(ONEWIRE_MASTER_PIN), GPIO_PIN(ONEWIRE_MASTER_PIN)); // idle is high (using pull-up resistor)
gpio_set_mode(GPIO_PORT(ONEWIRE_MASTER_PIN), GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_OPENDRAIN, GPIO_PIN(ONEWIRE_MASTER_PIN)); // normal 1-Wire communication (only using external pull-up resistor)
// setup timer to generate/measure signal timing
rcc_periph_clock_enable(RCC_TIM(ONEWIRE_MASTER_TIMER)); // enable clock for timer peripheral
rcc_periph_reset_pulse(RST_TIM(ONEWIRE_MASTER_TIMER)); // reset timer state
timer_disable_counter(TIM(ONEWIRE_MASTER_TIMER)); // disable timer to configure it
timer_set_mode(TIM(ONEWIRE_MASTER_TIMER), TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP); // set timer mode, use undivided timer clock, edge alignment (simple count), and count up
timer_set_prescaler(TIM(ONEWIRE_MASTER_TIMER), 1 - 1); // don't use prescale since this 16 bits timer allows to wait > 480 us used for the reset pulse ( 1/(72E6/1/(2**16))=910us )
// use comparator to time signal (without using the output), starting at slot start
timer_clear_flag(TIM(ONEWIRE_MASTER_TIMER), TIM_SR_CC1IF); // clear flag
timer_set_oc_value(TIM(ONEWIRE_MASTER_TIMER), TIM_OC1, 1 * (rcc_ahb_frequency / 1000000) - 1); // use compare function to time master pulling low when reading (1 < Tlowr < 15)
timer_clear_flag(TIM(ONEWIRE_MASTER_TIMER), TIM_SR_CC2IF); // clear flag
timer_set_oc_value(TIM(ONEWIRE_MASTER_TIMER), TIM_OC2, 7 * (rcc_ahb_frequency / 1000000) - 1); // use compare function to read or write 0 or 1 (1 < Trw < 15)
timer_clear_flag(TIM(ONEWIRE_MASTER_TIMER), TIM_SR_CC3IF); // clear flag
timer_set_oc_value(TIM(ONEWIRE_MASTER_TIMER), TIM_OC3, 62 * (rcc_ahb_frequency / 1000000) - 1); // use compare function to end time slot (60 < Tslot < 120), this will be followed by a recovery time (end of timer)
timer_clear_flag(TIM(ONEWIRE_MASTER_TIMER), TIM_SR_CC4IF); // clear flag
timer_set_oc_value(TIM(ONEWIRE_MASTER_TIMER), TIM_OC4, (70 - 10) * (rcc_ahb_frequency / 1000000) - 1); // use compare function to detect slave presence (15 < Tpdh < 60 + 60 < Tpdl < 240), with hand tuning
timer_clear_flag(TIM(ONEWIRE_MASTER_TIMER), TIM_SR_UIF); // clear update (overflow) flag
timer_update_on_overflow(TIM(ONEWIRE_MASTER_TIMER)); // only use counter overflow as UEV source (use overflow as start time or timeout)
timer_enable_irq(TIM(ONEWIRE_MASTER_TIMER), TIM_DIER_UIE); // enable update interrupt for overflow
#if defined(ONEWIRE_MASTER_TIMER_USE_INTERRUPT_TABLE) && ONEWIRE_MASTER_TIMER_USE_INTERRUPT_TABLE
isr_backup = interrupt_table[NVIC_TIM_IRQ(ONEWIRE_MASTER_TIMER)]; // backup timer ISR
interrupt_table[NVIC_TIM_IRQ(ONEWIRE_MASTER_TIMER)] = &onewire_master_timer_isr; // set the 1-wire timer ISR
irq_backup = nvic_get_irq_enabled(NVIC_TIM_IRQ(ONEWIRE_MASTER_TIMER)); // backup timer IRQ setting
#endif
nvic_enable_irq(NVIC_TIM_IRQ(ONEWIRE_MASTER_TIMER)); // catch interrupt in service routine
slave_presence = false; // reset state
onewire_master_state = ONEWIRE_STATE_IDLE; // reset state
}
void onewire_master_release(void)
{
// release timer
timer_disable_counter(TIM(ONEWIRE_MASTER_TIMER)); // disable timer
rcc_periph_reset_pulse(RST_TIM(ONEWIRE_MASTER_TIMER)); // reset timer state
rcc_periph_clock_disable(RCC_TIM(ONEWIRE_MASTER_TIMER)); // disable clock for timer peripheral
// release GPIO
gpio_set_mode(GPIO_PORT(ONEWIRE_MASTER_PIN), GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, GPIO_PIN(ONEWIRE_MASTER_PIN)); // put back to input floating
// disable timer ISR
#if defined(ONEWIRE_MASTER_TIMER_USE_INTERRUPT_TABLE) && ONEWIRE_MASTER_TIMER_USE_INTERRUPT_TABLE
if (!irq_backup) { // don't disable the IRQ if there was already enabled
