/** clock generator, using AD9850 * @file * @author King Kévin * @copyright SPDX-License-Identifier: GPL-3.0-or-later * @date 2016-2022 */ /* standard libraries */ #include // standard integer types #include // standard utilities #include // string utilities #include // date/time utilities #include // utilities to check chars #include // float utilities /* STM32 (including CM3) libraries */ #include // Cortex M3 utilities #include // vector table definition #include // interrupt utilities #include // general purpose input output library #include // real-time control clock library #include // external interrupt utilities #include // real time clock utilities #include // independent watchdog utilities #include // debug utilities #include // design utilities #include // flash utilities #include // external interrupt defines /* own libraries */ #include "global.h" // board definitions #include "print.h" // printing utilities #include "uart.h" // USART utilities #include "usb_cdcacm.h" // USB CDC ACM utilities #include "terminal.h" // handle the terminal interface #include "menu.h" // menu utilities #include "lcd_hd44780.h" // LCD display /** watchdog period in ms */ #define WATCHDOG_PERIOD 10000 /** wakeup frequency (i.e. least number of times per second to perform the main loop) */ #define WAKEUP_FREQ 16 /** @defgroup main_flags flag set in interrupts to be processed in main task * @{ */ static volatile bool wakeup_flag = false; /**< flag set when wakeup timer triggered */ static volatile bool second_flag = false; /**< flag set when a second passed */ /** @} */ /** number of seconds since boot */ static uint32_t boot_time = 0; /** connection to AD9850 */ #define AD9850_DATA PA7 #define AD9850_FQUD PA6 #define AD9850_WCLK PA5 //#define AD9850_D0 PA0 //#define AD9850_D1 PA1 //#define AD9850_D2 PA2 /** AD9850 frequency to set (in mHz) */ static uint64_t ad9850_freq = 0; /** maximum frequency (in mHz) */ #define AD9850_MAX_FREQ 125000000000ULL /** connections to rotary encoder (common is ground) */ #define ROTARY_A PA1 #define ROTARY_B PA2 static volatile int8_t rotary_flag = 0; /** flag set when rotary encoder is turned (1 = CW, -1 = CCW) */ size_t putc(char c) { size_t length = 0; // number of characters printed static char last_c = 0; // to remember on which character we last sent if ('\n' == c) { // send carriage return (CR) + line feed (LF) newline for each LF if ('\r' != last_c) { // CR has not already been sent uart_putchar_nonblocking('\r'); // send CR over USART usb_cdcacm_putchar('\r'); // send CR over USB length++; // remember we printed 1 character } } uart_putchar_nonblocking(c); // send byte over USART usb_cdcacm_putchar(c); // send byte over USB length++; // remember we printed 1 character last_c = c; // remember last character return length; // return number of characters printed } // only print when debug is enabled #if DEBUG #define puts_debug(x) puts(x) #else #define puts_debug(x) {} #endif /** display available commands * @param[in] argument no argument required */ static void command_help(void* argument); /** show software and hardware version * @param[in] argument no argument required */ static void command_version(void* argument) { (void)argument; // we won't use the argument printf("firmware date: %04u-%02u-%02u\n", BUILD_YEAR, BUILD_MONTH, BUILD_DAY); // show firmware build date printf("device serial: %08x%08x%08x\n", DESIG_UNIQUE_ID2, DESIG_UNIQUE_ID1, DESIG_UNIQUE_ID0); // show complete serial (different than the one used