/* This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** CuVoodoo USB cable tester firmware * @file * @author King Kévin * @date 2016-2020 */ /* standard libraries */ #include // standard integer types #include // standard utilities #include // string utilities #include // date/time utilities #include // utilities to check chars /* STM32 (including CM3) libraries */ #include // Cortex M3 utilities #include // vector table definition #include // interrupt utilities #include // general purpose input output library #include // real-time control clock library #include // external interrupt utilities #include // real time clock utilities #include // independent watchdog utilities #include // debug utilities #include // design utilities #include // flash utilities /* own libraries */ #include "global.h" // board definitions #include "print.h" // printing utilities #include "usb_cdcacm.h" // USB CDC ACM utilities #include "terminal.h" // handle the terminal interface #include "menu.h" // menu utilities #include "usb_cables.h" // USB cables definition /** watchdog period in ms */ #define WATCHDOG_PERIOD 10000 /** set to 0 if the RTC is reset when the board is powered on, only indicates the uptime * set to 1 if VBAT can keep the RTC running when the board is unpowered, indicating the date and time */ #define RTC_DATE_TIME 0 /** number of RTC ticks per second * @note use integer divider of oscillator to keep second precision */ #define RTC_TICKS_SECOND 4 /** RTC time when device is started */ static time_t time_start = 0; /** @defgroup main_flags flag set in interrupts to be processed in main task * @{ */ volatile bool rtc_internal_tick_flag = false; /**< flag set when internal RTC ticked */ /** @} */ size_t putc(char c) { size_t length = 0; // number of characters printed static char last_c = 0; // to remember on which character we last sent if ('\n' == c) { // send carriage return (CR) + line feed (LF) newline for each LF if ('\r' != last_c) { // CR has not already been sent usb_cdcacm_putchar('\r'); // send CR over USB length++; // remember we printed 1 character } } usb_cdcacm_putchar(c); // send byte over USB length++; // remember we printed 1 character last_c = c; // remember last character return length; // return number of characters printed } /** put all pins of all connectors to float */ static void usb_pins_float(void) { usb_cables_connectors_float(usb_connectors, LENGTH(usb_connectors)); // put every pin of every connector in floating mode } /** display available commands * @param[in] argument no argument required */ static void command_help(void* argument); /** show software and hardware version * @param[in] argument no argument required */ static void command_version(void* argument); /** show uptime * @param[in] argument no argument required */ static void command_uptime(void* argument); #if RTC_DATE_TIME /** show date and time * @param[in] argument date and time to set */ static void command_datetime(void* argument); #endif /** reset board * @param[in] argument no argument required */ static void command_reset(void* argument); /** switch to DFU bootloader * @param[in] argument no argument required */ static void command_bootloader(void* argument); /** test USB connectors intra-connections * @param[in] argument no argument required */ static void command_intra(void* argument) { (void)argument; // we won't use the argument usb_pins_float(); // start with all pins in safe floating state printf("= intra-connector check =\n"); for (uint8_t connector = 0; connector < LENGTH(usb_connectors); connector++) { // test from every connector printf("- %s -\n", usb_connectors[connector]->name); usb_cables_check_intra(usb_connectors[connector], NULL); } usb_pins_float(); // put all pins back in safe floating state } /** test USB connectors inter-connections * @param[in] argument no argument required */ static void command_inter(void* argument) { (void)argument; // we won't use the argument usb_pins_float(); // start with all pins in safe floating state // step 1: find which connectors are connected printf("= inter-connector check =\n"); usb_cables_check_inter(usb_connectors, LENGTH(usb_connectors), NULL); usb_pins_float(); // put all pins back in safe floating state } /** test USB cables * @param[in] argument no argument required */ static void command_cables(void* argument) { (void)argument; // we won't use the argument usb_pins_float(); // start with all pins in safe floating state // step 2: check for known cable configuration