/* This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** STM32F1 application example * @file * @author King Kévin * @date 2016-2020 */ /* standard libraries */ #include // standard integer types #include // standard utilities #include // string utilities #include // date/time utilities #include // utilities to check chars /* STM32 (including CM3) libraries */ #include // Cortex M3 utilities #include // vector table definition #include // interrupt utilities #include // general purpose input output library #include // real-time control clock library #include // external interrupt utilities #include // real time clock utilities #include // independent watchdog utilities #include // debug utilities #include // design utilities #include // flash utilities /* own libraries */ #include "global.h" // board definitions #include "print.h" // printing utilities #if !defined(STLINKV2) #include "uart.h" // USART utilities #endif #include "usb_cdcacm.h" // USB CDC ACM utilities #include "terminal.h" // handle the terminal interface #include "menu.h" // menu utilities /** watchdog period in ms */ #define WATCHDOG_PERIOD 10000 /** set to 0 if the RTC is reset when the board is powered on, only indicates the uptime * set to 1 if VBAT can keep the RTC running when the board is unpowered, indicating the date and time */ #if defined(CORE_BOARD) #define RTC_DATE_TIME 1 #else #define RTC_DATE_TIME 0 #endif /** number of RTC ticks per second * @note use integer divider of oscillator to keep second precision */ #define RTC_TICKS_SECOND 4 /** RTC time when device is started */ static time_t time_start = 0; /** @defgroup main_flags flag set in interrupts to be processed in main task * @{ */ volatile bool rtc_internal_tick_flag = false; /**< flag set when internal RTC ticked */ /** @} */ size_t putc(char c) { size_t length = 0; // number of characters printed static char last_c = 0; // to remember on which character we last sent if ('\n' == c) { // send carriage return (CR) + line feed (LF) newline for each LF if ('\r' != last_c) { // CR has not already been sent #if !defined(STLINKV2) uart_putchar_nonblocking('\r'); // send CR over USART #endif usb_cdcacm_putchar('\r'); // send CR over USB length++; // remember we printed 1 character } } #if !defined(STLINKV2) uart_putchar_nonblocking(c); // send byte over USART #endif usb_cdcacm_putchar(c); // send byte over USB length++; // remember we printed 1 character last_c = c; // remember last character return length; // return number of characters printed } /** display available commands * @param[in] argument no argument required */ static void command_help(void* argument); /** show software and hardware version * @param[in] argument no argument required */ static void command_version(void* argument); /** show uptime * @param[in] argument no argument required */ static void command_uptime(void* argument); #if RTC_DATE_TIME /** show date and time * @param[in] argument date and time to set */ static void command_datetime(void* argument); #endif /** reset board * @param[in] argument no argument required */ static void command_reset(void* argument); /** switch to DFU bootloader * @param[in] argument no argument required */ static void command_bootloader(void* argument); /** list of all supported commands */ static const struct menu_command_t menu_commands[] = { { .shortcut = 'h', .name = "help", .command_description = "display help", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_help, }, { .shortcut = 'v', .name = "version", .command_description = "show software and hardware version", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_version, }, { .shortcut = 'u', .name = "uptime", .command_description = "show uptime", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_uptime, }, #if RTC_DATE_TIME { .shortcut = 'd', .name = "date", .command_description = "show/set date and time", .argument = MENU_ARGUMENT_STRING, .argument_description = "[YYYY-MM-DD HH:MM:SS]", .command_handler = &command_datetime, }, #endif { .shortcut = 'r', .name = "reset", .command_description = "reset board", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_reset, }, { .shortcut = 'b', .name = "bootloader", .command_description = "reboot into DFU bootloader", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_bootloader, }, }; static void command_help(void* argument) { (void)argument; // we won't use the argument printf("available commands:\n"); menu_print_commands(menu_commands, LENGTH(menu_commands)); // print global commands } static void command_version(void* argument) { (void)argument; // we won't use the argument bool fake = false; // if details indicate it's not an STM32 printf("firmware date: %04u-%02u-%02u\n", BUILD_YEAR, BUILD_MONTH, BUILD_DAY); // show firmware build date puts("chip family: "); const uint16_t dev_id = DBGMCU_IDCODE & DBGMCU_IDCODE_DEV_ID_MASK; switch (dev_id) { case 0: // DBGMCU_IDCODE is only accessible in debug mode (this is a known issue documented in STM32F10xxC/D/E Errata sheet, without workaround) puts("not readable, retry with debug attached"); break; // from RM0008 STM32F101xx, STM32F102xx, STM32F103xx, STM32F105xx and STM32F107xx case 0x412: puts("STM32F10x low-density"); break; case 0x410: puts("STM32F10x medium-density"); break; case 0x414: puts("STM32F10x high-density"); break; case 0x430: puts("STM32F10x XL-density"); break; case 0x418: puts("STM32F10xconnectivity"); break; // from RM0091 STM32F0x8 case 0x444: puts("STM32F03x"); break; case 0x445: puts("STM32F04x"); break; case 0x440: puts("STM32F05x"); break; case 0x448: puts("STM32F07x"); break; case 0x442: puts("STM32F09x"); break; // from RM0444 STM32G0x1 case 0x460: puts("STM32G071xx/STM32G081xx"); break; case 0x466: puts("STM32G031xx/STM32G041xx"); break; // from RM0090 STM32F4x5/STM32F4x7 case 0x413: puts("STM32F405/STM32F407/STM32F415/STM32F417"); break; case 0x419: puts("STM32F42x/STM32F43x"); break; // from RM0368 case 0x423: puts("STM32F401xB/C"); break; case 0x433: puts("STM32F401xD/E"); break; // from RM0383 case 0x431: puts("STM32F411xC/E"); break; default: puts("unknown"); fake = true; break; } printf(" (DEV_ID=0x%03x)\n", dev_id); puts("chip revision: "); const uint16_t rev_id = DBGMCU_IDCODE >> 16; switch (DBGMCU_IDCODE & DBGMCU_IDCODE_DEV_ID_MASK) { case 0x412: if (0x1000 == rev_id) { putc('A'); } else { puts("unknown"); } break; case 0x410: if (0x0000 == rev_id) { putc('A'); } else if (0x2000 == rev_id) { putc('B'); } else if (0x2001 == rev_id) { putc('Z'); } else if (0x2003 == rev_id) { puts("1/2/3/X/Y"); } else { puts("unknown"); } break; case 0x414: if (0x1000 == rev_id) { puts("A/1"); } else if (0x1001 == rev_id) { putc('Z'); } else if (0x1003 == rev_id) { puts("1/2/3/X/Y"); } else { puts("unknown"); } break; case 0x430: if (0x1003 == rev_id) { puts("A/1"); } else { puts("unknown"); } break; case 0x418: if (0x1000 == rev_id) { putc('A'); } else if (0x1001 == rev_id) { putc('Z'); } else { puts("unknown"); } break; default: printf("unknown"); break; } printf(" (REV_ID=0x%04x)\n", rev_id); // show flash size puts("flash size: "); if (0xffff == DESIG_FLASH_SIZE) { puts("unknown (probably a defective micro-controller\n"); } else { printf("%u KB\n", DESIG_FLASH_SIZE); } // display device identity printf("device id: %08x%08x%04x%04x\n", DESIG_UNIQUE_ID2, DESIG_UNIQUE_ID1, DESIG_UNIQUE_ID0 & 0xffff, DESIG_UNIQUE_ID0 >> 16); // from RM0091 STM32F0x8 reference manual (not sure if it applies to F1) printf("- X,Y wafer coordinate: %08x\n", DESIG_UNIQUE_ID0); printf("- lot number: %c%c%c%c%c%c%c\n", DESIG_UNIQUE_ID2 >> 24, DESIG_UNIQUE_ID2 >> 16, DESIG_UNIQUE_ID2 >> 8, DESIG_UNIQUE_ID2 >> 0, DESIG_UNIQUE_ID1 >> 24, DESIG_UNIQUE_ID1 >> 16, DESIG_UNIQUE_ID1 >> 8); printf("- wafer number: %u\n", DESIG_UNIQUE_ID1 & 0xff); // from ARMv7-M and Cortex-M3 TRM // ARMv7-M