nvic_disable_irq(NVIC_TIM_IRQ(ONEWIRE_MASTER_TIMER)); // stop timer IRQ
}
interrupt_table[NVIC_TIM_IRQ(ONEWIRE_MASTER_TIMER)] = isr_backup; // set back original timer ISR
#else
nvic_disable_irq(NVIC_TIM_IRQ(ONEWIRE_MASTER_TIMER)); // stop timer IRQ
#endif
}
bool onewire_master_reset(void)
{
// prepare timer
timer_disable_counter(TIM(ONEWIRE_MASTER_TIMER)); // disable timer to reconfigure it
timer_set_counter(TIM(ONEWIRE_MASTER_TIMER), 0); // reset counter
timer_set_period(TIM(ONEWIRE_MASTER_TIMER), 490 * (rcc_ahb_frequency / 1000000) - 1); // set timeout to > 480 us (480 < Trst)
slave_presence = false; // reset state
onewire_master_state = ONEWIRE_STATE_MASTER_RESET; // set new state
gpio_set_mode(GPIO_PORT(ONEWIRE_MASTER_PIN), GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_OPENDRAIN, GPIO_PIN(ONEWIRE_MASTER_PIN)); // normal 1-Wire communication (only using external pull-up resistor)
gpio_clear(GPIO_PORT(ONEWIRE_MASTER_PIN), GPIO_PIN(ONEWIRE_MASTER_PIN)); // pull signal low to start reset (it's not important if it was low in the first place since the reset pulse has no maximum time)
timer_enable_counter(TIM(ONEWIRE_MASTER_TIMER)); // start timer
while (onewire_master_state != ONEWIRE_STATE_DONE && onewire_master_state != ONEWIRE_STATE_ERROR) { // wait until reset procedure completed
__WFI(); // go to sleep
}
if (ONEWIRE_STATE_ERROR == onewire_master_state) { // an error occurred
return false;
}
return slave_presence;
}
/** write bits on 1-Wire bus
* @warning buffer_size must be set to the number of bits to writen and buffer must contain the data to write
* @return if write succeeded
*/
static bool onewire_master_write(void)
{
buffer_bit = 0; // reset bit index
onewire_master_state = ONEWIRE_STATE_MASTER_WRITE; // set new state
// prepare timer
timer_disable_counter(TIM(ONEWIRE_MASTER_TIMER)); // disable timer to reconfigure it
timer_set_counter(TIM(ONEWIRE_MASTER_TIMER), 0); // reset counter
timer_set_period(TIM(ONEWIRE_MASTER_TIMER), TIM_CCR3(TIM(ONEWIRE_MASTER_TIMER)) + 2 * (rcc_ahb_frequency / 1000000)); // set time for new time slot (recovery timer Trec>1, after time slot end )
timer_clear_flag(TIM(ONEWIRE_MASTER_TIMER), TIM_SR_CC2IF); // clear output compare flag
timer_enable_irq(TIM(ONEWIRE_MASTER_TIMER), TIM_DIER_CC2IE); // enable compare interrupt for bit setting
timer_clear_flag(TIM(ONEWIRE_MASTER_TIMER), TIM_SR_CC3IF); // clear output compare flag
timer_enable_irq(TIM(ONEWIRE_MASTER_TIMER), TIM_DIER_CC3IE); // enable compare interrupt for end of time slow
// start writing
gpio_set_mode(GPIO_PORT(ONEWIRE_MASTER_PIN), GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_OPENDRAIN, GPIO_PIN(ONEWIRE_MASTER_PIN)); // normal 1-Wire communication (only using external pull-up resistor)
gpio_clear(GPIO_PORT(ONEWIRE_MASTER_PIN),GPIO_PIN(ONEWIRE_MASTER_PIN)); // pull signal low to start slot
timer_enable_counter(TIM(ONEWIRE_MASTER_TIMER)); // start timer
while (onewire_master_state != ONEWIRE_STATE_DONE && onewire_master_state != ONEWIRE_STATE_ERROR) { // wait until write procedure completed
__WFI(); // go to sleep
}
if (ONEWIRE_STATE_ERROR == onewire_master_state) { // an error occurred
return false;
}
return true;
}
/** read bits on 1-Wire bus
* @warning buffer_size must be set to the number of bits to read
* @return if read succeeded
*/
static bool onewire_master_read(void)
{
if (0 == buffer_size) { // check input
return false;
}
buffer_bit = 0; // reset bit index
onewire_master_state = ONEWIRE_STATE_MASTER_READ; // set new state
// prepare timer
timer_disable_counter(TIM(ONEWIRE_MASTER_TIMER)); // disable timer to reconfigure it
timer_set_counter(TIM(ONEWIRE_MASTER_TIMER), 0); // reset counter
