/* This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** STM32F1 project template * @file main.c * @author King Kévin * @date 2016 */ /* standard libraries */ #include // standard integer types #include // standard I/O facilities #include // standard utilities #include // standard streams #include // error number utilities #include // string utilities #include // mathematical utilities /* STM32 (including CM3) libraries */ #include // real-time control clock library #include // general purpose input output library #include // vector table definition #include // Cortex M3 utilities #include // interrupt utilities #include // external interrupt utilities #include // real time clock utilities /* own libraries */ #include "global.h" // board definitions #include "usart.h" // USART utilities #include "usb_cdcacm.h" // USB CDC ACM utilities /** @defgroup main_flags flag set in interrupts to be processed in main task * @{ */ volatile bool button_flag = false; /**< flag set when board user button has been pressed/released */ volatile bool rtc_internal_tick_flag = false; /**< flag set when internal RTC ticked */ /** @} */ /** user input command */ char command[32] = {0}; /** user input command index */ uint8_t command_i = 0; int _write(int file, char *ptr, int len) { int i; // how much data has been sent static char newline = 0; // what newline has been sent if (file == STDOUT_FILENO || file == STDERR_FILENO) { for (i = 0; i < len; i++) { if (ptr[i] == '\r' || ptr[i] == '\n') { // send CR+LF newline for most carriage return and line feed combination if (newline==0 || (newline==ptr[i])) { // newline has already been detected usart_putchar_nonblocking('\r'); // send newline over USART usart_putchar_nonblocking('\n'); // send newline over USART cdcacm_putchar('\r'); // send newline over USB cdcacm_putchar('\n'); // send newline over USB newline = ptr[i]; // remember the newline } if (ptr[i] == '\n') { // line feed are always considered to end a line (the LF+CR combination is not supported to better support the others) newline = 0; // clear new line } } else { // non-newline character usart_putchar_nonblocking(ptr[i]); // send byte over USART cdcacm_putchar(ptr[i]); // send byte over USB newline = 0; // clear new line } } return i; } errno = EIO; return -1; } char* b2s(uint64_t binary, uint8_t rjust) { static char string[64+1] = {0}; // the string representation to return int8_t bit = LENGTH(string)-1; // the index of the bit to print string[bit--] = 0; // terminate string while (binary) { if (binary & 1) { string[bit--] = '1'; } else { string[bit--] = '0'; } binary >>= 1; } while (64-bit-1=0) { string[bit--] = '0'; } return &string[bit+1]; } /** process user command * @param[in] str user command string (\0 ended) */ static void process_command(char* str) { // split command const char* delimiter = " "; char* word = strtok(str,delimiter); if (!word) { goto error; } // parse command if (0==strcmp(word,"help")) { printf("available commands:\n"); printf("led [on|off|toggle]\n"); printf("time [HH:MM:SS]\n"); } else if (0==strcmp(word,"led")) { word = strtok(NULL,delimiter); if (!word) { goto error; } else if (0==strcmp(word,"on")) { led_on(); // switch LED on printf("LED switched on\n"); // notify user } else if (0==strcmp(word,"off")) { led_off(); // switch LED off printf("LED switched off\n"); // notify user } else if (0==strcmp(word,"toggle")) { led_toggle(); // toggle LED printf("LED toggled\n"); // notify user } else { goto error; } } else if (0==strcmp(word,"time")) { word = strtok(NULL,delimiter); if (!word) { printf("current time: %02lu:%02lu:%02lu\n", rtc_get_counter_val()/(60*60), (rtc_get_counter_val()%(60*60))/60, (rtc_get_counter_val()%60)); // get and print time from internal RTC } else if (strlen(word)!