B3.2.3 printf("CPUID: 0x%08x\n", SCB_CPUID); const uint8_t cpuid_implementer = (SCB_CPUID & SCB_CPUID_IMPLEMENTER) >> SCB_CPUID_IMPLEMENTER_LSB; printf("- implementer: %s (0x%02x)\n", 0x41 == cpuid_implementer ? "ARM" : "unknown", cpuid_implementer); const uint8_t cpuid_architecture = (SCB_CPUID & SCB_CPUID_CONSTANT) >> SCB_CPUID_CONSTANT_LSB; puts("- architecture: "); switch (cpuid_architecture) { case 0xc: puts("ARMv6-M"); break; case 0xf: puts("ARMv7-M"); break; default: fake = true; puts("unknown"); } printf(" (0x%x)\n", cpuid_architecture); const uint16_t cpuid_partno = (SCB_CPUID & SCB_CPUID_PARTNO) >> SCB_CPUID_PARTNO_LSB; puts("- part number: "); switch (cpuid_partno) { case 0xC60: puts("Cortex-M0+"); break; case 0xC20: puts("Cortex‑M0"); break; case 0xC23: // the ARM spec actually mentions 0xC24 puts("Cortex‑M3"); break; case 0xC24: puts("Cortex‑M4"); break; case 0xC27: puts("Cortex‑M7"); break; default: fake = true; puts("unknown"); } printf(" (0x%03x)\n", cpuid_partno); const uint8_t cpuid_variant = (SCB_CPUID & SCB_CPUID_VARIANT) >> SCB_CPUID_VARIANT_LSB; printf("- variant: %u\n", cpuid_variant); const uint8_t cpuid_revision = (SCB_CPUID & SCB_CPUID_REVISION) >> SCB_CPUID_REVISION_LSB; printf("- revision: %u\n", cpuid_revision); // ARM CoreSight B2.2.2 const uint8_t jep106_continuation = *(uint32_t*)0xE00FFFD0 & 0x0f; // DES_2, PIDR4 bits[3:0] const uint8_t jep106_identification = ((*(uint32_t*)0xE00FFFE8 & 0x7) << 4) + ((*(uint32_t*)0xE00FFFE4 >> 4) & 0xf); // DES_0, PIDR1 bits[7:4] JEP106 identification code bits[3:0], DES_1, PIDR2 bits[2:0] JEP106 identification code bits[6:4] const uint16_t pidr_partno = ((*(uint32_t*)0xE00FFFE4 & 0xf) << 8) + (*(uint32_t*)0xE00FFFE0 & 0xff); // PART_0, PIDR0 bits[7:0] Part number bits[7:0], PART_1, PIDR1 bits[3:0] Part number bits[11:8] puts("JEP106 ID: "); if (0 == jep106_continuation && 0x20 == jep106_identification) { puts("STM"); } else if (7 == jep106_continuation && 0x51 == jep106_identification) { puts("GigaDevice"); } else if (4 == jep106_continuation && 0x3b == jep106_identification) { puts("ARM"); } else { puts("unknown"); } printf(" (cont.=%u, ID=0x%02x), part=0x%03x\n", jep106_continuation, jep106_identification, pidr_partno); // guess the micro-controller puts("MCU: "); if (1 == cpuid_variant && 1 == cpuid_revision && 0 == jep106_continuation && 0x20 == jep106_identification) { // STM32 uses Cortex-M3 r1p1 and the right JEP106 ID puts("STM32"); } else if (2 == cpuid_variant && 1 == cpuid_revision && 7 == jep106_continuation && 0x51 == jep106_identification) { // GD32 uses Cortex-M3 r2p1 and the right JEP106 ID puts("GD32"); fake = true; } else if (2 == cpuid_variant && 1 == cpuid_revision && 4 == jep106_continuation && 0x3b == jep106_identification) { // GD32 uses Cortex-M3 r2p1 and ARM JEP106 ID puts("CS32"); fake = true; } else { puts("unknown"); fake = true; } putc('\n'); // detect fake STM32 if (0x412 == dev_id || 0x410 == dev_id || 0x414 == dev_id || 0x430 == dev_id || 0x418 == dev_id) { // STM32F10x // the original STM32F10x uses a Cortex-M3 r1p1 if (0xC23 != cpuid_partno) { // Cortex-M3 fake = true; } if (1 != cpuid_variant) { // r1 fake = true; } if (1 != cpuid_revision) { // p1 fake = true; } } printf("this %s to be a genuine STM32\n", fake ? "does not seem" : "seems"); } static void command_uptime(void* argument) { (void)argument; // we won't use the argument uint32_t uptime = (rtc_get_counter_val() - time_start) / RTC_TICKS_SECOND; // get time from internal RTC printf("uptime: %u.