/* This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /* Copyright (c) 2016 King Kévin */ /* this library handles IrDA SIR (USART based) communication */ /* this library handles IrDA communication */ /* standard libraries */ #include // standard integer types #include // standard I/O facilities #include // general utilities /* STM32 (including CM3) libraries */ #include // real-time control clock library #include // general purpose input output library #include // universal synchronous asynchronous receiver transmitter library #include // interrupt handler #include // Cortex M3 utilities #include "usart_irda.h" // IrDA header and definitions /* which USART to use for IrDA */ #define IRDA USART3 #define IRDA_RCC RCC_USART3 #define IRDA_IRQ NVIC_USART3_IRQ #define IRDA_PORT GPIOB #define IRDA_PIN_TX GPIO_USART3_TX #define IRDA_PIN_RX GPIO_USART3_RX /* serial baudrate, in bits per second (with 8N1 8 bits, no parity bit, 1 stop bit settings) */ #define IRDA_BAUDRATE 9600 /* RX and TX buffer sizes */ #define IRDA_BUFFER 128 /* input and output ring buffer, indexes, and available memory */ static uint8_t rx_buffer[IRDA_BUFFER] = {0}; static volatile uint8_t rx_i = 0; static volatile uint8_t rx_used = 0; static uint8_t tx_buffer[IRDA_BUFFER] = {0}; static volatile uint8_t tx_i = 0; static volatile uint8_t tx_used = 0; /* show the user how much data received over IrDA is ready */ volatile uint8_t irda_received = 0; // same as rx_used, but since the user can write this variable we don't rely on it /* setup IrDA peripheral */ void irda_setup(void) { rcc_periph_clock_enable(IRDA_RCC); // enable clock for USART/IrDA block gpio_set_mode(IRDA_PORT, GPIO_MODE_OUTPUT_10_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, IRDA_PIN_TX); // setup GPIO pin USART/IrDA transmit gpio_set_mode(IRDA_PORT, GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, IRDA_PIN_RX); // setup GPIO pin USART/IrDA receive gpio_set(IRDA_PORT, IRDA_PIN_RX); // pull up to avoid noise when not connected /* setup UART/IrDA parameters */ usart_set_baudrate(IRDA, IRDA_BAUDRATE); usart_set_databits(IRDA, 8); usart_set_stopbits(IRDA, USART_STOPBITS_1); usart_set_mode(IRDA, USART_MODE_TX_RX); usart_set_parity(IRDA, USART_PARITY_NONE); usart_set_flow_control(IRDA, USART_FLOWCONTROL_NONE); USART_CR3(IRDA) |= USART_CR3_IREN; // enable IrDA SIR ENDEC block (using IREN) nvic_enable_irq(IRDA_IRQ); // enable the USART/IrDA interrupt usart_enable_rx_interrupt(IRDA); // enable receive interrupt usart_enable(IRDA); // enable USART/IrDA /* reset buffer states */ tx_i = 0; tx_used = 0; rx_i = 0; rx_used = 0; irda_received = 0; } /* put character on IrDA (blocking) */ void irda_putchar_blocking(char c) { irda_flush(); // empty buffer first usart_send_blocking(IRDA, c); // send character } /* ensure all data has been transmitted (blocking) */ void irda_flush(void) { while (tx_used) { // idle until buffer is empty __WFI(); // sleep until interrupt } usart_wait_send_ready(IRDA); // wait until transmit register is empty (transmission might not be complete) } /* get character from IrDA (blocking) */ char irda_getchar(void) { while (!rx_used) { // idle until data is available __WFI(); // sleep until interrupt; } char to_return = rx_buffer[rx_i]; // get the next available character rx_i = (rx_i+1)%sizeof(rx_buffer); // update used buffer rx_used--; // update used buffer irda_received = rx_used; // update available data return to_return; } /* put character on IrDA (non-blocking until buffer is full) */ void irda_putchar_nonblocking(char c) { while (tx_used>=sizeof(tx_buffer)) { // idle until buffer has some space usart_enable_tx_interrupt(IRDA); // enable transmit interrupt __WFI(); // sleep until something happened } tx_buffer[(tx_i+tx_used)%sizeof(tx_buffer)] = c; // put character in buffer tx_used++; // update used buffer usart_enable_tx_interrupt(IRDA); // enable transmit interrupt } #if (IRDA==USART1) void usart1_isr(void) #elif (IRDA==USART2) void usart2_isr(void) #elif (IRDA==USART3) void usart3_isr(void) #endif { // USART interrupt if (usart_get_interrupt_source(IRDA, USART_SR_TXE)) { // data has been transmitted if (!tx_used) { // no data in the buffer to transmit usart_disable_tx_interrupt(IRDA); // disable transmit interrupt } else { usart_send(IRDA,tx_buffer[tx_i]); // put data in transmit register tx_i = (tx_i+1)%sizeof(rx_buffer); // update location on buffer tx_used--; // update used size } } if (usart_get_interrupt_source(IRDA, USART_SR_RXNE)) { // data has been received // only save data if there is space in the buffer if (rx_used>=sizeof(rx_buffer)) { usart_recv(IRDA); // read to clear interrupt } else { rx_buffer[(rx_i+rx_used)%sizeof(rx_buffer)] = usart_recv(IRDA); // put character in buffer rx_used++; // update used buffer irda_received = rx_used; // update available data } } }