/** input/output pin identifier * @file * @author King Kévin * @copyright SPDX-License-Identifier: GPL-3.0-or-later * @date 2016-2021 */ /* standard libraries */ #include // standard integer types #include // standard utilities #include // string utilities #include // date/time utilities #include // utilities to check chars #include // rounding utilities /* STM32 (including CM3) libraries */ #include // Cortex M3 utilities #include // vector table definition #include // interrupt utilities #include // general purpose input output library #include // real-time control clock library #include // external interrupt utilities #include // real time clock utilities #include // independent watchdog utilities #include // debug utilities #include // design utilities #include // flash utilities #include // ADC utilities #include // timer library /* own libraries */ #include "global.h" // board definitions #include "print.h" // printing utilities #include "uart.h" // USART utilities #include "usb_cdcacm.h" // USB CDC ACM utilities #include "terminal.h" // handle the terminal interface #include "menu.h" // menu utilities /** watchdog period in ms */ #define WATCHDOG_PERIOD 10000 /** wakeup frequency (i.e. least number of times per second to perform the main loop) */ #define WAKEUP_FREQ 16 /** @defgroup main_flags flag set in interrupts to be processed in main task * @{ */ static volatile bool wakeup_flag = false; /**< flag set when wakeup timer triggered */ static volatile bool second_flag = false; /**< flag set when a second passed */ /** @} */ /** number of seconds since boot */ static uint32_t boot_time = 0; #define TARGET_CHANNEL 6 /**< PA6/ADC1_IN6 used to measure target voltage */ #define SIGNAL_CHANNEL 1 /**< PA1/ADC1_IN1 used to measure signal voltage */ const uint8_t adc_channels[] = {ADC_CHANNEL17, ADC_CHANNEL(TARGET_CHANNEL), ADC_CHANNEL(SIGNAL_CHANNEL)}; /**< voltages to convert (channel 17 = internal voltage reference) */ #define TARGET_3V_PIN PC13 /**< pin to supply target voltage with 3.3V (controlling gate of pMOS) */ #define TARGET_RST_PIN PA0 /**< pin to reset target board */ #define SIGNAL_PD_PIN PA4 /**< pin to pull signal low for voltage measurement */ #define SIGNAL_PU_PIN PA5 /**< pin to pull signal to target voltage (controlling gate of pMOS) */ #define SHIFT_EN_PIN PC14 /**< pin to provide target voltage to LV side of voltage shifter (pulling them high through 10 kO) */ #define MUX_EN_PIN PC15 /**< pin to enable analog multiplexer (active low) */ #define MUX_S0_PIN PA7 /**< pin to set S0 bit of analog multiplexer */ #define MUX_S1_PIN PB0 /**< pin to set S1 bit of analog multiplexer */ #define MUX_S2_PIN PB1 /**< pin to set S2 bit of analog multiplexer */ #define MUX_S3_PIN PB2 /**< pin to set S3 bit of analog multiplexer */ #define CHANNEL_NUMBERS 16 /**< number of target signals */ static const uint32_t channel_ports[] = {GPIO_PORT(PB12), GPIO_PORT(PB13), GPIO_PORT(PB14), GPIO_PORT(PB15), GPIO_PORT(PA8), GPIO_PORT(PA9), GPIO_PORT(PA10), GPIO_PORT(PA15), GPIO_PORT(PB3), GPIO_PORT(PB4), GPIO_PORT(PB5), GPIO_PORT(PB6), GPIO_PORT(PB7), GPIO_PORT(PB8), GPIO_PORT(PB9), GPIO_PORT(PB10)}; /**< GPIO ports for signal pin */ static const uint32_t channel_pins[] = {GPIO_PIN(PB12), GPIO_PIN(PB13), GPIO_PIN(PB14), GPIO_PIN(PB15), GPIO_PIN(PA8), GPIO_PIN(PA9), GPIO_PIN(PA10), GPIO_PIN(PA15), GPIO_PIN(PB3), GPIO_PIN(PB4), GPIO_PIN(PB5), GPIO_PIN(PB6), GPIO_PIN(PB7), GPIO_PIN(PB8), GPIO_PIN(PB9), GPIO_PIN(PB10)}; /**< GPIO pins for signal pin */ static uint8_t channel_start = 0; /**< first signal of range to probe */ static uint8_t channel_stop = CHANNEL_NUMBERS - 1; /**< last signal of range to probe */ /** timer ID for timer to measure activity timing */ #define MONITOR_TIMER 2 size_t putc(char c) { size_t length = 0; // number of characters printed static char last_c = 0; // to remember on which character we last sent if ('\n' == c) { // send carriage return (CR) + line feed (LF) newline for each LF if ('\r' != last_c) { // CR has not already been sent usb_cdcacm_putchar('\r'); // send CR over USB length++; // remember we printed 1 character } } usb_cdcacm_putchar(c); // send byte over USB length++; // remember we printed 1 character last_c = c; // remember last character return length; // return number of characters printed } // only print when debug is enabled #if DEBUG #define puts_debug(x) puts(x) #else #define puts_debug(x) {} #endif /** print float with fixed precision * @param[in] fpu float to print * @param[in] precision number of digits after comma to print * @note %f is used to force scientific notation */ static void print_fpu(double fpu, uint8_t precision) { uint32_t multiplier = 1; for (uint8_t i = 0; i < precision; i++) { multiplier *= 10; } double to_print = round(fpu * multiplier); printf("%d.", (int32_t)to_print / multiplier); char decimal[32]; snprintf(decimal, LENGTH(decimal), "%u", abs(to_print) % multiplier); if (strlen(decimal) > precision) { decimal[precision] = 0; } for (uint8_t i = strlen(decimal); i < precision; i++) { putc('0'); } puts(decimal); } /** get RCC from corresponding port * @param[in] port port address * @return RCC address corresponding to port */ static uint32_t port2rcc(uint32_t port) { uint32_t rcc = 0; switch (port) { case GPIOA: rcc = RCC_GPIOA; break; case GPIOB: rcc = RCC_GPIOB; break; case GPIOC: rcc = RCC_GPIOC; break; case GPIOD: rcc = RCC_GPIOD; break; case GPIOE: rcc = RCC_GPIOE; break; case GPIOF: rcc = RCC_GPIOF; break; case GPIOG: rcc = RCC_GPIOG; break; default: // unknown port while (true); // halt firmware break; } return rcc; } /** measure target and signal voltages * @return voltages of channels */ static float* measure_voltages(void) { static float voltages[LENGTH(adc_channels)]; // to store and return the voltages // read lid temperature using ADC ADC_SR(ADC1) = 0; // reset flags uint16_t adc_values[LENGTH(adc_channels)]; for (uint8_t i = 0; i < LENGTH(adc_channels); i++) { adc_start_conversion_regular(ADC1); // start conversion (using trigger) while (!adc_eoc(ADC1)); // wait until conversion finished adc_values[i] = adc_read_regular(ADC1); // read voltage value (clears flag) voltages[i] = adc_values[i] * 1.21 / adc_values[0]; // use 1.21 V internal voltage reference to get ADC voltage } voltages[1] *= 2.0; // the is a /2 voltage divider for target voltage return voltages; } /** select channel of multiplexer * @param[in] channel channel to select, or -1 to disable multiplexer */ static void mux_select(int8_t channel) { gpio_set(GPIO_PORT(MUX_EN_PIN), GPIO_PIN(MUX_EN_PIN)); // disable multiplexer while we are switching if (channel < 0 || channel > 15 || (channel > CHANNEL_NUMBERS - 1)) { return; // no channel to select } // select channel using bit pattern if (channel & 0x1) { gpio_set(GPIO_PORT(MUX_S0_PIN), GPIO_PIN(MUX_S0_PIN)); } else { gpio_clear(GPIO_PORT(MUX_S0_PIN), GPIO_PIN(MUX_S0_PIN)); } if (channel & 0x2) { gpio_set(GPIO_PORT(MUX_S1_PIN), GPIO_PIN(MUX_S1_PIN)); } else { gpio_clear(GPIO_PORT(MUX_S1_PIN), GPIO_PIN(MUX_S1_PIN)); } if (channel & 0x4) { gpio_set(GPIO_PORT(MUX_S2_PIN), GPIO_PIN(MUX_S2_PIN)); } else { gpio_clear(GPIO_PORT(MUX_S2_PIN), GPIO_PIN(MUX_S2_PIN)); } if (channel & 0x8) { gpio_set(GPIO_PORT(MUX_S3_PIN), GPIO_PIN(MUX_S3_PIN)); } else { gpio_clear(GPIO_PORT(MUX_S3_PIN), GPIO_PIN(MUX_S3_PIN)); } gpio_clear(GPIO_PORT(MUX_EN_PIN), GPIO_PIN(MUX_EN_PIN)); // enable multiplexer } // menu commands /** measure and print target voltage * @param[in] argument 0 to no provide power, 3 to provide 3.3V */ static void command_target_voltage(void* argument) { (void)argument; // we won't use the argument // set voltage if (argument) { // if argument is provided const uint8_t voltage = *(uint32_t*)argument; // get target voltage switch (voltage) { case 0: gpio_set(GPIO_PORT(TARGET_3V_PIN), GPIO_PIN(TARGET_3V_PIN)); // disable 3V output break; case 3: gpio_clear(GPIO_PORT(TARGET_3V_PIN), GPIO_PIN(TARGET_3V_PIN)); // enable 3V output break; default: puts("unknown voltage to set\n"); break; } sleep_us(100); // wait a bit for voltage to settle } // show voltage output if (!gpio_get(GPIO_PORT(TARGET_3V_PIN), GPIO_PIN(TARGET_3V_PIN))) { puts("target voltage set to 3.3 V\n"); } else { puts("target voltage externally provided\n"); } float* voltages = measure_voltages(); // measure voltages puts("target voltage: "); print_fpu(voltages[1], 2); puts(" V"); if (voltages[1] < 1.0) { puts(" (warning: target voltage seems not connected)"); } putc('\n'); } /** configure or reset target * @param[in] argument 1 to assert reset, 0 to release reset, ODL to set reset pin to open-drain active low, ODH to set reset pin to open-drain active high, PPL to set reset pin to push-pull active low, PPH to set reset pin to push-pull active high */ static void command_target_reset(void* argument) { (void)argument; // we won't use the argument static bool active_low = true; // if the reset is active low or high // set reset mode if (argument) { // if argument is provided if (0 == strcmp("0", argument)) { // release reset if (active_low) { gpio_set(GPIO_PORT(TARGET_RST_PIN), GPIO_PIN(TARGET_RST_PIN)); } else { gpio_clear(GPIO_PORT(TARGET_RST_PIN), GPIO_PIN(TARGET_RST_PIN)); } } else if (0 == strcmp("1", argument)) { // assert reset if (active_low) { gpio_clear(GPIO_PORT(TARGET_RST_PIN), GPIO_PIN(TARGET_RST_PIN)); } else { gpio_set(GPIO_PORT(TARGET_RST_PIN), GPIO_PIN(TARGET_RST_PIN)); } } else if (0 == strcmp("ODL", argument)) { // set reset to open-drain active low active_low = true; // remember we are active low gpio_set_output_options(GPIO_PORT(TARGET_RST_PIN), GPIO_OTYPE_OD, GPIO_OSPEED_2MHZ, GPIO_PIN(TARGET_RST_PIN)); // set output as open-drain } else if (0 == strcmp("ODH", argument)) { // set reset to open-drain active high active_low = false; // remember we are active high gpio_set_output_options(GPIO_PORT(TARGET_RST_PIN), GPIO_OTYPE_OD, GPIO_OSPEED_2MHZ, GPIO_PIN(TARGET_RST_PIN)); // set output as open-drain } else if (0 == strcmp("PPL", argument)) { // set reset to push-pull active low active_low = true; // remember we are active low gpio_set_output_options(GPIO_PORT(TARGET_RST_PIN), GPIO_OTYPE_PP, GPIO_OSPEED_2MHZ, GPIO_PIN(TARGET_RST_PIN)); // set output as push-pull } else if (0 == strcmp("PPH", argument)) { // set reset to push-pull active high active_low = false; // remember we are active high gpio_set_output_options(GPIO_PORT(TARGET_RST_PIN), GPIO_OTYPE_PP, GPIO_OSPEED_2MHZ, GPIO_PIN(TARGET_RST_PIN)); // set output as push-pull } else { printf("unknown argument: %s\n", argument); } } const bool open_drain = (GPIO_OTYPER(GPIO_PORT(TARGET_RST_PIN)) & GPIO_PIN(TARGET_RST_PIN)); // if the output is configured as open drain (else it's push-pull) printf("reset pin set to %s active %s\n", open_drain ? "open-drain" : "push-pull", active_low ? "low" : "high"); if (gpio_get(GPIO_PORT(TARGET_RST_PIN), GPIO_PIN(TARGET_RST_PIN))) { if (active_low) { puts("reset released\n"); } else { puts("reset asserted\n"); } } else { if (active_low) { puts("reset asserted\n"); } else { puts("reset released\n"); } } } /** identify if signal is an input or output * @param[in] argument no argument required */ static void command_types(void* argument) { (void)argument; // we won't use the argument command_target_voltage(NULL); // print target voltage (also sets measurement conditions) float* voltages = measure_voltages(); // measure voltages if (voltages[1] < 0.5) { // check target voltage connection puts("connect target voltage to test channel type\n"); return; } puts("measuring voltage on channels when pulled up and down using 2 kOhm resistor\n"); puts("channel no-pull pull-down pull-up type\n"); // just to be sure, reset measurement conditions gpio_set(GPIO_PORT(SIGNAL_PD_PIN), GPIO_PIN(SIGNAL_PD_PIN)); // ensure pull-down is not active gpio_set(GPIO_PORT(SIGNAL_PU_PIN), GPIO_PIN(SIGNAL_PU_PIN)); // ensure pull-up is not active for (uint8_t i = channel_start; i <= channel_stop; i++) { printf("CH%02u", i); puts(" "); mux_select(i); // select the channel voltages = measure_voltages(); // measure raw voltages print_fpu(voltages[2], 2); const float raw = voltages[2]; // remember un-pulled voltage puts(" "); gpio_clear(GPIO_PORT(SIGNAL_PD_PIN), GPIO_PIN(SIGNAL_PD_PIN)); // pull down signal sleep_us(10); // wait a tiny bit for voltage to settle voltages = measure_voltages(); // measure pulled down voltages gpio_set(GPIO_PORT(SIGNAL_PD_PIN), GPIO_PIN(SIGNAL_PD_PIN)); // remove pull-down voltages[2] *= 2.0; // pulling creates a voltage divider (to ground) const bool low = (voltages[2] < 0.5); // remember if we were able to pull it down const float pullup = (2000.0 * (raw - voltages[2]) / voltages[2]) / 1000.0; // estimate external pull-up print_fpu(voltages[2], 2); puts(" "); gpio_clear(GPIO_PORT(SIGNAL_PU_PIN), GPIO_PIN(SIGNAL_PU_PIN)); // pull up signal sleep_us(10); // wait a tiny bit for voltage to settle voltages = measure_voltages(); // measure pulled up voltages gpio_set(GPIO_PORT(SIGNAL_PU_PIN), GPIO_PIN(SIGNAL_PU_PIN)); // remove pull-up voltages[2] = voltages[2] * 2.0 - voltages[1]; // pulling creates a voltage divider (to target) const bool high = (voltages[2] > 3.0 || voltages[2] > voltages[1] * 0.7); // remember if we were able to pull it up const float pulldown = (2000.0 * voltages[2] / (voltages[1] - voltages[2])) / 1000.0; // estimate external pull-down print_fpu(voltages[2], 2); puts(" "); if (pullup >= 0.9 && pullup < 100.0 && (pulldown <= 0.9 || pulldown > 100.0)) { printf("pulled-up (%u kOhm)", (uint32_t)round(pullup)); } else if (pulldown >= 0.9 && pulldown < 100.0 && (pullup <= 0.9 || pullup > 100.0)) { printf("pulled-down (%u kOhm)", (uint32_t)round(pulldown)); } else if (low && high) { puts("floating"); } else if (low) { puts("low"); } else if (high) { puts("high"); } else { puts("unknown"); } putc('\n'); } mux_select(-1); // disable multiplexer } /** monitor the channels for activity * @param[in] argument 0 to pull low, 1 to pull high */ static void command_monitor(void* argument) { (void)argument; // we won't use the argument // set input pull if (NULL == argument) { puts("channels are left floating\n"); for (uint8_t i = channel_start; i <= channel_stop; i++) { gpio_mode_setup(channel_ports[i], GPIO_MODE_INPUT, GPIO_PUPD_NONE, channel_pins[i]); // set to floating } } else { const uint32_t pull = *(uint32_t*)argument; // get pull argument if (0 == pull) { puts("channels are pulled low using internal 40 kOhm resistor\n"); for (uint8_t i = channel_start; i <= channel_stop; i++) { gpio_mode_setup(channel_ports[i], GPIO_MODE_INPUT, GPIO_PUPD_PULLDOWN, channel_pins[i]); // set to pull down } } else if (1 == pull) { puts("channels are pulled high to 3.3V using internal 40 kOhm resistor\n"); for (uint8_t i = channel_start; i <= channel_stop; i++) { gpio_mode_setup(channel_ports[i], GPIO_MODE_INPUT, GPIO_PUPD_PULLUP, channel_pins[i]); // set to pull up } } else { puts("unknown pull parameter. use 0 for low and 3 for 3.3V high\n"); return; } } // collect pins we want to monitor uint16_t gpioa_mask = 0; // which pins on GPIOA we want to monitor uint16_t gpiob_mask = 0; // which pins on GPIOB we want to monitor for (uint8_t i = channel_start; i <= channel_stop; i++) { if (GPIOA == channel_ports[i]) { gpioa_mask |= channel_pins[i]; } else if (GPIOB == channel_ports[i]) { gpiob_mask |= channel_pins[i]; } else { printf("unknown port for CH%02u\n", i); } } // get initial state puts("press any key to stop monitoring\n"); puts("time (s) "); for (uint8_t i = channel_start; i <= channel_stop; i++) { printf("%02u ", i); } puts("\n"); // setup timer to measure milliseconds rcc_periph_clock_enable(RCC_TIM(MONITOR_TIMER)); // enable clock for timer peripheral rcc_periph_reset_pulse(RST_TIM(MONITOR_TIMER)); // reset timer state timer_disable_counter(TIM(MONITOR_TIMER)); // disable timer to configure it timer_set_mode(TIM(MONITOR_TIMER), TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP); // set timer mode, use undivided timer clock, edge alignment (simple count), and count up timer_set_prescaler(TIM(MONITOR_TIMER), (rcc_ahb_frequency / 2000) - 1); // generate half millisecond ticks (prescaler is not large enough for milliseconds) timer_set_period(TIM(MONITOR_TIMER), 2000 - 1); // set period to seconds timer_clear_flag(TIM(MONITOR_TIMER), TIM_SR_UIF); // clear update (overflow) flag timer_update_on_overflow(TIM(MONITOR_TIMER)); // only use counter overflow as UEV source (use overflow as start time or timeout) uint32_t seconds = 0; // count the seconds using the overflow timer_enable_counter(TIM(MONITOR_TIMER)); // enable timer // start monitoring uint16_t gpioa_data = UINT16_MAX; uint16_t gpiob_data = UINT16_MAX; while (!user_input_available) { // run until user breaks it // time to do periodic checks if (wakeup_flag || second_flag) { iwdg_reset(); // kick the dog wakeup_flag = false; // clear flag second_flag = false; // clear flag } // one second has passed if (timer_get_flag(TIM(MONITOR_TIMER), TIM_SR_UIF)) { timer_clear_flag(TIM(MONITOR_TIMER), TIM_SR_UIF); // clear flag seconds++; // count the second } // check is there is a change on a channel const uint16_t gpioa_new = gpio_get(GPIOA, gpioa_mask); const uint16_t gpiob_new = gpio_get(GPIOB, gpioa_mask); if (gpioa_new != gpioa_data || gpiob_new != gpiob_data) { // print data printf("%04u.%03u", seconds, timer_get_counter(TIM(MONITOR_TIMER)) / 2); for (uint8_t i = channel_start; i <= channel_stop; i++) { const uint16_t port = (GPIOA == channel_ports[i] ? gpioa_new : gpiob_new); const uint8_t high = ((port & channel_pins[i]) ? 1 : 0); if (high) { puts(" 1"); } else { puts(" 0"); } } puts("\n"); // save change gpioa_data = gpioa_new; gpiob_data = gpiob_new; // do we need a rate limit? } } user_input_get(); // clean input // clean up for (uint8_t i = channel_start; i <= channel_stop; i++) { // set all back to input gpio_mode_setup(channel_ports[i], GPIO_MODE_INPUT, GPIO_PUPD_NONE, channel_pins[i]); // ensure pin is floating input } timer_disable_counter(TIM(MONITOR_TIMER)); // disable timer rcc_periph_reset_pulse(RST_TIM(MONITOR_TIMER)); // reset timer state rcc_periph_clock_disable(RCC_TIM(MONITOR_TIMER)); // disable clock for timer peripheral } /** set first channel of range to scan * @param[in] argument optional