printf("= cable check =\n"); for (uint8_t cable = 0; cable < LENGTH(usb_cables); cable++) { // test every cable uint8_t pair_defined, pair_undefined, pair_disconnected, pair_error; printf("%s:", usb_cables[cable].name); bool result = usb_cables_check_cable(&usb_cables[cable], &pair_defined, &pair_undefined, &pair_disconnected, &pair_error); printf("%s (defined=%u, undefined=%u, disconnected=%u, error=%u)\n", result ? "ok" : "ko", pair_defined, pair_undefined, pair_disconnected, pair_error); } usb_pins_float(); // put all pins back in safe floating state } /** find out which USB cable is connected * @param[in] argument no argument required */ static void command_find(void* argument) { (void)argument; // we won't use the argument usb_pins_float(); // start with all pins in safe floating state // figure out which connectors are used bool connected[LENGTH(usb_connectors)]; usb_cables_check_inter(usb_connectors, LENGTH(usb_connectors), connected); uint8_t connected_nb = 0; printf("connectors:"); for (uint8_t i = 0; i < LENGTH(connected); i++) { if (connected[i]) { printf(" %s", usb_connectors[i]->name); connected_nb++; } } printf("\n"); // find matching cable uint8_t matches = 0; // number of matching cables printf("matching cables:"); for (uint8_t cable = 0; cable < LENGTH(usb_cables); cable++) { // ensure we have the same number of connections as the cable if (usb_cables[cable].connectors_nb != connected_nb) { continue; } // ensure all the connectors we have are also in the cable bool match = true; for (uint8_t i = 0; i < LENGTH(connected) && match; i++) { if (!connected[i]) { continue; } bool found = false; for (uint8_t j = 0; j < usb_cables[cable].connectors_nb; j++) { if (usb_connectors[i] == usb_cables[cable].connectors[j]) { found = true; } } if (!found) { match = false; } } // ensure we also have all the connectors which are in the cable for (uint8_t i = 0; i < usb_cables[cable].connectors_nb && match; i++) { bool found = false; for (uint8_t j = 0; j < LENGTH(connected); j++) { if (!connected[i]) { continue; } if (usb_connectors[j] == usb_cables[cable].connectors[i]) { found = true; } } if (!found) { match = false; } } if (!match) { continue; } // the connector match uint8_t pair_defined, pair_undefined, pair_disconnected, pair_error; match = usb_cables_check_cable(&usb_cables[cable], &pair_defined, &pair_undefined, &pair_disconnected, &pair_error); if (match) { matches++; printf("%s, ", usb_cables[cable].name); } printf("\n%u matching cables found\n"); } usb_pins_float(); // put all pins back in safe floating state } /** list of all supported commands */ static const struct menu_command_t menu_commands[] = { { .shortcut = 'h', .name = "help", .command_description = "display help", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_help, }, { .shortcut = 'V', .name = "version", .command_description = "show software and hardware version", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_version, }, { .shortcut = 'U', .name = "uptime", .command_description = "show uptime", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_uptime, }, #if RTC_DATE_TIME { .shortcut = 'D', .name = "date", .command_description = "show/set date and time", .argument = MENU_ARGUMENT_STRING, .argument_description = "[YYYY-MM-DD HH:MM:SS]", .command_handler = &command_datetime, }, #endif { .shortcut = 'R', .name = "reset", .command_description = "reset board", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_reset, }, { .shortcut = 'B', .name = "bootloader", .command_description = "reboot into DFU bootloader", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_bootloader, }, { .shortcut = 'a', .name = "intra", .command_description = "test connector intra-connection", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_intra, }, { .shortcut = 'e', .name = "inter", .command_description = "test connector inter-connection", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_inter, }, { .shortcut = 'c', .name = "cables", .command_description = "test cables", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_cables, }, { .shortcut = 'f', .name = "find", .command_description = "find cable", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_find, }, }; static void command_help(void* argument) { (void)argument; // we won't use the argument printf("available commands:\n"); menu_print_commands(menu_commands, LENGTH(menu_commands)); // print global commands } static void command_version(void* argument) { (void)argument; // we won't use the argument