/* This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** library to read/write internal flash (code) * @file * @author King Kévin * @date 2016-2020 * @note peripherals used: none */ /* standard libraries */ #include // standard integer types #include // general utilities /* STM32 (including CM3) libraries */ #include // flash utilities #include // device signature definitions #include // debug definitions /* own libraries */ #include "flash_internal.h" // flash storage library API #include "global.h" // global definitions /** number of flash pages, located at the end of flash memory, to use for EEPROM functionality */ static uint16_t flash_internal_eeprom_pages = 0; /** start address of flash memory used for the emulated EEPROM */ static uint32_t flash_internal_eeprom_start = 0; /** start address of emulated EEPROM */ static uint32_t flash_internal_eeprom_address = 0; /** verify if the data is in the internal flash area * @param[in] address start address of the data to read * @param[in] size how much data to read or write, in bytes * @return if the data is in the internal flash area */ static bool flash_internal_range(uint32_t address, size_t size) { if (address > (UINT32_MAX - size)) { // on integer overflow will occur return false; } if (address < FLASH_BASE) { // start address is before the start of the internal flash return false; } if ((uint32_t)&__flash_end >= FLASH_BASE) { // check if the end for the internal flash is enforced by the linker script if ((address + size) > (uint32_t)&__flash_end) { // end address is after the end of the enforced internal flash return false; } } else { if ((address + size) > (FLASH_BASE + DESIG_FLASH_SIZE * 1024)) { // end address is after the end of the advertised flash return false; } } return true; } /** get flash page size * @return flash page size (in bytes) */ uint16_t flash_internal_page_size(void) { static uint16_t page_size = 0; // remember page size if (page_size) { // we already determined the size return page_size; } if (0 == page_size) { // we don't know the page size yet if ((0x410 == (DBGMCU_IDCODE & DBGMCU_IDCODE_DEV_ID_MASK)) || (0x412 == (DBGMCU_IDCODE & DBGMCU_IDCODE_DEV_ID_MASK))) { // low-density (16-32 KB flash) and medium-density (64-128 KB flash) devices have 1 KB flash pages page_size = 1024; } else if ((0x414 == (DBGMCU_IDCODE & DBGMCU_IDCODE_DEV_ID_MASK)) || (0x430 == (DBGMCU_IDCODE & DBGMCU_IDCODE_DEV_ID_MASK)) || (0x418 == (DBGMCU_IDCODE & DBGMCU_IDCODE_DEV_ID_MASK))) { // high-density (256-512 KB flash), XL-density (768-1024 KB flash) devices and connectivity line have 2 KB flash pages page_size = 2048; } else { // unknown device type (or unreadable type, see errata), deduce page size from flash size if (DESIG_FLASH_SIZE < 256) { page_size = 1024; } else { page_size = 2048; } } } return page_size; } bool flash_internal_read(uint32_t address, uint8_t *buffer, size_t size) { // sanity checks if (buffer == NULL || size == 0) { return false; } if (!flash_internal_range(address, size)) { return false; } // copy data byte per byte (a more efficient way would be to copy words, than the remaining bytes) for (size_t i = 0; i < size; i++) { buffer[i] = *((uint8_t*)address + i); } return true; } int32_t flash_internal_write(uint32_t address, const uint8_t *buffer, size_t size, bool preserve) { // sanity checks if (buffer == NULL || size == 0 || size % 2) { return -1; } if (!flash_internal_range(address, size)) { return -2; } // verify if it's in the flash area if (address < FLASH_BASE) { return -3; } else if ((uint32_t)&__flash_end >= FLASH_BASE && (address + size) > (uint32_t)&__flash_end) { return -4; } else if ((uint32_t)&__flash_end < FLASH_BASE && (address + size) > (FLASH_BASE + DESIG_FLASH_SIZE * 1024)) { return -5; } uint16_t page_size = flash_internal_page_size(); // get page size uint32_t written = 0; // number of bytes written flash_unlock(); // unlock