pointer to first channel number */ static void command_channel_start(void* argument) { if (argument) { const uint32_t channel = *(uint32_t*)argument; if (channel < CHANNEL_NUMBERS && channel < channel_stop) { channel_start = channel; } } printf("channels to probe: %u-%u\n", channel_start, channel_stop); } /** set last channel of range to scan * @param[in] argument optional pointer to last channel number */ static void command_channel_stop(void* argument) { if (argument) { const uint32_t channel = *(uint32_t*)argument; if (channel < CHANNEL_NUMBERS && channel > channel_start) { channel_stop = channel; } } printf("channels to probe: %u-%u\n", channel_start, channel_stop); } /** display available commands * @param[in] argument no argument required */ static void command_help(void* argument); /** show software and hardware version * @param[in] argument no argument required */ static void command_version(void* argument) { (void)argument; // we won't use the argument printf("firmware date: %04u-%02u-%02u\n", BUILD_YEAR, BUILD_MONTH, BUILD_DAY); // show firmware build date printf("device serial: %08x%08x%08x\n", DESIG_UNIQUE_ID2, DESIG_UNIQUE_ID1, DESIG_UNIQUE_ID0); // show complete serial (different than the one used for USB) } /** convert RTC date/time to number of seconds * @return number of seconds since 2000-01-01 00:00:00 * @warning for simplicity I consider every month to have 31 days */ static uint32_t rtc_to_seconds(void) { rtc_wait_for_synchro(); // wait until date/time is synchronised const uint8_t year = ((RTC_DR >> RTC_DR_YT_SHIFT) & RTC_DR_YT_MASK) * 10 + ((RTC_DR >> RTC_DR_YU_SHIFT) & RTC_DR_YU_MASK); // get year uint8_t month = ((RTC_DR >> RTC_DR_MT_SHIFT) & RTC_DR_MT_MASK) * 10 + ((RTC_DR >> RTC_DR_MU_SHIFT) & RTC_DR_MU_MASK); // get month if (month > 0) { // month has been initialized, but starts with 1 month--; // fix for calculation } uint8_t day = ((RTC_DR >> RTC_DR_DT_SHIFT) & RTC_DR_DT_MASK) * 10 + ((RTC_DR >> RTC_DR_DU_SHIFT) & RTC_DR_DU_MASK); // get day if (day > 0) { // day has been initialized, but starts with 1 day--; // fix for calculation } const uint8_t hour = ((RTC_TR >> RTC_TR_HT_SHIFT) & RTC_TR_HT_MASK) * 10 + ((RTC_TR >> RTC_TR_HU_SHIFT) & RTC_TR_HU_MASK); // get hours const uint8_t minute = ((RTC_TR >> RTC_TR_MNT_SHIFT) & RTC_TR_MNT_MASK) * 10 + ((RTC_TR >> RTC_TR_MNU_SHIFT) & RTC_TR_MNU_MASK); // get minutes const uint8_t second = ((RTC_TR >> RTC_TR_ST_SHIFT) & RTC_TR_ST_MASK) * 10 + ((RTC_TR >> RTC_TR_SU_SHIFT) & RTC_TR_SU_MASK); // get seconds const uint32_t seconds = ((((((((year * 12) + month) * 31) + day) * 24) + hour) * 60) + minute) * 60 + second; // convert to number of seconds return seconds; } /** show uptime * @param[in] argument no argument required */ static void command_uptime(void* argument) { (void)argument; // we won't use the argument const uint32_t uptime = rtc_to_seconds() - boot_time; // get time from internal RTC printf("uptime: %u.%02u:%02u:%02u\n", uptime / (24 * 60 * 60), (uptime / (60 * 60)) % 24, (uptime / 60) % 60, uptime % 60); } /** reset board * @param[in] argument no argument required */ static void command_reset(void* argument) { (void)argument; // we won't use the argument scb_reset_system(); // reset device while (true); // wait for the reset to happen } /** switch to system memory (e.g. embedded bootloader) * @param[in] argument no argument required */ static void command_system(void* argument) { (void)argument; // we won't use the argument system_memory(); // jump to system memory } /** switch to DFU bootloader * @param[in] argument no argument required */ static void command_bootloader(void* argument) { (void)argument; // we won't use the argument dfu_bootloader(); // start DFU bootloader } /** list of all supported commands */ static const struct menu_command_t menu_commands[] = { { .shortcut = 'h', .name = "help", .command_description = "display help", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_help, }, { .shortcut = 'V', .name = "version", .command_description = "show software and hardware version", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_version, }, { .shortcut = 'u', .name = "uptime", .command_description = "show uptime", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_uptime, }, { .shortcut = 'R', .name = "reset_board", .command_description = "reset board", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_reset, }, { .shortcut = 's', .name = "system", .command_description = "reboot into system memory", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_system, }, { .shortcut = 'b', .name = "bootloader", .command_description = "reboot into DFU bootloader", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_bootloader, }, { .shortcut = 'v', .name = "voltage", .command_description = "set/measure target voltage", .argument = MENU_ARGUMENT_UNSIGNED, .argument_description = "[0|3|5]", .command_handler = &command_target_voltage, }, { .shortcut = 'r', .name = "reset", .command_description = "configure/reset target board", .argument = MENU_ARGUMENT_STRING, .argument_description = "[0|1|ODL|ODH|PPL|PPH]", .command_handler = &command_target_reset, }, { .shortcut = 't', .name = "type", .command_description = "identify signal types", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_types, }, { .shortcut = 'm', .name = "monitor", .command_description = "monitor channel activity", .argument = MENU_ARGUMENT_UNSIGNED, .argument_description = "[0|3]", .command_handler = &command_monitor, }, { .shortcut = 'c', .name = "start", .command_description = "first channel of range to probe", .argument = MENU_ARGUMENT_UNSIGNED, .argument_description = "[ch]", .command_handler = &command_channel_start, }, { .shortcut = 'C', .name = "stop", .command_description = "last channel of range to probe", .argument = MENU_ARGUMENT_UNSIGNED, .argument_description = "[ch]", .command_handler = &command_channel_stop, }, }; static void command_help(void* argument) { (void)argument; // we won't use the argument printf("available commands:\n"); menu_print_commands(menu_commands, LENGTH(menu_commands)); // print global commands } /** process user command * @param[in] str user command string (\0 ended) */ static void process_command(char* str) { // ensure actions are available if (NULL == menu_commands || 0 == LENGTH(menu_commands)) { return; } // don't handle empty lines if (!str || 0 == strlen(str)) { return; } bool command_handled = false; if (!command_handled) { command_handled = menu_handle_command(str, menu_commands, LENGTH(menu_commands)); // try if this is not a global command } if (!command_handled) { printf("command not recognized. enter help to list commands\n"); } } /** program entry point * this is the firmware function started by the micro-controller */ void main(void); void main(void) { #if DEBUG // enable functionalities for easier debug DBGMCU_CR |= DBGMCU_CR_IWDG_STOP; // stop independent watchdog counter when code is halted DBGMCU_CR |= DBGMCU_CR_WWDG_STOP; // stop window watchdog counter when code is halted DBGMCU_CR |= DBGMCU_CR_STANDBY; // allow debug also in standby mode (keep digital part and clock powered) DBGMCU_CR |= DBGMCU_CR_STOP; // allow debug also in stop mode (keep clock powered) DBGMCU_CR |= DBGMCU_CR_SLEEP; // allow debug also in sleep mode (keep clock powered) #else // setup watchdog to reset in case we get stuck (i.e. when an error occurred) iwdg_set_period_ms(WATCHDOG_PERIOD); // set independent watchdog period iwdg_start(); // start independent watchdog #endif board_setup(); // setup board usb_cdcacm_setup(); // setup USB CDC ACM (for printing) puts("\nwelcome to the CuVoodoo I/O finder\n"); // print welcome message #if DEBUG // show reset cause if (RCC_CSR & (RCC_CSR_LPWRRSTF | RCC_CSR_WWDGRSTF | RCC_CSR_IWDGRSTF | RCC_CSR_SFTRSTF | RCC_CSR_PORRSTF | RCC_CSR_PINRSTF)) { puts("reset cause(s):"); if (RCC_CSR & RCC_CSR_LPWRRSTF) { puts(" low-power"); } if (RCC_CSR & RCC_CSR_WWDGRSTF) { puts(" window-watchdog"); } if (RCC_CSR & RCC_CSR_IWDGRSTF) { puts(" independent-watchdog"); } if (RCC_CSR & RCC_CSR_SFTRSTF) { puts(" software"); } if (RCC_CSR & RCC_CSR_PORRSTF) { puts(" POR/PDR"); } if (RCC_CSR & RCC_CSR_PINRSTF) { puts(" pin"); } putc('\n'); RCC_CSR |= RCC_CSR_RMVF; // clear reset flags } #endif // setup RTC puts_debug("setup RTC: "); rcc_periph_clock_enable(RCC_RTC); // enable clock for RTC peripheral rcc_osc_on(RCC_LSI); // enable LSI clock while (!rcc_is_osc_ready(RCC_LSI)); // wait until clock is ready if (!