timer_set_period(TIM(ONEWIRE_MASTER_TIMER), TIM_CCR3(TIM(ONEWIRE_MASTER_TIMER)) + 2*(rcc_ahb_frequency / 1000000)); // set time for new time slot (recovery timer Trec>1, after time slot end )
timer_clear_flag(TIM(ONEWIRE_MASTER_TIMER), TIM_SR_CC1IF); // clear output compare flag
timer_enable_irq(TIM(ONEWIRE_MASTER_TIMER), TIM_DIER_CC1IE); // enable compare interrupt for stop pulling low
timer_clear_flag(TIM(ONEWIRE_MASTER_TIMER), TIM_SR_CC2IF); // clear output compare flag
timer_enable_irq(TIM(ONEWIRE_MASTER_TIMER), TIM_DIER_CC2IE); // enable compare interrupt for bit setting
timer_clear_flag(TIM(ONEWIRE_MASTER_TIMER), TIM_SR_CC3IF); // clear output compare flag
timer_enable_irq(TIM(ONEWIRE_MASTER_TIMER), TIM_DIER_CC3IE); // enable compare interrupt for end of time slow
// start reading
gpio_set_mode(GPIO_PORT(ONEWIRE_MASTER_PIN), GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_OPENDRAIN, GPIO_PIN(ONEWIRE_MASTER_PIN)); // normal 1-Wire communication (only using external pull-up resistor)
gpio_clear(GPIO_PORT(ONEWIRE_MASTER_PIN), GPIO_PIN(ONEWIRE_MASTER_PIN)); // pull signal low to start slot
timer_enable_counter(TIM(ONEWIRE_MASTER_TIMER)); // start timer
while (onewire_master_state != ONEWIRE_STATE_DONE && onewire_master_state != ONEWIRE_STATE_ERROR) { // wait until read procedure completed
__WFI(); // go to sleep
}
if (ONEWIRE_STATE_ERROR == onewire_master_state) { // an error occurred
return false;
}
return true;
}
uint8_t onewire_master_crc(uint8_t* data, uint32_t length)
{
if (NULL == data || 0 == length) { // check input
return 0; // wrong input
}
uint8_t crc = 0x00; // initial value
for (uint8_t i = 0; i < length; i++) { // go through every byte
crc ^= data[i]; // XOR byte
for (uint8_t b = 0; b < 8; b++) { // go through every bit
if (crc & 0x01) { // least significant bit is set (we are using the reverse way)
crc = (crc >> 1) ^ 0x8C; // // shift to the right (for the next bit) and XOR with (reverse) polynomial
} else {
crc >>= 1; // just shift right (for the next bit)
}
}
}
return crc;
}
bool onewire_master_read_byte(uint8_t* data)
{
if (NULL == data) { // check input
return false; // wrong input
}
// read data
buffer_size = 8; // save number of bits to read (1 byte)
buffer = data; // set the buffer to the data to write
if (!onewire_master_read()) { // read bits from slave
return false; // an error occurred
}
return true;
}
bool onewire_master_write_byte(uint8_t data)
{
// send data byte
buffer_size = 8; // function command is only one byte
buffer = &data; // set the buffer to the function code
if (!onewire_master_write()) { // send command
return false; // an error occurred
}
return true;
}
bool onewire_master_function_read(uint8_t function, uint8_t* data, uint32_t bits)
{
// send function command
if (!onewire_master_write_byte(function)) {
return false; // an error occurred
}
if (NULL == data || 0 == bits) { // there is no data to read
return true; // operation completed
}
// read data
buffer_size = bits; // save number of bits to read
buffer = data; // set the buffer to the data to write
if (!onewire_master_read()) { // read bits from slave
return false; // an error occurred
}
return true;
}
bool onewire_master_function_write(uint8_t function, uint8_t* data, uint32_t bits)
{
// send function command
if (!onewire_master_write_byte(function)) {
return false; // an error occurred
}
if (NULL == data || 0 == bits) { // there is no data to read
return true; // operation completed
}
// copy data from user buffer
buffer_size = bits; // save number of bits to write
buffer = data; // set the buffer to the data to write
// write data
if (!onewire_master_write()) { // read bits from slave