flash to be able to write it while (size) { // write page by page until all data has been written // verify of we need to erase the flash before writing it uint32_t page_start = address - (address % page_size); // get start of the current page bool erase = false; // verify if we need to erase the page bool identical = true; // verify if we actually need to write data, or if the data to be written is the identical to the one already if flash for (uint32_t i = 0; i < size && (address + i) < (page_start + page_size); i += 2) { // verify if no bit needs to be flipped to 1 again if (*(uint16_t*)(buffer + i) != (*(uint16_t*)(address + i))) { // verify if the data to be written is identical to the one already written identical = false; // in theory writing flash is only about flipping (individual) bits from 1 (erase state) to 0 // in practice the micro-controller won't allow to flip individual bits if the whole half-word is erased (set to 0xffff) if (*(uint16_t*)(address + i) != 0xffff) { // flash is not erased erase = true; // we need to erase it for it to be written break; // no need to check further } } } if (identical) { // no data needs to be changed // go to end of page, or size uint32_t remaining = (page_start + page_size) - address; if (remaining > size) { remaining = size; } written += remaining; buffer += remaining; address += remaining; size -= remaining; } else if (erase && preserve) { // erase before uint8_t page_data[page_size]; // a copy of the complete page before the erase it uint16_t page_i = 0; // index for page data // copy page before address for (uint32_t flash = page_start; flash < address && flash < (page_start + page_size) && page_i < page_size; flash++) { page_data[page_i++] = *(uint8_t*)(flash); } // copy data starting at address while (size > 0 && page_i < page_size) { page_data[page_i++] = *buffer; buffer++; address++; size--; } // copy data after buffer until end of page while (page_i < page_size) { page_data[page_i] = *(uint8_t*)(page_start + page_i); page_i++; } flash_erase_page(page_start); // erase current page if (flash_get_status_flags() != FLASH_SR_EOP) { // operation went wrong flash_lock(); // lock back flash to protect it return -6; } for (uint16_t i = 0; i < page_size; i += 2) { // write whole page if (*((uint16_t*)(page_data + i)) != 0xffff) { // after an erase the bits are set to one, no need to program them flash_program_half_word(page_start + i, *((uint16_t*)(page_data + i))); if (flash_get_status_flags() != FLASH_SR_EOP) { // operation went wrong flash_lock(); // lock back flash to protect it return -7; } } if (*((uint16_t*)(page_data + i)) != *((uint16_t*)(page_start + i))) { // verify the programmed data is right flash_lock(); // lock back flash to protect it return -8; } written += 2; } } else { // simply copy data until end of page (or end of data) if (erase) { flash_erase_page(page_start); // erase current page if (flash_get_status_flags() != FLASH_SR_EOP) { // operation went wrong flash_lock(); // lock back flash to protect it return -9; } } while (size > 0 && address < (page_start + page_size)) { if (*((uint16_t*)(buffer)) != *((uint16_t*)(address)) && *((uint16_t*)(buffer)) != 0xffff) { // only program when data is different and bits need to be set flash_program_half_word(address, *((uint16_t*)(buffer))); // program the data if (flash_get_status_flags() != FLASH_SR_EOP) { // operation went wrong flash_lock(); // lock back flash to protect it return -10; } if (*((uint16_t*)address) != *((uint16_t*)buffer)) { // verify the programmed data is right flash_lock(); // lock back flash to protect it return -11; } } written += 2; buffer += 2; address += 2; size -= 2; } } } flash_lock(); // lock back flash to protect it return written; } void flash_internal_eeprom_setup(uint16_t pages) { flash_internal_eeprom_pages = pages; // just need to remember the number of pages // get