(RCC_BDCR && RCC_BDCR_RTCEN)) { // the RTC has not been configured yet pwr_disable_backup_domain_write_protect(); // disable backup protection so we can set the RTC clock source rtc_unlock(); // enable writing RTC registers rtc_set_prescaler(250, 128); // set clock prescaler to 32000 RCC_BDCR = (RCC_BDCR & ~(RCC_BDCR_RTCSEL_MASK << RCC_BDCR_RTCSEL_SHIFT)) | (RCC_BDCR_RTCSEL_LSI << RCC_BDCR_RTCSEL_SHIFT); // select LSI as RTC clock source RCC_BDCR |= RCC_BDCR_RTCEN; // enable RTC rtc_lock(); // protect RTC register against writing pwr_enable_backup_domain_write_protect(); // re-enable protection now that we configured the RTC clock } boot_time = rtc_to_seconds(); // remember the start time puts_debug("OK\n"); // setup wakeup timer for periodic checks puts_debug("setup wakeup: "); // RTC needs to be configured beforehand pwr_disable_backup_domain_write_protect(); // disable backup protection so we can write to the RTC registers rtc_unlock(); // enable writing RTC registers rtc_clear_wakeup_flag(); // clear flag for fresh start rtc_set_wakeup_time((32000 / 2) / WAKEUP_FREQ - 1, RTC_CR_WUCLKSEL_RTC_DIV2); // set wakeup time based on LSI (keep highest precision, also enables the wakeup timer) rtc_enable_wakeup_timer_interrupt(); // enable interrupt rtc_lock(); // disable writing RTC registers // important: do not re-enable backup_domain_write_protect, since this will prevent clearing flags (but RTC registers do not need to be unlocked) puts_debug("OK\n"); puts_debug("setup voltage control: "); rcc_periph_clock_enable(GPIO_RCC(SIGNAL_PD_PIN)); // enable clock for port domain gpio_set(GPIO_PORT(SIGNAL_PD_PIN), GPIO_PIN(SIGNAL_PD_PIN)); // ensure we are not draining it gpio_set_output_options(GPIO_PORT(SIGNAL_PD_PIN), GPIO_OTYPE_OD, GPIO_OSPEED_2MHZ, GPIO_PIN(SIGNAL_PD_PIN)); // set output as open-drain gpio_mode_setup(GPIO_PORT(SIGNAL_PD_PIN), GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_PIN(SIGNAL_PD_PIN)); // configure pin as output rcc_periph_clock_enable(GPIO_RCC(SIGNAL_PU_PIN)); // enable clock for port domain gpio_set(GPIO_PORT(SIGNAL_PU_PIN), GPIO_PIN(SIGNAL_PU_PIN)); // ensure we are do enable pMOS to pull up the signal gpio_set_output_options(GPIO_PORT(SIGNAL_PU_PIN), GPIO_OTYPE_OD, GPIO_OSPEED_2MHZ, GPIO_PIN(SIGNAL_PU_PIN)); // set output as open-drain gpio_mode_setup(GPIO_PORT(SIGNAL_PU_PIN), GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_PIN(SIGNAL_PU_PIN)); // configure pin as output rcc_periph_clock_enable(GPIO_RCC(SHIFT_EN_PIN)); // enable clock for port domain gpio_set(GPIO_PORT(SHIFT_EN_PIN), GPIO_PIN(SHIFT_EN_PIN)); // ensure we do not enable pMOS to power level shifters gpio_set_output_options(GPIO_PORT(SHIFT_EN_PIN), GPIO_OTYPE_OD, GPIO_OSPEED_2MHZ, GPIO_PIN(SHIFT_EN_PIN)); // set output as open-drain gpio_mode_setup(GPIO_PORT(SHIFT_EN_PIN), GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_PIN(SHIFT_EN_PIN)); // configure pin as output rcc_periph_clock_enable(GPIO_RCC(TARGET_3V_PIN)); // enable clock for port domain gpio_set(GPIO_PORT(TARGET_3V_PIN), GPIO_PIN(TARGET_3V_PIN)); // ensure we do not enable pMOS to provide 3.3V on target voltage gpio_set_output_options(GPIO_PORT(TARGET_3V_PIN), GPIO_OTYPE_OD, GPIO_OSPEED_2MHZ, GPIO_PIN(TARGET_3V_PIN)); // set output as open-drain gpio_mode_setup(GPIO_PORT(TARGET_3V_PIN), GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_PIN(TARGET_3V_PIN)); // configure pin as output rcc_periph_clock_enable(GPIO_RCC(TARGET_RST_PIN)); // enable clock for port domain gpio_set(GPIO_PORT(TARGET_RST_PIN), GPIO_PIN(TARGET_RST_PIN)); // to not pull down (asserting reset) gpio_set_output_options(GPIO_PORT(TARGET_RST_PIN), GPIO_OTYPE_OD, GPIO_OSPEED_2MHZ, GPIO_PIN(TARGET_RST_PIN)); // set output as open-drain gpio_mode_setup(GPIO_PORT(TARGET_RST_PIN), GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_PIN(TARGET_RST_PIN)); // configure pin as output puts_debug("OK\n"); puts_debug("setup analog multiplexer: "); rcc_periph_clock_enable(GPIO_RCC(MUX_EN_PIN)); // enable clock for port domain gpio_set(GPIO_PORT(MUX_EN_PIN), GPIO_PIN(MUX_EN_PIN)); // ensure multiplexer is disabled gpio_set_output_options(GPIO_PORT(MUX_EN_PIN), GPIO_OTYPE_PP, GPIO_OSPEED_2MHZ, GPIO_PIN(MUX_EN_PIN)); // set output as push-pull to drive correctly gpio_mode_setup(GPIO_PORT(MUX_EN_PIN), GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_PIN(MUX_EN_PIN)); // configure pin as output rcc_periph_clock_enable(GPIO_RCC(MUX_S0_PIN)); // enable clock for port domain gpio_clear(GPIO_PORT(MUX_S0_PIN), GPIO_PIN(MUX_S0_PIN)); // any channel selected is fine gpio_set_output_options(GPIO_PORT(MUX_S0_PIN), GPIO_OTYPE_PP, GPIO_OSPEED_2MHZ, GPIO_PIN(MUX_S0_PIN)); // set output as push-pull to drive correctly gpio_mode_setup(GPIO_PORT(MUX_S0_PIN), GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_PIN(MUX_S0_PIN)); // configure pin as output rcc_periph_clock_enable(GPIO_RCC(MUX_S1_PIN)); // enable clock for port domain gpio_clear(GPIO_PORT(MUX_S1_PIN), GPIO_PIN(MUX_S1_PIN)); // any channel selected is fine gpio_set_output_options(GPIO_PORT(MUX_S1_PIN), GPIO_OTYPE_PP, GPIO_OSPEED_2MHZ, GPIO_PIN(MUX_S1_PIN)); // set output as push-pull to drive correctly