printf("firmware date: %04u-%02u-%02u\n", BUILD_YEAR, BUILD_MONTH, BUILD_DAY); // show firmware build date // get device identifier (DEV_ID) // 0x412: low-density, 16-32 kB flash // 0x410: medium-density, 64-128 kB flash // 0x414: high-density, 256-512 kB flash // 0x430: XL-density, 768-1024 kB flash // 0x418: connectivity puts("device family: "); switch (DBGMCU_IDCODE & DBGMCU_IDCODE_DEV_ID_MASK) { case 0: // this is a known issue document in STM32F10xxC/D/E Errata sheet, without workaround puts("unreadable\n"); break; case 0x412: puts("low-density\n"); break; case 0x410: puts("medium-density\n"); break; case 0x414: puts("high-density\n"); break; case 0x430: puts("XL-density\n"); break; case 0x418: puts("connectivity\n"); break; default: puts("unknown\n"); break; } // show flash size puts("flash size: "); if (0xffff == DESIG_FLASH_SIZE) { puts("unknown (probably a defective micro-controller\n"); } else { printf("%u KB\n", DESIG_FLASH_SIZE); } // display device identity printf("device id: %08x%08x%08x\n", DESIG_UNIQUE_ID0, DESIG_UNIQUE_ID1, DESIG_UNIQUE_ID2); } static void command_uptime(void* argument) { (void)argument; // we won't use the argument uint32_t uptime = (rtc_get_counter_val() - time_start) / RTC_TICKS_SECOND; // get time from internal RTC printf("uptime: %u.%02u:%02u:%02u\n", uptime / (24 * 60 * 60), (uptime / (60 * 60)) % 24, (uptime / 60) % 60, uptime % 60); } #if RTC_DATE_TIME static void command_datetime(void* argument) { char* datetime = (char*)argument; // argument is optional date time if (NULL == argument) { // no date and time provided, just show the current day and time time_t time_rtc = rtc_get_counter_val() / RTC_TICKS_SECOND; // get time from internal RTC struct tm* time_tm = localtime(&time_rtc); // convert time printf("date: %d-%02d-%02d %02d:%02d:%02d\n", 1900 + time_tm->tm_year, time_tm->tm_mon, time_tm->tm_mday, time_tm->tm_hour, time_tm->tm_min, time_tm->tm_sec); } else { // date and time provided, set it const char* malformed = "date and time malformed, expecting YYYY-MM-DD HH:MM:SS\n"; struct tm time_tm; // to store the parsed date time if (strlen(datetime) != (4 + 1 + 2 + 1 + 2) + 1 + (2 + 1 + 2 + 1 + 2)) { // verify date/time is long enough printf(malformed); return; } if (!(isdigit((int8_t)datetime[0]) && isdigit((int8_t)datetime[1]) && isdigit((int8_t)datetime[2]) && isdigit((int8_t)datetime[3]) && '-' == datetime[4] && isdigit((int8_t)datetime[5]) && isdigit((int8_t)datetime[6]) && '-' == datetime[7] && isdigit((int8_t)datetime[8]) && isdigit((int8_t)datetime[9]) && ' ' == datetime[10] && isdigit((int8_t)datetime[11]) && isdigit((int8_t)datetime[12]) && ':' == datetime[13] && isdigit((int8_t)datetime[14]) && isdigit((int8_t)datetime[15]) && ':' == datetime[16] && isdigit((int8_t)datetime[17]) && isdigit((int8_t)datetime[18]))) { // verify format (good enough to not fail parsing) printf(malformed); return; } time_tm.tm_year = strtol(&datetime[0], NULL, 10) - 1900; // parse year time_tm.tm_mon = strtol(&datetime[5], NULL, 10); // parse month time_tm.tm_mday = strtol(&datetime[8], NULL, 10); // parse day time_tm.tm_hour = strtol(&datetime[11], NULL, 10); // parse hour time_tm.tm_min = strtol(&datetime[14], NULL, 10); // parse minutes time_tm.tm_sec = strtol(&datetime[17], NULL, 10); // parse seconds time_t time_rtc = mktime(&time_tm); // get back seconds time_start = time_rtc * RTC_TICKS_SECOND + (rtc_get_counter_val() - time_start); // update uptime with current date rtc_set_counter_val(time_rtc * RTC_TICKS_SECOND); // save date/time to internal RTC printf("date and time saved: %d-%02d-%02d %02d:%02d:%02d\n", 1900 + time_tm.tm_year, time_tm.tm_mon, time_tm.tm_mday, time_tm.tm_hour, time_tm.tm_min, time_tm.tm_sec); } } #endif static void command_reset(void* argument) { (void)argument; // we won't use the argument scb_reset_system(); // reset device while (true); // wait for the reset to happen } static void command_bootloader(void* argument) { (void)argument; // we won't use the argument // set DFU magic to specific RAM location __dfu_magic[0] = 'D'; __dfu_magic[1] = 'F'; __dfu_magic[2] = 'U'; __dfu_magic[3] = '!'; scb_reset_system(); // reset system (core and peripherals) while (true); // wait for the reset to happen } /** process user command * @param[in] str user command string (\0 ended) */ static void process_command(char* str) { // ensure actions are available if (NULL == menu_commands || 0 == LENGTH(menu_commands)) { return; } // don't handle empty lines if (!str || 0 == strlen(str)) { return; } bool