%02u:%02u:%02u\n", uptime / (24 * 60 * 60), (uptime / (60 * 60)) % 24, (uptime / 60) % 60, uptime % 60); } #if RTC_DATE_TIME static void command_datetime(void* argument) { char* datetime = (char*)argument; // argument is optional date time if (NULL == argument) { // no date and time provided, just show the current day and time time_t time_rtc = rtc_get_counter_val() / RTC_TICKS_SECOND; // get time from internal RTC struct tm* time_tm = localtime(&time_rtc); // convert time printf("date: %d-%02d-%02d %02d:%02d:%02d\n", 1900 + time_tm->tm_year, time_tm->tm_mon, time_tm->tm_mday, time_tm->tm_hour, time_tm->tm_min, time_tm->tm_sec); } else { // date and time provided, set it const char* malformed = "date and time malformed, expecting YYYY-MM-DD HH:MM:SS\n"; struct tm time_tm; // to store the parsed date time if (strlen(datetime) != (4 + 1 + 2 + 1 + 2) + 1 + (2 + 1 + 2 + 1 + 2)) { // verify date/time is long enough printf(malformed); return; } if (!(isdigit((int8_t)datetime[0]) && isdigit((int8_t)datetime[1]) && isdigit((int8_t)datetime[2]) && isdigit((int8_t)datetime[3]) && '-' == datetime[4] && isdigit((int8_t)datetime[5]) && isdigit((int8_t)datetime[6]) && '-' == datetime[7] && isdigit((int8_t)datetime[8]) && isdigit((int8_t)datetime[9]) && ' ' == datetime[10] && isdigit((int8_t)datetime[11]) && isdigit((int8_t)datetime[12]) && ':' == datetime[13] && isdigit((int8_t)datetime[14]) && isdigit((int8_t)datetime[15]) && ':' == datetime[16] && isdigit((int8_t)datetime[17]) && isdigit((int8_t)datetime[18]))) { // verify format (good enough to not fail parsing) printf(malformed); return; } time_tm.tm_year = strtol(&datetime[0], NULL, 10) - 1900; // parse year time_tm.tm_mon = strtol(&datetime[5], NULL, 10); // parse month time_tm.tm_mday = strtol(&datetime[8], NULL, 10); // parse day time_tm.tm_hour = strtol(&datetime[11], NULL, 10); // parse hour time_tm.tm_min = strtol(&datetime[14], NULL, 10); // parse minutes time_tm.tm_sec = strtol(&datetime[17], NULL, 10); // parse seconds time_t time_rtc = mktime(&time_tm); // get back seconds time_start = time_rtc * RTC_TICKS_SECOND + (rtc_get_counter_val() - time_start); // update uptime with current date rtc_set_counter_val(time_rtc * RTC_TICKS_SECOND); // save date/time to internal RTC printf("date and time saved: %d-%02d-%02d %02d:%02d:%02d\n", 1900 + time_tm.tm_year, time_tm.tm_mon, time_tm.tm_mday, time_tm.tm_hour, time_tm.tm_min, time_tm.tm_sec); } } #endif static void command_reset(void* argument) { (void)argument; // we won't use the argument scb_reset_system(); // reset device while (true); // wait for the reset to happen } static void command_bootloader(void* argument) { (void)argument; // we won't use the argument // set DFU magic to specific RAM location __dfu_magic[0] = 'D'; __dfu_magic[1] = 'F'; __dfu_magic[2] = 'U'; __dfu_magic[3] = '!'; scb_reset_system(); // reset system (core and peripherals) while (true); // wait for the reset to happen } /** process user command * @param[in] str user command string (\0 ended) */ static void process_command(char* str) { // ensure actions are available if (NULL == menu_commands || 0 == LENGTH(menu_commands)) { return; } // don't handle empty lines if (!str || 0 == strlen(str)) { return; } bool command_handled = false; if (!command_handled) { command_handled = menu_handle_command(str, menu_commands, LENGTH(menu_commands)); // try if this is not a global command } if (!command_handled) { printf("command not recognized. enter help to list commands\n"); } } /** program entry point * this is the firmware function started by the micro-controller */ void main(void); void main(void) { rcc_clock_setup_in_hse_8mhz_out_72mhz(); // use 8 MHz high speed external clock to generate 72 MHz internal clock #if DEBUG // enable functionalities for easier debug DBGMCU_CR |= DBGMCU_CR_IWDG_STOP; // stop independent watchdog counter when code is halted DBGMCU_CR |= DBGMCU_CR_WWDG_STOP; // stop window watchdog counter when code is halted DBGMCU_CR |= DBGMCU_CR_STANDBY; // allow debug also in standby mode (keep digital part and clock powered) DBGMCU_CR |= DBGMCU_CR_STOP; // allow debug also in stop mode (keep clock powered) DBGMCU_CR |= DBGMCU_CR_SLEEP; // allow debug also in sleep mode (keep clock powered) #else // setup watchdog to reset in case we get stuck (i.e. when