for USB) } /** convert RTC date/time to number of seconds * @return number of seconds since 2000-01-01 00:00:00 * @warning for simplicity I consider every month to have 31 days */ static uint32_t rtc_to_seconds(void) { rtc_wait_for_synchro(); // wait until date/time is synchronised const uint8_t year = ((RTC_DR >> RTC_DR_YT_SHIFT) & RTC_DR_YT_MASK) * 10 + ((RTC_DR >> RTC_DR_YU_SHIFT) & RTC_DR_YU_MASK); // get year uint8_t month = ((RTC_DR >> RTC_DR_MT_SHIFT) & RTC_DR_MT_MASK) * 10 + ((RTC_DR >> RTC_DR_MU_SHIFT) & RTC_DR_MU_MASK); // get month if (month > 0) { // month has been initialized, but starts with 1 month--; // fix for calculation } uint8_t day = ((RTC_DR >> RTC_DR_DT_SHIFT) & RTC_DR_DT_MASK) * 10 + ((RTC_DR >> RTC_DR_DU_SHIFT) & RTC_DR_DU_MASK); // get day if (day > 0) { // day has been initialized, but starts with 1 day--; // fix for calculation } const uint8_t hour = ((RTC_TR >> RTC_TR_HT_SHIFT) & RTC_TR_HT_MASK) * 10 + ((RTC_TR >> RTC_TR_HU_SHIFT) & RTC_TR_HU_MASK); // get hours const uint8_t minute = ((RTC_TR >> RTC_TR_MNT_SHIFT) & RTC_TR_MNT_MASK) * 10 + ((RTC_TR >> RTC_TR_MNU_SHIFT) & RTC_TR_MNU_MASK); // get minutes const uint8_t second = ((RTC_TR >> RTC_TR_ST_SHIFT) & RTC_TR_ST_MASK) * 10 + ((RTC_TR >> RTC_TR_SU_SHIFT) & RTC_TR_SU_MASK); // get seconds const uint32_t seconds = ((((((((year * 12) + month) * 31) + day) * 24) + hour) * 60) + minute) * 60 + second; // convert to number of seconds return seconds; } /** show uptime * @param[in] argument no argument required */ static void command_uptime(void* argument) { (void)argument; // we won't use the argument const uint32_t uptime = rtc_to_seconds() - boot_time; // get time from internal RTC printf("uptime: %u.%02u:%02u:%02u\n", uptime / (24 * 60 * 60), (uptime / (60 * 60)) % 24, (uptime / 60) % 60, uptime % 60); } /** show date and time * @param[in] argument date and time to set */ static void command_datetime(void* argument) { char* datetime = (char*)argument; // argument is optional date time const char* days[] = { "??", "Mo", "Tu", "We", "Th", "Fr", "Sa", "Su"}; // the days of the week // set date if (datetime) { // date has been provided // parse date const char* malformed = "date and time malformed, expecting YYYY-MM-DD WD HH:MM:SS\n"; if (strlen(datetime) != (4 + 1 + 2 + 1 + 2) + 1 + 2 + 1 + (2 + 1 + 2 + 1 + 2)) { // verify date/time is long enough printf(malformed); return; } if (!(isdigit((int8_t)datetime[0]) && isdigit((int8_t)datetime[1]) && isdigit((int8_t)datetime[2]) && isdigit((int8_t)datetime[3]) && \ '-' == datetime[4] && \ isdigit((int8_t)datetime[5]) && isdigit((int8_t)datetime[6]) && \ '-' == datetime[7] && \ isdigit((int8_t)datetime[8]) && isdigit((int8_t)datetime[9]) && \ ' ' == datetime[10] && \ isalpha((int8_t)datetime[11]) && isalpha((int8_t)datetime[12]) && \ ' ' == datetime[13] && \ isdigit((int8_t)datetime[14]) && isdigit((int8_t)datetime[15]) && \ ':' == datetime[16] && \ isdigit((int8_t)datetime[17]) && isdigit((int8_t)datetime[18]) && \ ':' == datetime[19] && \ isdigit((int8_t)datetime[20]) && isdigit((int8_t)datetime[21]))) { // verify format (good enough to not fail parsing) printf(malformed); return; } const uint16_t year = strtol(&datetime[0], NULL, 10); // parse year if (year <= 2000 || year > 2099) { puts("year out of range\n"); return; } const uint8_t month = strtol(&datetime[5], NULL, 10); // parse month if (month < 1 || month > 12) { puts("month out of range\n"); return; } const uint8_t day = strtol(&datetime[8], NULL, 10); // parse