allocated memory address if ((uint32_t)&__flash_end >= FLASH_BASE) { // check if the end for the internal flash is enforced by the linker script flash_internal_eeprom_start = (uint32_t)&__flash_end - flash_internal_eeprom_pages * flash_internal_page_size(); } else { flash_internal_eeprom_start = (FLASH_BASE + DESIG_FLASH_SIZE * 1024) - flash_internal_eeprom_pages * flash_internal_page_size(); } flash_internal_eeprom_start -= flash_internal_eeprom_start % flash_internal_page_size(); // ensure it starts at start of page // find EEPROM in flash flash_internal_eeprom_address = flash_internal_eeprom_start; // by default start with start of allocated flash memory for (uint32_t addr = flash_internal_eeprom_start; addr < flash_internal_eeprom_start + flash_internal_eeprom_pages * flash_internal_page_size() - 2; addr += 2) { if (0 != *(uint16_t*)addr) { // 0 is invalidated flash flash_internal_eeprom_address = addr; // we found a valid address, which should be the size of the EEPROM break; } } uint16_t size = *(uint16_t*)flash_internal_eeprom_address; if (size + 2U > flash_internal_eeprom_pages * flash_internal_page_size()) { // there is not enough space flash_internal_eeprom_address = flash_internal_eeprom_start; // set back to start } if (0 != size && flash_internal_eeprom_address + 2U + size > flash_internal_eeprom_start + flash_internal_eeprom_pages * flash_internal_page_size()) { // the size seems to be valid to there is not enough remaining space flash_internal_eeprom_address = flash_internal_eeprom_start; // set back to start } } bool flash_internal_eeprom_read(uint8_t *eeprom, uint16_t size) { // sanity checks if (NULL == eeprom || 0 == size || 0 == flash_internal_eeprom_pages || 0 == flash_internal_eeprom_start || 0 == flash_internal_eeprom_address) { return false; } if (size + 2U > flash_internal_eeprom_pages * flash_internal_page_size()) { // not enough space return false; } if (size != *(uint16_t*)flash_internal_eeprom_address) { // check if size match return false; } return flash_internal_read(flash_internal_eeprom_address + 2, eeprom, size); // read data } int32_t flash_internal_eeprom_write(const uint8_t *eeprom, uint16_t size) { // sanity checks if (NULL == eeprom || 0 == size || 0 == flash_internal_eeprom_pages || 0 == flash_internal_eeprom_start || 0 == flash_internal_eeprom_address) { return -1; } if (size + 2U > flash_internal_eeprom_pages * flash_internal_page_size()) { // not enough space return -2; } uint16_t current_size = *(uint16_t*)flash_internal_eeprom_address; if (size == current_size) { // check if it already the same bool identical = true; for (uint16_t i = 0; i < size; i++) { if (eeprom[i] != *((uint8_t*)flash_internal_eeprom_address + 2 + i)) { identical = false; break; } } if (identical) { // no need to write since it's identical return size; } } // one optimisation would be to check if we just need to flip bits to 0, than we could reuse the same location // invalidate current EEPROM const uint8_t zero[2] = {0, 0}; flash_internal_write(flash_internal_eeprom_address, zero, 2, false); flash_internal_eeprom_address += 2; while (current_size && flash_internal_eeprom_address < flash_internal_eeprom_start + flash_internal_eeprom_pages * flash_internal_page_size()) { flash_internal_write(flash_internal_eeprom_address, zero, 2, false); current_size -= 2; flash_internal_eeprom_address += 2; } // go to start if there is not enough remaining space if (flash_internal_eeprom_address + size + 2U > flash_internal_eeprom_start + flash_internal_eeprom_pages * flash_internal_page_size()) { flash_internal_eeprom_address = flash_internal_eeprom_start; } int32_t rc = flash_internal_write(flash_internal_eeprom_address, (uint8_t*)&size, 2, false); if (2 != rc) { return (-10 + rc); } rc = flash_internal_write(flash_internal_eeprom_address + 2, eeprom, size, false); if (size != rc) { return (-10 + rc); } return rc; }