/* This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** STM32F1 application example * @file application.c * @author King Kévin * @date 2016-2017 */ /* standard libraries */ #include // standard integer types #include // standard utilities #include // string utilities #include // date/time utilities /* STM32 (including CM3) libraries */ #include // Cortex M3 utilities #include // vector table definition #include // interrupt utilities #include // general purpose input output library #include // real-time control clock library #include // external interrupt utilities #include // real time clock utilities #include // independent watchdog utilities #include // debug utilities #include // flash utilities /* own libraries */ #include "global.h" // board definitions #include "print.h" // printing utilities #include "usart.h" // USART utilities #include "usb_cdcacm.h" // USB CDC ACM utilities #define WATCHDOG_PERIOD 10000 /**< watchdog period in ms */ /** @defgroup main_flags flag set in interrupts to be processed in main task * @{ */ volatile bool rtc_internal_tick_flag = false; /**< flag set when internal RTC ticked */ /** @} */ time_t time_rtc = 0; /**< time (seconds since Unix Epoch) */ struct tm* time_tm; /**< time in tm format (time zones are not handled for non-POSIX environments) */ size_t putc(char c) { size_t length = 0; // number of characters printed static char newline = 0; // to remember on which character we sent the newline if (0==c) { length = 0; // don't print string termination character } else if ('\r' == c || '\n' == c) { // send CR+LF newline for most carriage return and line feed combination if (0==newline || c==newline) { // send newline only if not already send (and only once on \r\n or \n\r) usart_putchar_nonblocking('\r'); // send CR over USART usb_cdcacm_putchar('\r'); // send CR over USB usart_putchar_nonblocking('\n'); // send LF over USART usb_cdcacm_putchar('\n'); // send LF over USB length += 2; // remember we printed 2 characters newline = c; // remember on which character we sent the newline } else { length = 0; // the \r or \n of \n\r or \r\n has already been printed } } else { usart_putchar_nonblocking(c); // send byte over USART usb_cdcacm_putchar(c); // send byte over USB newline = 0; // clear new line length++; // remember we printed 1 character } return length; // return number of characters printed } /** user input command */ static char command[32] = {0}; /** user input command index */ uint8_t command_i = 0; /** process user command * @param[in] str user command string (\0 ended) */ static void process_command(char* str) { // split command const char* delimiter = " "; char* word = strtok(str,delimiter); if (!word) { goto error; } // parse command if (0==strcmp(word,"h") || 0==strcmp(word,"help") || 0==strcmp(word,"?")) { printf("available commands:\n"); printf("led [on|off|toggle]\n"); } else if (0==strcmp(word,"l") || 0==strcmp(word,"led")) { word = strtok(NULL,delimiter); if (!word) { printf("LED is "); if (gpio_get(GPIO(LED_PORT), GPIO(LED_PIN))) { printf("on\n"); } else { printf("off\n"); } } else if (0==strcmp(word,"on")) { led_on(); // switch LED on printf("LED switched on\n"); // notify user } else if (0==strcmp(word,"off")) { led_off(); // switch LED off printf("LED switched off\n"); // notify user } else if (0==strcmp(word,"toggle")) { led_toggle(); // toggle LED printf("LED toggled\n"); // notify user } else { goto error; } } else if (0==strcmp(word,"time")) { word = strtok(NULL,delimiter); if (!word) { time_rtc = rtc_get_counter_val(); // get time from internal RTC time_tm = localtime(&time_rtc); // convert time printf("time: %02d:%02d:%02d\n", time_tm->tm_hour, time_tm->tm_min, time_tm->tm_sec); } else if (strlen(word)!=8 || word[0]<'0' || word[0]>'2' || word[1]<'0' || word[1]>'9' || word[3]<'0' || word[3]>'5' || word[4]<'0' || word[4]>'9' || word[6]<'0' || word[6]>'5' || word[7]<'0' || word[7]>'9') { // time format is incorrect goto error; } else { time_rtc = rtc_get_counter_val(); // get time from internal RTC time_tm = localtime(&time_rtc); // convert time time_tm->tm_hour = (word[0]-'0')*10+(word[1]-'0')*1; // set hours time_tm->tm_min = (word[3]-'0')*10+(word[4]-'0')*1; // set minutes time_tm->tm_sec = (word[6]-'0')*10+(word[7]-'0')*1; // set seconds time_rtc = mktime(time_tm); // get back seconds rtc_set_counter_val(time_rtc); // save time to internal RTC printf("time set\n"); } } else if (0==strcmp(word,"date")) { word = strtok(NULL,delimiter); if (!word) { time_rtc = rtc_get_counter_val(); // get time from internal RTC time_tm = localtime(&time_rtc); // convert time printf("date: %d-%02d-%02d\n", 1900+time_tm->tm_year, time_tm->tm_mon+1, time_tm->tm_mday); } else if (strlen(word)!=10 || word[0]!='2' || word[1]!