an error occurred) iwdg_set_period_ms(WATCHDOG_PERIOD); // set independent watchdog period iwdg_start(); // start independent watchdog #endif board_setup(); // setup board #if !defined(STLINKV2) uart_setup(); // setup USART (for printing) #endif usb_cdcacm_setup(); // setup USB CDC ACM (for printing) puts("\nwelcome to the CuVoodoo STM32F1 example application\n"); // print welcome message #if DEBUG // show reset cause if (RCC_CSR & (RCC_CSR_LPWRRSTF | RCC_CSR_WWDGRSTF | RCC_CSR_IWDGRSTF | RCC_CSR_SFTRSTF | RCC_CSR_PORRSTF | RCC_CSR_PINRSTF)) { puts("reset cause(s):"); if (RCC_CSR & RCC_CSR_LPWRRSTF) { puts(" low-power"); } if (RCC_CSR & RCC_CSR_WWDGRSTF) { puts(" window-watchdog"); } if (RCC_CSR & RCC_CSR_IWDGRSTF) { puts(" independent-watchdog"); } if (RCC_CSR & RCC_CSR_SFTRSTF) { puts(" software"); } if (RCC_CSR & RCC_CSR_PORRSTF) { puts(" POR/PDR"); } if (RCC_CSR & RCC_CSR_PINRSTF) { puts(" pin"); } putc('\n'); RCC_CSR |= RCC_CSR_RMVF; // clear reset flags } #endif #if !(DEBUG) // show watchdog information printf("setup watchdog: %.2fs", WATCHDOG_PERIOD / 1000.0); if (FLASH_OBR & FLASH_OBR_OPTERR) { puts(" (option bytes not set in flash: software wachtdog used, not automatically started at reset)\n"); } else if (FLASH_OBR & FLASH_OBR_WDG_SW) { puts(" (software watchdog used, not automatically started at reset)\n"); } else { puts(" (hardware watchdog used, automatically started at reset)\n"); } #endif // setup RTC puts("setup internal RTC: "); #if defined(BLUE_PILL) || defined(STLINKV2) || defined(BLASTER) // for boards without a Low Speed External oscillator // note: the blue pill LSE oscillator is affected when toggling the onboard LED, thus prefer the HSE rtc_auto_awake(RCC_HSE, 8000000 / 128 / RTC_TICKS_SECOND - 1); // use High Speed External oscillator (8 MHz / 128) as RTC clock (VBAT can't be used to keep the RTC running) #else // for boards with an precise Low Speed External oscillator rtc_auto_awake(RCC_LSE, 32768 / RTC_TICKS_SECOND - 1); // ensure internal RTC is on, uses the 32.678 kHz LSE, and the prescale is set to our tick speed, else update backup registers accordingly (power off the micro-controller for the change to take effect) #endif rtc_interrupt_enable(RTC_SEC); // enable RTC interrupt on "seconds" nvic_enable_irq(NVIC_RTC_IRQ); // allow the RTC to interrupt time_start = rtc_get_counter_val(); // get start time from internal RTC puts("OK\n"); // setup terminal terminal_prefix = ""; // set default prefix terminal_process = &process_command; // set central function to process commands terminal_setup(); // start terminal // start main loop bool action = false; // if an action has been performed don't go to sleep button_flag = false; // reset button flag while (true) { // infinite loop iwdg_reset(); // kick the dog if (user_input_available) { // user input is available action = true; // action has been performed led_toggle(); // toggle LED char c = user_input_get(); // store receive character terminal_send(c); // send received character to terminal } if (button_flag) { // user pressed button action = true; // action has been performed puts("button pressed\n"); led_toggle(); // toggle LED sleep_ms(100); // wait a bit to remove noise and double trigger button_flag = false; // reset flag } if (rtc_internal_tick_flag) { // the internal RTC ticked rtc_internal_tick_flag = false; // reset flag action = true; // action has been performed if (0 == (rtc_get_counter_val() % RTC_TICKS_SECOND)) { // one seond has passed led_toggle(); // toggle LED (good to indicate if main function is stuck) } } if (action) { // go to sleep if nothing had to be done, else recheck for activity action = false; } else { __WFI(); // go to sleep } } // main loop } /** @brief interrupt service routine called when tick passed on RTC */ void rtc_isr(void) { rtc_clear_flag(RTC_SEC); // clear flag rtc_internal_tick_flag = true; // notify to show new time }