command_handled = false; if (!command_handled) { command_handled = menu_handle_command(str, menu_commands, LENGTH(menu_commands)); // try if this is not a global command } if (!command_handled) { printf("command not recognized. enter help to list commands\n"); } } /** program entry point * this is the firmware function started by the micro-controller */ void main(void); void main(void) { rcc_clock_setup_in_hse_8mhz_out_72mhz(); // use 8 MHz high speed external clock to generate 72 MHz internal clock #if DEBUG // enable functionalities for easier debug DBGMCU_CR |= DBGMCU_CR_IWDG_STOP; // stop independent watchdog counter when code is halted DBGMCU_CR |= DBGMCU_CR_WWDG_STOP; // stop window watchdog counter when code is halted DBGMCU_CR |= DBGMCU_CR_STANDBY; // allow debug also in standby mode (keep digital part and clock powered) DBGMCU_CR |= DBGMCU_CR_STOP; // allow debug also in stop mode (keep clock powered) DBGMCU_CR |= DBGMCU_CR_SLEEP; // allow debug also in sleep mode (keep clock powered) #else // setup watchdog to reset in case we get stuck (i.e. when an error occurred) iwdg_set_period_ms(WATCHDOG_PERIOD); // set independent watchdog period iwdg_start(); // start independent watchdog #endif board_setup(); // setup board usb_cdcacm_setup(); // setup USB CDC ACM (for printing) printf("\nwelcome to the CuVoodoo USB cable tester\n"); // print welcome message #if DEBUG // show reset cause if (RCC_CSR & (RCC_CSR_LPWRRSTF | RCC_CSR_WWDGRSTF | RCC_CSR_IWDGRSTF | RCC_CSR_SFTRSTF | RCC_CSR_PORRSTF | RCC_CSR_PINRSTF)) { puts("reset cause(s):"); if (RCC_CSR & RCC_CSR_LPWRRSTF) { puts(" low-power"); } if (RCC_CSR & RCC_CSR_WWDGRSTF) { puts(" window-watchdog"); } if (RCC_CSR & RCC_CSR_IWDGRSTF) { puts(" independent-watchdog"); } if (RCC_CSR & RCC_CSR_SFTRSTF) { puts(" software"); } if (RCC_CSR & RCC_CSR_PORRSTF) { puts(" POR/PDR"); } if (RCC_CSR & RCC_CSR_PINRSTF) { puts(" pin"); } putc('\n'); RCC_CSR |= RCC_CSR_RMVF; // clear reset flags } #endif #if !(DEBUG) // show watchdog information printf("setup watchdog: %.2fs", WATCHDOG_PERIOD / 1000.0); if (FLASH_OBR & FLASH_OBR_OPTERR) { puts(" (option bytes not set in flash: software wachtdog used, not automatically started at reset)\n"); } else if (FLASH_OBR & FLASH_OBR_WDG_SW) { puts(" (software watchdog used, not automatically started at reset)\n"); } else { puts(" (hardware watchdog used, automatically started at reset)\n"); } #endif // setup RTC rtc_auto_awake(RCC_HSE, 8000000 / 128 / RTC_TICKS_SECOND - 1); // use High Speed External oscillator (8 MHz / 128) as RTC clock (VBAT can't be used to keep the RTC running) rtc_auto_awake(RCC_HSE, 8000000 / 128 - 1); // use High Speed External oscillator (8 MHz / 128) as RTC clock (VBAT can't be used to keep the RTC running) rtc_interrupt_enable(RTC_SEC); // enable RTC interrupt on "seconds" nvic_enable_irq(NVIC_RTC_IRQ); // allow the RTC to interrupt time_start = rtc_get_counter_val(); // get start time from internal RTC // setup USB connectors gpio_primary_remap(AFIO_MAPR_SWJ_CFG_JTAG_OFF_SW_ON, 0); // only use SWD and reuse JTAG pins rcc_periph_clock_enable(RCC_GPIOA | RCC_GPIOB | RCC_GPIOC | RCC_GPIOD | RCC_GPIOE | RCC_GPIOF | RCC_GPIOG); // enable clock to all GPIO port domain since we use them all usb_pins_float(); // pull all pins to floating // setup terminal terminal_prefix = ""; // set default prefix terminal_process = &process_command; // set central function to process commands terminal_setup(); // start terminal // start main loop bool action = false; // if an action has been performed don't go to sleep while (true) { // infinite loop iwdg_reset(); // kick the dog if (user_input_available) { // user input is available action = true; // action has been performed led_toggle(); // toggle LED char c = user_input_get(); // store receive character terminal_send(c); // send received character to terminal } if (rtc_internal_tick_flag) { // the internal RTC ticked rtc_internal_tick_flag = false; // reset flag action = true; // action has been performed if (0 == (rtc_get_counter_val() % RTC_TICKS_SECOND)) { // one seond has passed led_toggle(); // toggle LED (good to indicate if main function is stuck) } } if (action) { // go to sleep if nothing had to be done, else recheck for activity action = false; } else { __WFI(); // go to sleep } } // main loop } /** @brief interrupt service routine called when tick passed on RTC */ void rtc_isr(void) { rtc_clear_flag(RTC_SEC); // clear flag rtc_internal_tick_flag = true; // notify to show new time }