day if (day < 1 || day > 31) { puts("day out of range\n"); return; } const uint8_t hour = strtol(&datetime[14], NULL, 10); // parse hour if (hour > 24) { puts("hour out of range\n"); return; } const uint8_t minute = strtol(&datetime[17], NULL, 10); // parse minutes if (minute > 59) { puts("minute out of range\n"); return; } const uint8_t second = strtol(&datetime[30], NULL, 10); // parse seconds if (second > 59) { puts("second out of range\n"); return; } uint8_t week_day = 0; for (uint8_t i = 1; i < LENGTH(days) && 0 == week_day; i++) { if (days[i][0] == toupper(datetime[11]) && days[i][1] == tolower(datetime[12])) { week_day = i; break; } } if (0 == week_day) { puts("unknown week day\n"); return; } uint32_t date = 0; // to build the date date |= (((year - 2000) / 10) & RTC_DR_YT_MASK) << RTC_DR_YT_SHIFT; // set year tenth date |= (((year - 2000) % 10) & RTC_DR_YU_MASK) << RTC_DR_YU_SHIFT; // set year unit date |= ((month / 10) & RTC_DR_MT_MASK) << RTC_DR_MT_SHIFT; // set month tenth date |= ((month % 10) & RTC_DR_MU_MASK) << RTC_DR_MU_SHIFT; // set month unit date |= ((day / 10) & RTC_DR_DT_MASK) << RTC_DR_DT_SHIFT; // set day tenth date |= ((day % 10) & RTC_DR_DU_MASK) << RTC_DR_DU_SHIFT; // set day unit date |= (week_day & RTC_DR_WDU_MASK) << RTC_DR_WDU_SHIFT; // time day of the week uint32_t time = 0; // to build the time time = 0; // reset time time |= ((hour / 10) & RTC_TR_HT_MASK) << RTC_TR_HT_SHIFT; // set hour tenth time |= ((hour % 10) & RTC_TR_HU_MASK) << RTC_TR_HU_SHIFT; // set hour unit time |= ((minute / 10) & RTC_TR_MNT_MASK) << RTC_TR_MNT_SHIFT; // set minute tenth time |= ((minute % 10) & RTC_TR_MNU_MASK) << RTC_TR_MNU_SHIFT; // set minute unit time |= ((second / 10) & RTC_TR_ST_MASK) << RTC_TR_ST_SHIFT; // set second tenth time |= ((second % 10) & RTC_TR_SU_MASK) << RTC_TR_SU_SHIFT; // set second unit // write date pwr_disable_backup_domain_write_protect(); // disable backup protection so we can set the RTC clock source rtc_unlock(); // enable writing RTC registers RTC_ISR |= RTC_ISR_INIT; // enter initialisation mode while (!(RTC_ISR & RTC_ISR_INITF)); // wait to enter initialisation mode RTC_DR = date; // set date RTC_TR = time; // set time RTC_ISR &= ~RTC_ISR_INIT; // exit initialisation mode rtc_lock(); // protect RTC register against writing pwr_enable_backup_domain_write_protect(); // re-enable protection now that we configured the RTC clock } // show date if (!(RTC_ISR & RTC_ISR_INITS)) { // date has not been set yet puts("date/time not initialized\n"); } else { rtc_wait_for_synchro(); // wait until date/time is synchronised const uint8_t year = ((RTC_DR >> RTC_DR_YT_SHIFT) & RTC_DR_YT_MASK) * 10 + ((RTC_DR >> RTC_DR_YU_SHIFT) & RTC_DR_YU_MASK); // get year const uint8_t month = ((RTC_DR >> RTC_DR_MT_SHIFT) & RTC_DR_MT_MASK) * 10 + ((RTC_DR >> RTC_DR_MU_SHIFT) & RTC_DR_MU_MASK); // get month const uint8_t day = ((RTC_DR >> RTC_DR_DT_SHIFT) & RTC_DR_DT_MASK) * 10 + ((RTC_DR >> RTC_DR_DU_SHIFT) & RTC_DR_DU_MASK); // get day const uint8_t week_day = ((RTC_DR >> RTC_DR_WDU_SHIFT) & RTC_DR_WDU_MASK); // get week day const uint8_t hour = ((RTC_TR >> RTC_TR_HT_SHIFT) & RTC_TR_HT_MASK) * 10 + ((RTC_TR >> RTC_TR_HU_SHIFT) & RTC_TR_HU_MASK); // get hours const uint8_t minute = ((RTC_TR >> RTC_TR_MNT_SHIFT) & RTC_TR_MNT_MASK) * 10 + ((RTC_TR >> RTC_TR_MNU_SHIFT) & RTC_TR_MNU_MASK); // get minutes const uint8_t second = ((RTC_TR >> RTC_TR_ST_SHIFT) & RTC_TR_ST_MASK) * 10 + ((RTC_TR >> RTC_TR_SU_SHIFT) & RTC_TR_SU_MASK); // get