gpio_mode_setup(GPIO_PORT(MUX_S1_PIN), GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_PIN(MUX_S1_PIN)); // configure pin as output rcc_periph_clock_enable(GPIO_RCC(MUX_S2_PIN)); // enable clock for port domain gpio_clear(GPIO_PORT(MUX_S2_PIN), GPIO_PIN(MUX_S2_PIN)); // any channel selected is fine gpio_set_output_options(GPIO_PORT(MUX_S2_PIN), GPIO_OTYPE_PP, GPIO_OSPEED_2MHZ, GPIO_PIN(MUX_S2_PIN)); // set output as push-pull to drive correctly gpio_mode_setup(GPIO_PORT(MUX_S2_PIN), GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_PIN(MUX_S2_PIN)); // configure pin as output rcc_periph_clock_enable(GPIO_RCC(MUX_S3_PIN)); // enable clock for port domain gpio_clear(GPIO_PORT(MUX_S3_PIN), GPIO_PIN(MUX_S3_PIN)); // any channel selected is fine gpio_set_output_options(GPIO_PORT(MUX_S3_PIN), GPIO_OTYPE_PP, GPIO_OSPEED_2MHZ, GPIO_PIN(MUX_S3_PIN)); // set output as push-pull to drive correctly gpio_mode_setup(GPIO_PORT(MUX_S3_PIN), GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_PIN(MUX_S3_PIN)); // configure pin as output mux_select(-1); // ensure it is disabled puts_debug("OK\n"); puts_debug("setup signal pins: "); for (uint8_t i = 0; i < CHANNEL_NUMBERS; i++) { rcc_periph_clock_enable(port2rcc(channel_ports[i])); // enable clock for port domain gpio_mode_setup(channel_ports[i], GPIO_MODE_INPUT, GPIO_PUPD_NONE, channel_pins[i]); // ensure pin is floating input } puts_debug("OK\n"); puts_debug("setup ADC to measure voltages: "); rcc_periph_clock_enable(RCC_ADC1); // enable clock for ADC domain adc_power_off(ADC1); // switch off ADC while configuring it adc_set_right_aligned(ADC1); // ensure it is right aligned to get the actual value in the 16-bit register adc_enable_scan_mode(ADC1); // use scan mode do be able to go to next discontinuous subgroup of the regular sequence adc_enable_discontinuous_mode_regular(ADC1, 1); // use discontinuous mode (to go through all channels of the group, one after another) adc_set_single_conversion_mode(ADC1); // ensure continuous mode is not used (that's not the same as discontinuous) adc_eoc_after_each(ADC1); // set EOC after each conversion instead of each group adc_set_sample_time_on_all_channels(ADC1, ADC_SMPR_SMP_28CYC); // use at least 15 cycles to be able to sample at 12-bit resolution adc_set_regular_sequence(ADC1, LENGTH(adc_channels), (uint8_t*)adc_channels); // set channel to convert adc_enable_temperature_sensor(); // enable internal voltage reference adc_power_on(ADC1); // switch on ADC sleep_us(3); // wait t_stab for the ADC to stabilize rcc_periph_clock_enable(RCC_ADC1_IN(TARGET_CHANNEL)); // enable clock for GPIO domain for target voltage channel gpio_mode_setup(ADC1_IN_PORT(TARGET_CHANNEL), GPIO_MODE_ANALOG, GPIO_PUPD_NONE, ADC1_IN_PIN(TARGET_CHANNEL)); // set target voltage channel as analog input for the ADC rcc_periph_clock_enable(RCC_ADC1_IN(SIGNAL_CHANNEL)); // enable clock for GPIO domain for signal channel gpio_mode_setup(ADC1_IN_PORT(SIGNAL_CHANNEL), GPIO_MODE_ANALOG, GPIO_PUPD_NONE, ADC1_IN_PIN(SIGNAL_CHANNEL)); // set signal channel as analog input for the ADC measure_voltages(); // try to measure voltages puts_debug("OK\n"); // setup terminal terminal_prefix = ""; // set default prefix terminal_process = &process_command; // set central function to process commands terminal_setup(); // start terminal // start main loop bool action = false; // if an action has been performed don't go to sleep button_flag = false; // reset button flag while (true) { // infinite loop iwdg_reset(); // kick the dog if (user_input_available) { // user input is available action = true; // action has been performed char c = user_input_get(); // store receive character terminal_send(c); // send received character to terminal } if (wakeup_flag) { // time to do periodic checks wakeup_flag = false; // clear flag } if (second_flag) { // one second passed second_flag = false; // clear flag } if (action) { // go to sleep if nothing had to be done, else recheck for activity action = false; } else { __WFI(); // go to sleep } } // main loop } /** interrupt service routine when the wakeup timer triggered */ void rtc_wkup_isr(void) { static uint16_t tick = WAKEUP_FREQ; // how many wakeup have occurred exti_reset_request(EXTI22); // clear EXTI flag used by wakeup rtc_clear_wakeup_flag(); // clear flag wakeup_flag = true; // notify main loop tick--; // count the number of ticks down (do it in the ISR to no miss any tick) if (0 == tick) { // count down completed second_flag = true; // notify main loop a second has passed tick = WAKEUP_FREQ; // restart count down } }