stm32f1/global.c

294 lines
8.4 KiB
C

/** global definitions and methods
* @file
* @author King Kévin <kingkevin@cuvoodoo.info>
* @copyright SPDX-License-Identifier: GPL-3.0-or-later
* @date 2016-2020
*/
/* standard libraries */
#include <stdint.h> // standard integer types
#include <stdlib.h> // general utilities
#include <string.h> // memory utilities
/* STM32 (including CM3) libraries */
#include <libopencmsis/core_cm3.h> // Cortex M3 utilities
#include <libopencm3/cm3/nvic.h> // interrupt handler
#include <libopencm3/cm3/systick.h> // SysTick library
#include <libopencm3/stm32/rcc.h> // real-time control clock library
#include <libopencm3/stm32/gpio.h> // general purpose input output library
#include <libopencm3/stm32/exti.h> // external interrupt defines
#include "global.h" // common methods
volatile bool button_flag = false;
volatile bool user_input_available = false;
static volatile uint8_t user_input_buffer[64] = {0}; /**< ring buffer for received data */
static volatile uint8_t user_input_i = 0; /**< current position of read received data */
static volatile uint8_t user_input_used = 0; /**< how much data has been received and not red */
static volatile uint32_t sleep_duration = 0; /**< sleep duration count down (in SysTick interrupts) */
uint8_t addu8_safe(uint8_t a, uint8_t b)
{
if (a > UINT8_MAX - b) {
return UINT8_MAX;
} else {
return a + b;
}
}
uint16_t addu16_safe(uint16_t a, uint16_t b)
{
if (a > UINT16_MAX - b) {
return UINT16_MAX;
} else {
return a + b;
}
}
uint32_t addu32_safe(uint32_t a, uint32_t b)
{
if (a > UINT32_MAX - b) {
return UINT32_MAX;
} else {
return a + b;
}
}
int8_t adds8_safe(int8_t a, int8_t b)
{
if (b > 0) {
if (a > INT8_MAX - b) {
return INT8_MAX;
} else {
return a + b;
}
} else {
if (a < INT8_MIN + b) {
return INT8_MIN;
} else {
return a + b;
}
}
}
int16_t adds16_safe(int16_t a, int16_t b)
{
if (b > 0) {
if (a > INT16_MAX - b) {
return INT16_MAX;
} else {
return a + b;
}
} else {
if (a < INT16_MIN + b) {
return INT16_MIN;
} else {
return a + b;
}
}
}
int32_t adds32_safe(int32_t a, int32_t b)
{
if (b > 0) {
if (a > INT32_MAX - b) {
return INT32_MAX;
} else {
return a + b;
}
} else {
if (a < INT32_MIN + b) {
return INT32_MIN;
} else {
return a + b;
}
}
}
char* b2s(uint64_t binary, uint8_t rjust)
{
static char string[64 + 1] = {0}; // the string representation to return
uint8_t bit = LENGTH(string) - 1; // the index of the bit to print
string[bit--] = '\0'; // terminate string
while (binary) {
if (binary & 1) {
string[bit--] = '1';
} else {
string[bit--] = '0';
}
binary >>= 1;
}
while (64 - bit - 1 < rjust && bit > 0) {
string[bit--] = '0';
}
return string;
}
/** switch on board LED */
inline void led_on(void)
{
#if defined(LED_PIN)
#if defined(BUSVOODOO)
gpio_set_mode(GPIO_PORT(LED_PIN), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, GPIO_PIN(LED_PIN)); // set LED pin push-pull
#endif // BUSVOODOO
#if defined(LED_ON) && LED_ON
gpio_set(GPIO_PORT(LED_PIN), GPIO_PIN(LED_PIN));
#else
gpio_clear(GPIO_PORT(LED_PIN), GPIO_PIN(LED_PIN));
#endif // LED_ON
#endif // LED_PIN
}
/** switch off board LED */
inline void led_off(void)
{
#if defined(LED_PIN)
#if defined(BUSVOODOO)
gpio_set_mode(GPIO_PORT(LED_PIN), GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, GPIO_PIN(LED_PIN)); // set LED pin to floating to disable LEDs
#else
#if defined(LED_ON) && LED_ON
gpio_clear(GPIO_PORT(LED_PIN), GPIO_PIN(LED_PIN));
#else
gpio_set(GPIO_PORT(LED_PIN), GPIO_PIN(LED_PIN));
#endif // BUSVOODOO
#endif // LED_ON
#endif // LED_PIN
}
/** toggle board LED */
inline void led_toggle(void)
{
#if defined(LED_PIN)
#if defined(BUSVOODOO)
gpio_set_mode(GPIO_PORT(LED_PIN), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, GPIO_PIN(LED_PIN)); // set LED pin to push-pull
#endif // BUSVOODOO
gpio_toggle(GPIO_PORT(LED_PIN), GPIO_PIN(LED_PIN));
#endif // LED_PIN
}
void sleep_us(uint32_t duration)
{
if (duration <= 5) { // less than the setup time
for (volatile uint32_t nop = 0; nop < 5 * duration; nop++); // busy loop, approximate, hand tuned for 72 MHz system clock
return;
}
duration -= 5; // subtract setup time
systick_counter_disable(); // disable SysTick to reconfigure it
if (!systick_set_frequency(1000000, rcc_ahb_frequency)) { // set SysTick frequency to microseconds
