/* This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** global definitions and methods (code) * @file global.c * @author King Kévin * @date 2016-2017 */ /* standard libraries */ #include // standard integer types #include // general utilities #include // memory utilities /* STM32 (including CM3) libraries */ #include // Cortex M3 utilities #include // interrupt handler #include // SysTick library #include // real-time control clock library #include // general purpose input output library #include // timer library #include // external interrupt defines #include "global.h" // common methods volatile bool button_flag = false; volatile bool user_input_available = false; static volatile uint8_t user_input_buffer[64] = {0}; /**< ring buffer for received data */ static volatile uint8_t user_input_i = 0; /**< current position of read received data */ static volatile uint8_t user_input_used = 0; /**< how much data has been received and not red */ static volatile uint32_t sleep_duration = 0; /**< sleep duration count down (in SysTick interrupts) */ char* b2s(uint64_t binary, uint8_t rjust) { static char string[64+1] = {0}; // the string representation to return uint8_t bit = LENGTH(string)-1; // the index of the bit to print string[bit--] = '\0'; // terminate string while (binary) { if (binary & 1) { string[bit--] = '1'; } else { string[bit--] = '0'; } binary >>= 1; } while (64-bit-10) { string[bit--] = '0'; } return string; } /** switch on board LED */ void led_on(void) { #if defined(BUSVOODOO) timer_disable_counter(TIM1); // disable timer for PWM gpio_set_mode(GPIO(LED_PORT), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, GPIO(LED_PIN)); // set LED pin to 'output push-pull' #endif #if defined(LED_ON) && LED_ON gpio_set(GPIO(LED_PORT), GPIO(LED_PIN)); #else gpio_clear(GPIO(LED_PORT), GPIO(LED_PIN)); #endif } /** switch off board LED */ void led_off(void) { #if defined(BUSVOODOO) timer_disable_counter(TIM1); // disable timer for PWM gpio_set_mode(GPIO(LED_PORT), GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, GPIO(LED_PIN)); // set LED pin to 'output push-pull' #else #if defined(LED_ON) && LED_ON gpio_clear(GPIO(LED_PORT), GPIO(LED_PIN)); #else gpio_set(GPIO(LED_PORT), GPIO(LED_PIN)); #endif #endif } /** toggle board LED */ void led_toggle(void) { #if defined(BUSVOODOO) timer_disable_counter(TIM1); // disable timer for PWM gpio_set_mode(GPIO(LED_PORT), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, GPIO(LED_PIN)); // set LED pin to 'output push-pull' #endif gpio_toggle(GPIO(LED_PORT), GPIO(LED_PIN)); } #if defined(BUSVOODOO) void led_blink(double period, double duty) { if (period<0.0 || period>6.0 || duty<0.0 || duty>1.0) { // input argument out of bounds return; // do nothing } timer_disable_counter(TIM1); // disable timer for PWM before resetting it if (0.0==period) { // no blinking gpio_set_mode(GPIO(LED_PORT), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, GPIO(LED_PIN)); // set LED pin as normal output if (duty>0.5) { // LED should be on gpio_set(GPIO(LED_PORT), GPIO(LED_PIN)); // switch LED on } else { // LED should be off gpio_clear(GPIO(LED_PORT), GPIO(LED_PIN)); // switch LED off } } else { gpio_set_mode(GPIO(LED_PORT), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, GPIO(LED_PIN)); // set LED pin to alternate function for PWM timer_set_counter(TIM1, 0); // reset counter timer_set_period(TIM1, 0xffff*(period/6.0)); // set period timer_set_oc_value(TIM1, TIM_OC1, 0xffff*(period/6.0)*duty); // PWM duty cycle timer_enable_counter(TIM1); // enable timer to start blinking } } void led_blue(void) { timer_disable_counter(TIM1); // disable timer for PWM gpio_set_mode(GPIO(LED_PORT), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, GPIO(LED_PIN)); // set LED pin to 'output push-pull' gpio_set(GPIO(LED_PORT), GPIO(LED_PIN)); } void led_red(void) { timer_disable_counter(TIM1); // disable timer for PWM gpio_set_mode(GPIO(LED_PORT), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, GPIO(LED_PIN)); // set LED pin to 'output push-pull' gpio_clear(GPIO(LED_PORT), GPIO(LED_PIN)); } #endif void sleep_us(uint32_t duration) { systick_counter_disable(); // disable SysTick to reconfigure it if (!systick_set_frequency(1000000,rcc_ahb_frequency)) { // set SysTick frequency to microseconds while (true); // unhandled error } systick_clear(); // reset SysTick systick_interrupt_enable(); // enable interrupt to count duration