seconds printf("date: 20%02d-%02d-%02d %s %02d:%02d:%02d\n", year, month, day, days[week_day], hour, minute, second); } } /** reset board * @param[in] argument no argument required */ static void command_reset(void* argument) { (void)argument; // we won't use the argument scb_reset_system(); // reset device while (true); // wait for the reset to happen } /** switch to system memory (e.g. embedded bootloader) * @param[in] argument no argument required */ static void command_system(void* argument) { (void)argument; // we won't use the argument system_memory(); // jump to system memory } /** switch to DFU bootloader * @param[in] argument no argument required */ static void command_bootloader(void* argument) { (void)argument; // we won't use the argument dfu_bootloader(); // start DFU bootloader } /** set AD9850 output frequency * @param[in] frequency frequency to set (in Hz) * @return actual frequency set (in Hz) * @note a frequency of 0 disables the output */ static double ad9850_set_freq(double frequency) { if (frequency > AD9850_MAX_FREQ / 1000) { frequency = AD9850_MAX_FREQ / 1000; } else if (frequency < 0) { frequency = 0; } // start with default state gpio_clear(GPIO_PORT(AD9850_WCLK), GPIO_PIN(AD9850_WCLK)); gpio_clear(GPIO_PORT(AD9850_FQUD), GPIO_PIN(AD9850_FQUD)); // enable serial mode (W0 must we xxxxx011, D0=1, D1=1, D2=0) gpio_set(GPIO_PORT(AD9850_WCLK), GPIO_PIN(AD9850_WCLK)); sleep_us(1); // tWH = 3.5 ns gpio_clear(GPIO_PORT(AD9850_WCLK), GPIO_PIN(AD9850_WCLK)); gpio_set(GPIO_PORT(AD9850_FQUD), GPIO_PIN(AD9850_FQUD)); sleep_us(1); // tFH = 7 ns gpio_clear(GPIO_PORT(AD9850_FQUD), GPIO_PIN(AD9850_FQUD)); // shift out data const uint32_t freq = round(frequency * 0xffffffff / 125E6); // output 100 kHz const uint8_t control = 0; // must be 0 for serial data uint8_t power_down = 0; // power up if (0 == frequency) { power_down = 1; } const uint8_t phase = 0; uint64_t shift_out = ((uint64_t)freq << 0) | ((uint64_t)control << 32) | ((uint64_t)power_down << 34) | ((uint64_t)phase << 35); // data to be shifted out for (uint8_t b = 0; b < 40; b++) { // shift out data, LSb first if (shift_out & 0x01) { gpio_set(GPIO_PORT(AD9850_DATA), GPIO_PIN(AD9850_DATA)); } else { gpio_clear(GPIO_PORT(AD9850_DATA), GPIO_PIN(AD9850_DATA)); } sleep_us(1); // tDS = 3.5 ns gpio_set(GPIO_PORT(AD9850_WCLK), GPIO_PIN(AD9850_WCLK)); sleep_us(1); // tWH = 3.5 ns gpio_clear(GPIO_PORT(AD9850_WCLK), GPIO_PIN(AD9850_WCLK)); sleep_us(1); // tWL = 3.5 ns // tDH = 3.5ns shift_out >>= 1; // prepare next bit } // latch data // tFD = 7.0 ns gpio_set(GPIO_PORT(AD9850_FQUD), GPIO_PIN(AD9850_FQUD)); sleep_us(1); // tFH = 7.0 ns gpio_clear(GPIO_PORT(AD9850_FQUD), GPIO_PIN(AD9850_FQUD)); sleep_us(1); // tFL = 7.0 ns return freq * (125E6 / 0xffffffff); } /** set AD9850 output frequency */ static void command_freq(void* argument) { if (argument) { ad9850_freq = *(double*)argument * 1000.0; // get user provided frequency } const double freq = ad9850_set_freq(ad9850_freq / 1000.0); // set frequency and get the one set printf("frequency set to %0.3f Hz\n", freq); } /** list of all supported commands */ static const struct menu_command_t menu_commands[] = { { .shortcut = 'h', .name = "help", .command_description = "display help", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_help, }, { .shortcut = 'v', .name = "version", .command_description = "show software and hardware version", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_version, }, { .shortcut = 'u', .name = "uptime", .command_description = "show uptime", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_uptime, }, { .shortcut = 'd', .name = "date", .command_description = "show/set date and time", .argument = MENU_ARGUMENT_STRING, .argument_description = "[YYYY-MM-DD HH:MM:SS]", .command_handler = &command_datetime, }, { .shortcut = 'r', .name = "reset", .command_description = "reset board", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_reset, }, { .shortcut = 's', .name = "system", .command_description = "reboot into system memory", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_system, }, { .shortcut = 'b', .name = "bootloader", .command_description = "reboot into DFU bootloader", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_bootloader, }, { .shortcut = 'f', .name = "frequency", .command_description = "set output frequency", .argument = MENU_ARGUMENT_FLOAT, .argument_description = "[Hz]", .command_handler = &command_freq, }, }; static void command_help(void* argument) { (void)argument; // we won't use the argument printf("available commands:\n"); menu_print_commands(menu_commands, LENGTH(menu_commands)); // print global commands } /** process user command * @param[in] str user command string (\0 ended) */ static void process_command(char* str) { // ensure actions are available if (NULL == menu_commands || 0 == LENGTH(menu_commands)) { return; } // don't handle empty lines if (!str || 0 == strlen(str)) { return; } bool command_handled = false; if (!command_handled) { command_handled = menu_handle_command(str, menu_commands, LENGTH(menu_commands)); // try if this is not a global command } if (!command_handled) { printf("command not recognized. enter help to list commands\n"); } } /** create 16 char representation of number * @number number to represent * @return 16 char representation */ static char* freq2s(uint64_t freq) { static char line[16 + 1]; for (uint8_t i = 0; i < LENGTH(line) - 1; i++) { line[i] = ' '; // clear line } line[LENGTH(line) - 1] = '\0'; // terminate string bool zero_padding = false; uint64_t divider = 100000000000UL; uint8_t pos = 1; // position in the line for (uint8_t d = 0; d < 12; d++) { if (3 == d || 6 == d) { if (zero_padding) { line[pos] = ','; // add separator } pos++; } else if (9 == d) { if (zero_padding) { line[pos] = '.'; // add separator } pos++; } if (8 == d) { zero_padding = true; // enforce hertz unit display } const uint8_t digit = (freq / divider) % 10; if (digit > 0) { line[pos] = '0' + digit; // set digit zero_padding = true; // remember to pad with zeros now } else if (zero_padding) { line[pos] = '0'; } else { line[pos] = ' '; } divider /= 10; // go to next digit pos++; // go to next position } return line; } static void update_display(uint64_t freq, uint8_t position, bool selected) { const uint8_t position2cursor_lut[] = {0x47, 0x46, 0x45, 0x43, 0x42, 0x41, 0x07, 0x06, 0x05, 0x03, 0x02, 0x01}; if (position >= LENGTH(position2cursor_lut)) { position = LENGTH(position2cursor_lut) - 1; } const char* line = freq2s(freq); // get frequency representation lcd_hd44780_write_line(0, &line[0], 8); // display set frequency lcd_hd44780_write_line(1, &line[8], 8); // display set frequency lcd_hd44780_set_ddram_address(position2cursor_lut[position]); // set cursor position lcd_hd44780_display_control(true, true, selected); } /** load settings from SRAM */ static void load_settings(uint8_t* position, uint64_t* frequency) { if (position) { *position = RTC_BKPXR(0); if (*position >= 12) { *position = 11; } } if (frequency) { *frequency = (RTC_BKPXR(1) << 0) + ((uint64_t)RTC_BKPXR(2) << 32); if (*frequency > AD9850_MAX_FREQ) { *frequency = AD9850_MAX_FREQ; } } } /** save settings to SRAM */ static void save_settings(uint8_t position, uint64_t frequency) { if (position >= 12) { position = 11; } RTC_BKPXR(0) = position; if (frequency > AD9850_MAX_FREQ) { frequency = AD9850_MAX_FREQ; } RTC_BKPXR(1) = frequency >> 0; RTC_BKPXR(2) = frequency >> 32; } /** program entry point * this is the firmware function started by the micro-controller */ void main(void); void main(void) { #if DEBUG // enable functionalities for easier debug DBGMCU_CR |= DBGMCU_CR_IWDG_STOP; // stop independent watchdog counter when code is halted DBGMCU_CR |= DBGMCU_CR_WWDG_STOP; // stop window watchdog counter when code is halted DBGMCU_CR |= DBGMCU_CR_STANDBY; // allow debug also in standby mode (keep digital part and clock powered) DBGMCU_CR |= DBGMCU_CR_STOP; // allow debug also in stop mode (keep clock powered) DBGMCU_CR |= DBGMCU_CR_SLEEP; // allow debug also in sleep mode (keep clock powered) #else // setup watchdog to reset in case we get stuck (i.e. when an error occurred) iwdg_set_period_ms(WATCHDOG_PERIOD); // set independent watchdog period iwdg_start(); // start independent watchdog #endif board_setup(); // setup board uart_setup(); // setup USART (for printing) usb_cdcacm_setup(); // setup USB CDC ACM (for printing) puts("\nwelcome to the CuVoodoo clock generator\n"); // print welcome message #if DEBUG // show reset cause if (RCC_CSR & (RCC_CSR_LPWRRSTF | RCC_CSR_WWDGRSTF | RCC_CSR_IWDGRSTF | RCC_CSR_SFTRSTF | RCC_CSR_PORRSTF | RCC_CSR_PINRSTF)) { puts_debug("reset cause(s):"); if (RCC_CSR & RCC_CSR_LPWRRSTF) { puts_debug(" low-power"); } if (RCC_CSR & RCC_CSR_WWDGRSTF) { puts_debug(" window-watchdog"); } if (RCC_CSR & RCC_CSR_IWDGRSTF) { puts_debug(" independent-watchdog"); } if (RCC_CSR & RCC_CSR_SFTRSTF) { puts_debug(" software"); } if (RCC_CSR & RCC_CSR_PORRSTF) { puts_debug(" POR/PDR"); } if (RCC_CSR & RCC_CSR_PINRSTF) { puts_debug(" pin"); } puts_debug("\n"); RCC_CSR |= RCC_CSR_RMVF; // clear reset flags } #endif // setup RTC puts_debug("setup RTC: "); rcc_periph_clock_enable(RCC_RTC); // enable clock for RTC peripheral if (!(RCC_BDCR && RCC_BDCR_RTCEN)) { // the RTC has not been configured yet pwr_disable_backup_domain_write_protect(); // disable backup protection so we can set the RTC clock source rtc_unlock(); // enable writing RTC registers #if defined(MINIF401) rcc_osc_on(RCC_LSE); // enable LSE clock while (!rcc_is_osc_ready(RCC_LSE)); // wait until clock is ready rtc_set_prescaler(256, 128); // set clock prescaler to 32768 RCC_BDCR = (RCC_BDCR & ~(RCC_BDCR_RTCSEL_MASK << RCC_BDCR_RTCSEL_SHIFT)) | (RCC_BDCR_RTCSEL_LSE << RCC_BDCR_RTCSEL_SHIFT); // select LSE as RTC clock source #else rcc_osc_on(RCC_LSI); // enable LSI clock while (!rcc_is_osc_ready(RCC_LSI)); // wait until clock is ready rtc_set_prescaler(250, 128); // set clock prescaler to 32000 RCC_BDCR = (RCC_BDCR & ~(RCC_BDCR_RTCSEL_MASK << RCC_BDCR_RTCSEL_SHIFT)) | (RCC_BDCR_RTCSEL_LSI << RCC_BDCR_RTCSEL_SHIFT); // select LSI as RTC clock source #endif RCC_BDCR |= RCC_BDCR_RTCEN; // enable RTC rtc_lock(); // protect RTC register against writing pwr_enable_backup_domain_write_protect(); // re-enable protection now that we configured the RTC clock } boot_time = rtc_to_seconds(); // remember the start time puts_debug("OK\n"); // setup wakeup timer for periodic checks puts_debug("setup wakeup: "); // RTC needs to be configured beforehand pwr_disable_backup_domain_write_protect(); // disable backup protection so we can write to the RTC registers rtc_unlock(); // enable writing RTC registers rtc_clear_wakeup_flag(); // clear flag for fresh start #if defined(MINIF401) rtc_set_wakeup_time((32768 / 2) / WAKEUP_FREQ - 1, RTC_CR_WUCLKSEL_RTC_DIV2); // set wakeup time based on LSE (keep highest precision, also enables the wakeup timer) #else rtc_set_wakeup_time((32000 / 2) / WAKEUP_FREQ - 1, RTC_CR_WUCLKSEL_RTC_DIV2); // set wakeup time based on LSI (keep highest precision, also enables the wakeup timer) #endif rtc_enable_wakeup_timer_interrupt(); // enable interrupt rtc_lock(); // disable writing RTC registers // important: do not re-enable backup_domain_write_protect, since this will prevent clearing flags (but RTC registers do not need to be unlocked) puts_debug("OK\n"); puts_debug("setup rotary encoder: "); rcc_periph_clock_enable(GPIO_RCC(ROTARY_B)); // enable clock for button gpio_mode_setup(GPIO_PORT(ROTARY_B), GPIO_MODE_INPUT, GPIO_PUPD_PULLUP, GPIO_PIN(ROTARY_B)); // set GPIO to input and pull up rcc_periph_clock_enable(GPIO_RCC(ROTARY_A)); // enable clock for button gpio_mode_setup(GPIO_PORT(ROTARY_A), GPIO_MODE_INPUT, GPIO_PUPD_PULLUP, GPIO_PIN(ROTARY_A)); // set GPIO to input and pull up exti_select_source(GPIO_EXTI(ROTARY_A), GPIO_PORT(ROTARY_A)); // mask external interrupt of this pin only for this port exti_set_trigger(GPIO_EXTI(ROTARY_A), EXTI_TRIGGER_FALLING); // trigger when button is pressed exti_enable_request(GPIO_EXTI(ROTARY_A)); // enable external interrupt nvic_enable_irq(GPIO_NVIC_EXTI_IRQ(ROTARY_A)); // enable interrupt uint8_t digit_position = 0; // which digit is selected load_settings(&digit_position, NULL); // load saved position bool digit_selected = false; // if a digit is selected puts_debug("OK\n"); puts_debug("setup AD9850: "); rcc_periph_clock_enable(GPIO_RCC(AD9850_DATA)); // enable clock for GPIO gpio_clear(GPIO_PORT(AD9850_DATA), GPIO_PIN(AD9850_DATA)); // don't care about data gpio_mode_setup(GPIO_PORT(AD9850_DATA), GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_PIN(AD9850_DATA)); // set pin as output gpio_set_output_options(GPIO_PORT(AD9850_DATA), GPIO_OTYPE_PP, GPIO_OSPEED_2MHZ, GPIO_PIN(AD9850_DATA)); // set output as push-pull rcc_periph_clock_enable(GPIO_RCC(AD9850_WCLK)); // enable clock for GPIO gpio_clear(GPIO_PORT(AD9850_WCLK), GPIO_PIN(AD9850_WCLK)); // idle low gpio_mode_setup(GPIO_PORT(AD9850_WCLK), GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_PIN(AD9850_WCLK)); // set pin as output gpio_set_output_options(GPIO_PORT(AD9850_WCLK), GPIO_OTYPE_PP, GPIO_OSPEED_2MHZ, GPIO_PIN(AD9850_WCLK)); // set output as push-pull rcc_periph_clock_enable(GPIO_RCC(AD9850_FQUD)); // enable clock for GPIO gpio_clear(GPIO_PORT(AD9850_FQUD), GPIO_PIN(AD9850_FQUD)); // idle low gpio_mode_setup(GPIO_PORT(AD9850_FQUD), GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_PIN(AD9850_FQUD)); // set pin as output gpio_set_output_options(GPIO_PORT(AD9850_FQUD), GPIO_OTYPE_PP, GPIO_OSPEED_2MHZ, GPIO_PIN(AD9850_FQUD)); // set output as push-pull load_settings(NULL, &ad9850_freq); // load saved frequency ad9850_set_freq(ad9850_freq); puts_debug("OK\n"); puts_debug("setup HD44780 LCD: "); lcd_hd44780_setup(true, false); // I don't know why the initialisation does not always works the first time (but replugging the power in solveds it) update_display(ad9850_freq, digit_position, digit_selected); puts_debug("OK\n"); load_settings(&digit_position, &ad9850_freq); // setup