while (true); // unhandled error
}
systick_clear(); // reset SysTick
systick_interrupt_enable(); // enable interrupt to count duration
sleep_duration = duration; // save sleep duration for count down
systick_counter_enable(); // start counting
while (sleep_duration > 0) { // wait for count down to complete
__WFI(); // go to sleep
}
}
void sleep_ms(uint32_t duration)
{
if (0 == duration) {
return;
}
systick_counter_disable(); // disable SysTick to reconfigure it
if (!systick_set_frequency(1000, rcc_ahb_frequency)) { // set SysTick frequency to milliseconds
while (true); // unhandled error
}
systick_clear(); // reset SysTick
systick_interrupt_enable(); // enable interrupt to count duration
sleep_duration = duration; // save sleep duration for count down
systick_counter_enable(); // start counting
while (sleep_duration > 0) { // wait for count down to complete
__WFI(); // go to sleep
}
}
/** SysTick interrupt handler */
void sys_tick_handler(void)
{
if (sleep_duration > 0) {
sleep_duration--; // decrement duration
}
if (0 == sleep_duration) { // sleep complete
systick_counter_disable(); // stop systick
systick_interrupt_disable(); // stop interrupting
sleep_duration = 0; // ensure it still is at 0
}
}
char user_input_get(void)
{
while (0 == user_input_used) { // wait for user input to be available (don't trust user_input_available since it user modifiable)
__WFI(); // go to sleep
}
volatile char to_return = user_input_buffer[user_input_i]; // get the next available character
user_input_i = (user_input_i + 1) % LENGTH(user_input_buffer); // update used buffer
user_input_used--; // update used buffer
user_input_available = (user_input_used != 0); // update available data
return to_return;
}
void user_input_store(char c)
{
// only save data if there is space in the buffer
if (user_input_used >= LENGTH(user_input_buffer)) { // if buffer is full
user_input_i = (user_input_i + 1) % LENGTH(user_input_buffer); // drop oldest data
user_input_used--; // update used buffer information
}
user_input_buffer[(user_input_i + user_input_used) % LENGTH(user_input_buffer)] = c; // put character in buffer
user_input_used++; // update used buffer
user_input_available = true; // update available data
}
void board_setup(void)
{
#if defined(LED_PIN)
// setup LED
rcc_periph_clock_enable(GPIO_RCC(LED_PIN)); // enable clock for LED
#if defined(BUSVOODOO)
gpio_set_mode(GPIO_PORT(LED_PIN), GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, GPIO_PIN(LED_PIN)); // set LED pin to floating to disable LEDs
#else
gpio_set_mode(GPIO_PORT(LED_PIN), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, GPIO_PIN(LED_PIN)); // set LED pin to output push-pull do drive LED
#endif
led_off(); // switch off LED per default
#endif // LED_PIN
// setup button
#if defined(BUTTON_PIN)
rcc_periph_clock_enable(GPIO_RCC(BUTTON_PIN)); // enable clock for button
gpio_set_mode(GPIO_PORT(BUTTON_PIN), GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, GPIO_PIN(BUTTON_PIN)); // set button pin to input
rcc_periph_clock_enable(RCC_AFIO); // enable alternate function clock for external interrupt
exti_select_source(GPIO_EXTI(BUTTON_PIN), GPIO_PORT(BUTTON_PIN)); // mask external interrupt of this pin only for this port
#if defined(BUTTON_PRESSED) && BUTTON_PRESSED
gpio_clear(GPIO_PORT(BUTTON_PIN), GPIO_PIN(BUTTON_PIN)); // pull down to be able to detect button push (go high)
exti_set_trigger(GPIO_EXTI(BUTTON_PIN), EXTI_TRIGGER_RISING); // trigger when button is pressed
#else
gpio_set(GPIO_PORT(BUTTON_PIN), GPIO_PIN(BUTTON_PIN)); // pull up to be able to detect button push (go low)
exti_set_trigger(GPIO_EXTI(BUTTON_PIN), EXTI_TRIGGER_FALLING); // trigger when button is pressed
#endif
exti_enable_request(GPIO_EXTI(BUTTON_PIN)); // enable external interrupt
nvic_enable_irq(GPIO_NVIC_EXTI_IRQ(BUTTON_PIN)); // enable interrupt
#endif
// reset user input buffer
user_input_available = false;
user_input_i = 0;
user_input_used = 0;
}
#if defined(BUTTON_PIN)
/** interrupt service routine called when button is pressed */
void GPIO_EXTI_ISR(BUTTON_PIN)(void)
{
exti_reset_request(GPIO_EXTI(BUTTON_PIN)); // reset interrupt
button_flag = true; // perform button action
}
#endif