sleep_duration = duration; // save sleep duration for count down systick_counter_enable(); // start counting while (sleep_duration>0) { // wait for count down to complete __WFI(); // go to sleep } } void sleep_ms(uint32_t duration) { systick_counter_disable(); // disable SysTick to reconfigure it if (!systick_set_frequency(1000,rcc_ahb_frequency)) { // set SysTick frequency to milliseconds while (true); // unhandled error } systick_clear(); // reset SysTick systick_interrupt_enable(); // enable interrupt to count duration sleep_duration = duration; // save sleep duration for count down systick_counter_enable(); // start counting while (sleep_duration>0) { // wait for count down to complete __WFI(); // go to sleep } } /** SysTick interrupt handler */ void sys_tick_handler(void) { if (sleep_duration>0) { sleep_duration--; // decrement duration } if (0==sleep_duration) { // sleep complete systick_counter_disable(); // stop systick systick_interrupt_disable(); // stop interrupting sleep_duration = 0; // ensure it still is at 0 } } char user_input_get(void) { while (!user_input_available) { // wait for user input __WFI(); // go to sleep } volatile char to_return = user_input_buffer[user_input_i]; // get the next available character user_input_i = (user_input_i+1)%LENGTH(user_input_buffer); // update used buffer user_input_used--; // update used buffer user_input_available = (user_input_used!=0); // update available data return to_return; } void user_input_store(char c) { // only save data if there is space in the buffer if (user_input_used>=LENGTH(user_input_buffer)) { // if buffer is full user_input_i = (user_input_i+1)%LENGTH(user_input_buffer); // drop oldest data user_input_used--; // update used buffer information } user_input_buffer[(user_input_i+user_input_used)%LENGTH(user_input_buffer)] = c; // put character in buffer user_input_used++; // update used buffer user_input_available = true; // update available data } void board_setup(void) { // setup LED rcc_periph_clock_enable(RCC_GPIO(LED_PORT)); // enable clock for LED #if defined(BUSVOODOO) // LED is connected to TIM1_CH1, allowing to used the PWM output so to display patterns rcc_periph_clock_enable(RCC_TIM1); // enable clock for timer domain timer_reset(TIM1); // reset timer configuration timer_set_mode(TIM1, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_CENTER_1, TIM_CR1_DIR_UP); // configure timer to up counting mode (center aligned for more precise duty cycle control) timer_set_oc_mode(TIM1, TIM_OC1, TIM_OCM_PWM1); // use PWM output compare mode timer_enable_oc_output(TIM1, TIM_OC1); // enable output compare output timer_enable_break_main_output(TIM1); // required to enable timer, even when no dead time is used timer_set_prescaler(TIM1, 3296-1); // set prescaler to allow 3/3 seconds PWM output (72MHz/2^16/3296=0.33Hz) #else gpio_set_mode(GPIO(LED_PORT), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, GPIO(LED_PIN)); // set LED pin to 'output push-pull' #endif led_off(); // switch off LED per default // setup button #if defined(BUTTON_PORT) && defined(BUTTON_PIN) rcc_periph_clock_enable(RCC_GPIO(BUTTON_PORT)); // enable clock for button gpio_set_mode(GPIO(BUTTON_PORT), GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, GPIO(BUTTON_PIN)); // set button pin to input rcc_periph_clock_enable(RCC_AFIO); // enable alternate function clock for external interrupt exti_select_source(EXTI(BUTTON_PIN), GPIO(BUTTON_PORT)); // mask external interrupt of this pin only for this port #if defined(BUTTON_PRESSED) && BUTTON_PRESSED gpio_clear(GPIO(BUTTON_PORT), GPIO(BUTTON_PIN)); // pull down to be able to detect button push (go high) exti_set_trigger(EXTI(BUTTON_PIN), EXTI_TRIGGER_RISING); // trigger when button is pressed #else gpio_set(GPIO(BUTTON_PORT), GPIO(BUTTON_PIN)); // pull up to be able to detect button push (go low) exti_set_trigger(EXTI(BUTTON_PIN), EXTI_TRIGGER_FALLING); // trigger when button is pressed #endif exti_enable_request(EXTI(BUTTON_PIN)); // enable external interrupt nvic_enable_irq(NVIC_EXTI_IRQ(BUTTON_PIN)); // enable interrupt #endif // reset user input buffer user_input_available = false; user_input_i = 0; user_input_used = 0; } #if defined(BUTTON_PIN) /** interrupt service routine called when button is pressed */ void EXTI_ISR(BUTTON_PIN)(void) { exti_reset_request(EXTI(BUTTON_PIN)); // reset interrupt button_flag = true; // perform button action } #endif