='0' || word[2]<'0' || word[2]>'9' || word[3]<'0' || word[3]>'9' || word[5]<'0' || word[5]>'1' || word[6]<'0' || word[6]>'9' || word[8]<'0' || word[8]>'3' || word[9]<'0' || word[9]>'9') { goto error; } else { time_rtc = rtc_get_counter_val(); // get time from internal RTC time_tm = localtime(&time_rtc); // convert time time_tm->tm_year = ((word[0]-'0')*1000+(word[1]-'0')*100+(word[2]-'0')*10+(word[3]-'0')*1)-1900; // set year time_tm->tm_mon = (word[5]-'0')*10+(word[6]-'0')*1-1; // set month time_tm->tm_mday = (word[8]-'0')*10+(word[9]-'0')*1; // set day time_rtc = mktime(time_tm); // get back seconds rtc_set_counter_val(time_rtc); // save time to internal RTC printf("date set\n"); } } else { goto error; } return; // command successfully processed error: printf("command not recognized. enter help to list commands\n"); return; } /** program entry point * this is the firmware function started by the micro-controller */ void main(void); void main(void) { rcc_clock_setup_in_hse_8mhz_out_72mhz(); // use 8 MHz high speed external clock to generate 72 MHz internal clock #if DEBUG // enable functionalities for easier debug DBGMCU_CR |= DBGMCU_CR_IWDG_STOP; // stop independent watchdog counter when code is halted DBGMCU_CR |= DBGMCU_CR_WWDG_STOP; // stop window watchdog counter when code is halted DBGMCU_CR |= DBGMCU_CR_STANDBY; // allow debug also in standby mode (keep digital part and clock powered) DBGMCU_CR |= DBGMCU_CR_STOP; // allow debug also in stop mode (keep clock powered) DBGMCU_CR |= DBGMCU_CR_SLEEP; // allow debug also in sleep mode (keep clock powered) #else // setup watchdog to reset in case we get stuck (i.e. when an error occurred) iwdg_set_period_ms(WATCHDOG_PERIOD); // set independent watchdog period iwdg_start(); // start independent watchdog #endif board_setup(); // setup board usart_setup(); // setup USART (for printing) usb_cdcacm_setup(); // setup USB CDC ACM (for printing) printf("welcome to the CuVoodoo STM32F1 example application\n"); // print welcome message #if !(DEBUG) // show watchdog information printf("watchdog set to (%.2fs)\n",WATCHDOG_PERIOD/1000.0); if (FLASH_OBR&FLASH_OBR_OPTERR) { printf("option bytes not set in flash: software wachtdog used (not started at reset)\n"); } else if (FLASH_OBR&FLASH_OBR_WDG_SW) { printf("software wachtdog used (not started at reset)\n"); } else { printf("hardware wachtdog used (started at reset)\n"); } #endif // setup RTC printf("setup internal RTC: "); rtc_auto_awake(RCC_LSE, 32768-1); // ensure internal RTC is on, uses the 32.678 kHz LSE, and the prescale is set to our tick speed, else update backup registers accordingly (power off the micro-controller for the change to take effect) rtc_interrupt_enable(RTC_SEC); // enable RTC interrupt on "seconds" nvic_enable_irq(NVIC_RTC_IRQ); // allow the RTC to interrupt printf("OK\n"); time_rtc= rtc_get_counter_val(); // get time from internal RTC time_tm = localtime(&time_rtc); // convert time printf("date: %d-%02d-%02d %02d:%02d:%02d\n", 1900+time_tm->tm_year, time_tm->tm_mon+1, time_tm->tm_mday, time_tm->tm_hour, time_tm->tm_min, time_tm->tm_sec); // main loop printf("command input: ready\n"); bool action = false; // if an action has been performed don't go to sleep button_flag = false; // reset button flag char c = '\0'; // to store received character bool char_flag = false; // a new character has been received while (true) { // infinite loop iwdg_reset(); // kick the dog while (usart_received) { // data received over UART action = true; // action has been performed led_toggle(); // toggle LED c = usart_getchar(); // store receive character char_flag = true; // notify character has been received } while (usb_cdcacm_received) { // data received over USB action = true; // action has been performed led_toggle(); // toggle LED c = usb_cdcacm_getchar(); // store receive character char_flag = true; // notify character has been received } while (char_flag) { // user data received char_flag = false; // reset flag action = true; // action has been performed printf("%c",c); // echo receive character if (c=='\r' || c=='\n') { // end of command received if (command_i>0) { // there is a command to process command[command_i] = 0; // end string command_i = 0; // prepare for next command process_command(command); // process user command } } else { // user command input command[command_i] = c; // save command input if (command_itm_sec) { // new minute printf("time: %02d:%02d:%02d\n", time_tm->tm_hour, time_tm->tm_min, time_tm->tm_sec); } } if (action) { // go to sleep if nothing had to be done, else recheck for activity action = false; } else { __WFI(); // go to sleep } } // main loop } /** @brief interrupt service routine called when tick passed on RTC */ void rtc_isr(void) { rtc_clear_flag(RTC_SEC); // clear flag rtc_internal_tick_flag = true; // notify to show new time }