terminal terminal_prefix = ""; // set default prefix terminal_process = &process_command; // set central function to process commands terminal_setup(); // start terminal // start main loop bool action = false; // if an action has been performed don't go to sleep button_flag = false; // reset button flag led_on(); // switch LED to indicate booting completed while (true) { // infinite loop iwdg_reset(); // kick the dog if (user_input_available) { // user input is available action = true; // action has been performed led_toggle(); // toggle LED char c = user_input_get(); // store receive character terminal_send(c); // send received character to terminal } if (button_flag) { // user pressed button action = true; // action has been performed sleep_ms(10); // debounce if (!gpio_get(GPIO_PORT(BUTTON_PIN), GPIO_PIN(BUTTON_PIN))) { // only allow press (not release) digit_selected = !digit_selected; update_display(ad9850_freq, digit_position, digit_selected); } sleep_ms(100); // wait a bit to remove noise and double trigger button_flag = false; // reset flag } if (rotary_flag) { // user turned rotary encoder action = true; // action has been performed if (rotary_flag > 0) { if (digit_selected) { uint64_t unit = 1; for (uint8_t i = 0; i < digit_position; i++) { unit *= 10; } ad9850_freq += unit; if (ad9850_freq > AD9850_MAX_FREQ) { ad9850_freq = AD9850_MAX_FREQ; } } else { if (digit_position > 0) { digit_position--; } } } else { if (digit_selected) { uint64_t unit = 1; for (uint8_t i = 0; i < digit_position; i++) { unit *= 10; } if (unit > ad9850_freq) { ad9850_freq = 0; } else { ad9850_freq -= unit; } } else { if (digit_position < 11) { digit_position++; } } } save_settings(digit_position, ad9850_freq); // save setting to SRAM ad9850_set_freq(ad9850_freq / 1000.0); // reset frequency (in case the target has been reset) update_display(ad9850_freq, digit_position, digit_selected); sleep_ms(100); // wait a bit to remove noise and double trigger rotary_flag = 0; // reset flag } if (wakeup_flag) { // time to do periodic checks wakeup_flag = false; // clear flag } if (second_flag) { // one second passed second_flag = false; // clear flag action = true; // action has been performed ad9850_set_freq(ad9850_freq / 1000.0); // reset frequency (in case the target has been reset) update_display(ad9850_freq, digit_position, digit_selected); led_toggle(); // toggle LED to indicate if main function is stuck } if (action) { // go to sleep if nothing had to be done, else recheck for activity action = false; } else { __WFI(); // go to sleep } } // main loop } /** interrupt service routine when the wakeup timer triggered */ void rtc_wkup_isr(void) { static uint16_t tick = WAKEUP_FREQ; // how many wakeup have occurred exti_reset_request(EXTI22); // clear EXTI flag used by wakeup rtc_clear_wakeup_flag(); // clear flag wakeup_flag = true; // notify main loop tick--; // count the number of ticks down (do it in the ISR to no miss any tick) if (0 == tick) { // count down completed second_flag = true; // notify main loop a second has passed tick = WAKEUP_FREQ; // restart count down } } /** interrupt service routine called when rotary encoder is turned */ void GPIO_EXTI_ISR(ROTARY_A)(void) { exti_reset_request(GPIO_EXTI(ROTARY_A)); // reset interrupt if (rotary_flag) { // flag not cleared yet return; } else if (gpio_get(GPIO_PORT(ROTARY_B), GPIO_PIN(ROTARY_B))) { rotary_flag = 1; } else { rotary_flag = -1; } }