/* This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** library for UART communication (code) * @file uart.c * @author King Kévin * @date 2016-2017 * @note peripherals used: USART @ref uart */ /* standard libraries */ #include // standard integer types #include // standard I/O facilities #include // general utilities /* STM32 (including CM3) libraries */ #include // real-time control clock library #include // general purpose input output library #include // universal synchronous asynchronous receiver transmitter library #include // interrupt handler #include // Cortex M3 utilities #include "uart.h" // UART header and definitions #include "global.h" // common methods /** @defgroup uart USART peripheral used for UART communication * @{ */ #define UART_ID 1 /**< USART peripheral */ /** @} */ #define UART_BAUDRATE 921600 /**< serial baudrate, in bits per second (with 8N1 8 bits, no parity bit, 1 stop bit settings) */ /* input and output ring buffer, indexes, and available memory */ static volatile uint8_t rx_buffer[UART_BUFFER] = {0}; /**< ring buffer for received data */ static volatile uint8_t rx_i = 0; /**< current position of read received data */ static volatile uint8_t rx_used = 0; /**< how much data has been received and not red */ static volatile uint8_t tx_buffer[UART_BUFFER] = {0}; /**< ring buffer for data to transmit */ static volatile uint8_t tx_i = 0; /**< current position of transmitted data */ static volatile uint8_t tx_used = 0; /**< how much data needs to be transmitted */ volatile bool uart_received = false; void uart_setup(void) { /* enable UART I/O peripheral */ rcc_periph_clock_enable(USART_PORT_RCC(UART_ID)); // enable clock for UART port peripheral rcc_periph_clock_enable(USART_RCC(UART_ID)); // enable clock for UART peripheral rcc_periph_clock_enable(RCC_AFIO); // enable pin alternate function (UART) gpio_set_mode(USART_PORT(UART_ID), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, USART_PIN_TX(UART_ID)); // setup GPIO pin UART transmit gpio_set_mode(USART_PORT(UART_ID), GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, USART_PIN_RX(UART_ID)); // setup GPIO pin UART receive gpio_set(USART_PORT(UART_ID), USART_PIN_RX(UART_ID)); // pull up to avoid noise when not connected /* setup UART parameters */ usart_set_baudrate(USART(UART_ID), UART_BAUDRATE); usart_set_databits(USART(UART_ID), 8); usart_set_stopbits(USART(UART_ID), USART_STOPBITS_1); usart_set_mode(USART(UART_ID), USART_MODE_TX_RX); usart_set_parity(USART(UART_ID), USART_PARITY_NONE); usart_set_flow_control(USART(UART_ID), USART_FLOWCONTROL_NONE); nvic_enable_irq(USART_IRQ(UART_ID)); // enable the UART interrupt usart_enable_rx_interrupt(USART(UART_ID)); // enable receive interrupt usart_enable(USART(UART_ID)); // enable UART /* reset buffer states */ tx_i = 0; tx_used = 0; rx_i = 0; rx_used = 0; uart_received = false; } void uart_putchar_blocking(char c) { uart_flush(); // empty buffer first usart_send_blocking(USART(UART_ID), c); // send character } void uart_flush(void) { while (tx_used) { // idle until buffer is empty __WFI(); // sleep until interrupt } usart_wait_send_ready(USART(UART_ID)); // wait until transmit register is empty (transmission might not be complete) } char uart_getchar(void) { while (!rx_used) { // idle until data is available __WFI(); // sleep until interrupt } usart_disable_rx_interrupt(USART(UART_ID)); // disable receive interrupt to prevent index corruption volatile char to_return = rx_buffer[rx_i]; // get the next available character rx_i = (rx_i+1)%LENGTH(rx_buffer); // update used buffer rx_used--; // update used buffer uart_received = (rx_used!=0); // update available data usart_enable_rx_interrupt(USART(UART_ID)); // enable receive interrupt return to_return; } void uart_putchar_nonblocking(char c) { while (tx_used>=LENGTH(tx_buffer)) { // idle until buffer has some space usart_enable_tx_interrupt(USART(UART_ID)); // enable transmit interrupt __WFI(); // sleep until something happened } usart_disable_tx_interrupt(USART(UART_ID)); // disable transmit interrupt to prevent index corruption tx_buffer[(tx_i+tx_used)%LENGTH(tx_buffer)] = c; // put character in buffer tx_used++; // update used buffer usart_enable_tx_interrupt(USART(UART_ID)); // enable transmit interrupt } /** UART interrupt service routine called when data has been transmitted or received */ void USART_ISR(UART_ID)(void) { if (usart_get_flag(USART(UART_ID), USART_SR_TXE)) { // data has been transmitted if (!tx_used) { // no data in the buffer to transmit usart_disable_tx_interrupt(USART(UART_ID)); // disable transmit interrupt } else { usart_send(USART(UART_ID),tx_buffer[tx_i]); // put data in transmit register tx_i = (tx_i+1)%LENGTH(rx_buffer); // update location on buffer tx_used--; // update used size } } while (usart_get_flag(USART(UART_ID), USART_SR_RXNE)) { // data has been received (repeat while receiving) char c = usart_recv(USART(UART_ID)); // save character and free UART buffer // only save data if there is space in the buffer if (rx_used>=LENGTH(rx_buffer)) { // if buffer is full rx_i = (rx_i+1)%LENGTH(rx_buffer); // drop oldest data rx_used--; // update used buffer information } rx_buffer[(rx_i+rx_used)%LENGTH(rx_buffer)] = c; // put character in buffer rx_used++; // update used buffer uart_received = true; // update available data } }