=8 || word[0]<'0' || word[0]>'2' || word[1]<'0' || word[1]>'9' || word[3]<'0' || word[3]>'5' || word[4]<'0' || word[4]>'9' || word[6]<'0' || word[6]>'5' || word[7]<'0' || word[7]>'9') { // time format is incorrect goto error; } else { rtc_set_counter_val(((word[0]-'0')*10+(word[1]-'0')*1)*(60*60)+((word[3]-'0')*10+(word[4]-'0')*1)*60+((word[6]-'0')*10+(word[7]-'0')*1)); // set time in internal RTC counter printf("time set\n"); } } else { goto error; } return; // command successfully processed error: printf("command not recognized. enter help to list commands\n"); } /** program entry point * this is the firmware function started by the micro-controller */ int main(void) { rcc_clock_setup_in_hse_8mhz_out_72mhz(); // use 8 MHz high speed external clock to generate 72 MHz internal clock // setup LED rcc_periph_clock_enable(LED_RCC); // enable clock for LED gpio_set_mode(LED_PORT, GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, LED_PIN); // set LED pin to 'output push-pull' led_off(); // switch off LED per default // setup USART and USB for user communication usart_setup(); // setup USART (for printing) cdcacm_setup(); // setup USB CDC ACM (for printing) setbuf(stdout, NULL); // set standard out buffer to NULL to immediately print setbuf(stderr, NULL); // set standard error buffer to NULL to immediately print // minimal setup ready printf("welcome to the STM32F1 CuVoodoo example code\n"); // print welcome message // setup button #if defined(BUTTON_RCC) && defined(BUTTON_PORT) && defined(BUTTON_PIN) && defined(BUTTON_EXTI) && defined(BUTTON_IRQ) rcc_periph_clock_enable(BUTTON_RCC); // enable clock for button gpio_set_mode(BUTTON_PORT, GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, BUTTON_PIN); // set button pin to input gpio_clear(BUTTON_PORT, BUTTON_PIN); // pull down to be able to detect button push (go high) rcc_periph_clock_enable(RCC_AFIO); // enable alternate function clock for external interrupt exti_select_source(BUTTON_EXTI, BUTTON_PORT); // mask external interrupt of this pin only for this port exti_set_trigger(BUTTON_EXTI, EXTI_TRIGGER_RISING); // trigger when button is pressed exti_enable_request(BUTTON_EXTI); // enable external interrupt nvic_enable_irq(BUTTON_IRQ); // enable interrupt #endif // setup RTC printf("setup internal RTC: "); rtc_auto_awake(RCC_LSE, 32768-1); // ensure internal RTC is on, uses the 32.678 kHz LSE, and the prescale is set to our tick speed, else update backup registers accordingly (power off the micro-controller for the change to take effect) rtc_interrupt_enable(RTC_SEC); // enable RTC interrupt on "seconds" nvic_enable_irq(NVIC_RTC_IRQ); // allow the RTC to interrupt printf("OK\n"); // get date and time uint32_t ticks_time = 0; ticks_time = rtc_get_counter_val(); // get time/date from internal RTC printf("current time: %02lu:%02lu:%02lu\n", ticks_time/(60*60), (ticks_time%(60*60))/60, (ticks_time%60)); // display time // main loop printf("command input: ready\n"); bool action = false; // if an action has been performed don't go to sleep button_flag = false; // reset button flag char c = ' '; // to store received character bool char_flag = false; // a new character has been received while (true) { // infinite loop while (usart_received) { // data received over UART action = true; // action has been performed led_toggle(); // toggle LED c = usart_getchar(); // store receive character char_flag = true; // notify character has been received } while (cdcacm_received) { // data received over USB action = true; // action has been performed led_toggle(); // toggle LED c = cdcacm_getchar(); // store receive character char_flag = true; // notify character has been received } while (char_flag) { // user data received char_flag = false; // reset flag action = true; // action has been performed printf("%c",c); // echo receive character if (c=='\r' || c=='\n') { // end of command received if (command_i>0) { // there is a command to process command[command_i] = 0; // end string command_i = 0; // prepare for next command process_command(command); // process user command } } else { // user command input command[command_i] = c; // save command input if (command_i