return false; // an error occurred
}
return true;
}
uint64_t onewire_master_rom_read(void)
{
uint8_t rom_code[8] = {0}; // to store 64 bits ROM code
if (!onewire_master_function_read(0x33, rom_code, 64)) { // read ROM code (I'm cheating because the ROM command isn't a function command, but it works the same way in the end)
return 0; // an error occurred
}
if (onewire_master_crc(rom_code, LENGTH(rom_code))) { // verify checksum
return 0; // checksum is wrong (not 0)
}
// return ROM code
uint64_t code = 0;
for (uint32_t i = 0; i < 8; i++) {
code += (uint64_t)rom_code[i] << (8 * i); // add byte
}
return code;
}
bool onewire_master_rom_search(uint64_t* code, bool alarm)
{
static uint8_t conflict_last = 64; // on which bit has the conflict been detected (64 means there hasn't been)
uint8_t conflict_current = 64; // to remember on which bit the last unknown conflict has been detected
uint8_t bits[1] = {0}; // small buffer to store the bits used to search the ROM codes
// send SEARCH ROM command
uint8_t command = 0xf0; // SEARCH ROM command
if (alarm) { // looking only for ROM codes for slaves in alarm state
command = 0xec; // use ALARM SEARCH ROM command instead
}
if (!onewire_master_function_read(command, NULL, 0)) { // send SEARCH ROM command
goto end; // an error occurred
}
if (conflict_last >= 64) { // no previous conflict has been detected
*code = 0; // restart search codes
}
buffer = bits; // buffer to read up to two bits
for (uint8_t bit = 0; bit < 64; bit++) { // go through all 64 bits ROM code
buffer_size = 2; // read two first bits to detect conflict
if (!onewire_master_read()) { // read ROM ID from slave
goto end; // an error occurred
}
switch (buffer[0] & 0x03) { // check 2 bits received
case 0: // collision detected
if (bit == conflict_last) { // this conflict is known
*code |= (((uint64_t)1) << bit); // use 0 as next bit
} else { // unknown conflict
conflict_current = bit; // remember conflict
*code &= ~(((uint64_t)1) << bit); // use 1 as next bit
}
break;
case 1: // no conflict, valid bit is 1
*code |= (((uint64_t)1) << bit); // remember valid bit 1
break;
case 2: // no conflict, valid bit is 0
*code &= ~(((uint64_t)1) << bit); // remember valid bit 0
break;
default: // two 1's indicate there is no slave
conflict_current = 64; // remember there was no conflict because there is no slave
goto end; // an error has occurred
}
buffer_size = 1; // to send next bit
buffer[0] = ((*code) >> bit); // set bit to send
if (!onewire_master_write()) { // send bit
goto end; // an error has occurred
}
}
// verify ROM code
uint8_t rom_code[8] = {0}; // to store ROM code
for (uint8_t i = 0; i < LENGTH(rom_code); i++) {
rom_code[i] = (*code) >> (8 * i); // split and save last code in ROM code
}
if (onewire_master_crc(rom_code, LENGTH(rom_code))) { // verify checksum
*code = 0; // return the last code found since it's valid
}
end:
conflict_last = conflict_current; // update the last seen and unknown conflict
if (conflict_current < 64) { // we have seen an unknown conflict
return true; // tell there are more slaves
} else { // no conflict seen
return false; // no more slaves
}
}
bool onewire_master_rom_skip(void)
{
if (!onewire_master_function_write(0xcc, NULL, 0)) { // send SKIP ROM command
return false; // an error occurred
}
return true;
}
bool onewire_master_rom_match(uint64_t code)
{
uint8_t rom_code[8] = {0}; // to store ROM code
for (uint8_t i = 0; i < LENGTH(rom_code); i++) {
rom_code[i] = code >> (8 * i); // split and save code in ROM code
}
if (!onewire_master_function_write(0x55, rom_code, 64)) { // send MATCH ROM command with ROM code
return false; // an error occurred
}
return true;
}