/* This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** library to read/write internal flash (code) * @file flash_internal.c * @author King Kévin * @date 2016-2018 * @note peripherals used: none */ /* standard libraries */ #include // standard integer types #include // general utilities /* STM32 (including CM3) libraries */ #include // flash utilities #include // device signature definitions #include // debug definitions #include "flash_internal.h" // flash storage library API #include "global.h" // global definitions /** verify if the data is in the internal flash area * @param[in] address start address of the data to read * @param[in] size how much data to read or write, in bytes * @return if the data is in the internal flash area */ static bool flash_internal_range(uint32_t address, size_t size) { if (address>(UINT32_MAX-size)) { // on integer overflow will occur return false; } if (address=FLASH_BASE) { // check if the end for the internal flash is enforce by the linker script if ((address+size)>(uint32_t)&__flash_end) { // end address is after the end of the enforced internal flash return false; } } else { if ((address+size)>(FLASH_BASE+DESIG_FLASH_SIZE*1024)) { // end address is after the end of the advertised flash return false; } } return true; } bool flash_internal_read(uint32_t address, uint8_t *buffer, size_t size) { // sanity checks if (buffer==NULL || size==0) { return false; } if (!flash_internal_range(address, size)) { return false; } // copy data byte per byte (a more efficient way would be to copy words, than the remaining bytes) for (size_t i=0; i= FLASH_BASE && (address + size) > (uint32_t)&__flash_end) { return 4; } else if ((uint32_t)&__flash_end < FLASH_BASE && (address + size) > (FLASH_BASE+DESIG_FLASH_SIZE * 1024)) { return -5; } // get page size uint16_t page_size = 0; if ((0x410 == (DBGMCU_IDCODE&DBGMCU_IDCODE_DEV_ID_MASK)) || (0x412 == (DBGMCU_IDCODE&DBGMCU_IDCODE_DEV_ID_MASK))) { // low-density (16-32 KB flash) and medium-density (64-128 KB flash) devices have 1 KB flash pages page_size = 1024; } else if ((0x414 == (DBGMCU_IDCODE&DBGMCU_IDCODE_DEV_ID_MASK)) || (0x430 == (DBGMCU_IDCODE&DBGMCU_IDCODE_DEV_ID_MASK)) || (0x418==(DBGMCU_IDCODE&DBGMCU_IDCODE_DEV_ID_MASK))) { // high-density (256-512 KB flash), XL-density (768-1024 KB flash) devices and connectivity line have 2 KB flash pages page_size = 2048; } else { // unknown device type (or unreadable type, see errata), deduce page size from flash size if (DESIG_FLASH_SIZE < 256) { page_size = 1024; } else { page_size = 2048; } } uint32_t written = 0; // number of bytes written flash_unlock(); // unlock flash to be able to write it while (size) { // write page by page until all data has been written // verify of we need to erase the flash before writing it uint32_t page_start = address - (address % page_size); // get start of the current page bool erase = false; // verify if the flash to write is erased of if we need to erase the page for (uint32_t i = 0; i < size && (address + i) < (page_start + page_size); i += 2) { // verify if not bit need to be flipped to 1 again if (*(uint16_t*)(buffer + i) != 0x0000 && (*(uint16_t*)(address + i)) != 0xffff ) { // to write the flashed, it needs to be erased, or the data needs to be 0 erase = true; // we need to erase the flash to flip the bit back to 1 } } if (erase && preserve) { // erase before uint8_t page_data[page_size]; // a copy of the complete page before the erase it uint16_t page_i = 0; // index for page data // copy page before address for (uint32_t flash = page_start; flash < address && flash < (page_start + page_size) && page_i < page_size; flash++) { page_data[page_i++] = *(uint8_t*)(flash); } // copy data starting at address while (size > 0 && page_i < page_size) { page_data[page_i++] = *buffer; buffer++; address++; size--; } // copy data after buffer until end of page while (page_i < page_size) { page_data[page_i] = *(uint8_t*)(page_start+page_i); page_i++; } flash_erase_page(page_start); // erase current page if (flash_get_status_flags() != FLASH_SR_EOP) { // operation went wrong flash_lock(); // lock back flash to protect it return -6; } for (uint16_t i = 0; i < page_size; i += 2) { // write whole page flash_program_half_word(page_start + i, *((uint16_t*)(page_data + i))); if (flash_get_status_flags() != FLASH_SR_EOP) { // operation went wrong flash_lock(); // lock back flash to protect it return -7; } if (*((uint16_t*)(page_data + i)) != *((uint16_t*)(page_start + i))) { // verify the programmed data is right flash_lock(); // lock back flash to protect it return -8; } written += 2; } } else { // simply copy data until end of page (or end of data) if (erase) { flash_erase_page(page_start); // erase current page if (flash_get_status_flags() != FLASH_SR_EOP) { // operation went wrong flash_lock(); // lock back flash to protect it return -9; } } while (size > 0 && address < (page_start + page_size)) { flash_program_half_word(address, *((uint16_t*)(buffer))); if (flash_get_status_flags() != FLASH_SR_EOP) { // operation went wrong flash_lock(); // lock back flash to protect it return -10; } if (*((uint16_t*)address) != *((uint16_t*)buffer)) { // verify the programmed data is right flash_lock(); // lock back flash to protect it return -11; } written += 2; buffer += 2; address += 2; size -= 2; } } } flash_lock(); // lock back flash to protect it return written; }