/* This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** CuVoodoo USB cable tester firmware * @file * @author King Kévin * @date 2016-2020 */ /* standard libraries */ #include // standard integer types #include // standard utilities #include // string utilities #include // date/time utilities #include // utilities to check chars /* STM32 (including CM3) libraries */ #include // Cortex M3 utilities #include // vector table definition #include // interrupt utilities #include // general purpose input output library #include // real-time control clock library #include // external interrupt utilities #include // real time clock utilities #include // independent watchdog utilities #include // debug utilities #include // design utilities #include // flash utilities /* own libraries */ #include "global.h" // board definitions #include "print.h" // printing utilities #include "usb_cdcacm.h" // USB CDC ACM utilities #include "terminal.h" // handle the terminal interface #include "menu.h" // menu utilities #include "usb_cables.h" // USB cables definition #include "lcd_hd44780.h" // LCD utilities /** watchdog period in ms */ #define WATCHDOG_PERIOD 10000 /** set to 0 if the RTC is reset when the board is powered on, only indicates the uptime * set to 1 if VBAT can keep the RTC running when the board is unpowered, indicating the date and time */ #define RTC_DATE_TIME 0 /** number of RTC ticks per second * @note use integer divider of oscillator to keep second precision */ #define RTC_TICKS_SECOND 4 /** RTC time when device is started */ static time_t time_start = 0; /** @defgroup main_flags flag set in interrupts to be processed in main task * @{ */ volatile bool rtc_internal_tick_flag = false; /**< flag set when internal RTC ticked */ /** @} */ size_t putc(char c) { size_t length = 0; // number of characters printed static char last_c = 0; // to remember on which character we last sent if ('\n' == c) { // send carriage return (CR) + line feed (LF) newline for each LF if ('\r' != last_c) { // CR has not already been sent usb_cdcacm_putchar('\r'); // send CR over USB length++; // remember we printed 1 character } } usb_cdcacm_putchar(c); // send byte over USB length++; // remember we printed 1 character last_c = c; // remember last character return length; // return number of characters printed } /** put all pins of all connectors to float */ static void usb_pins_float(void) { usb_cables_connectors_float(usb_connectors, LENGTH(usb_connectors)); // put every pin of every connector in floating mode } /** display available commands * @param[in] argument no argument required */ static void command_help(void* argument); /** show software and hardware version * @param[in] argument no argument required */ static void command_version(void* argument); /** show uptime * @param[in] argument no argument required */ static void command_uptime(void* argument); #if RTC_DATE_TIME /** show date and time * @param[in] argument date and time to set */ static void command_datetime(void* argument); #endif /** reset board * @param[in] argument no argument required */ static void command_reset(void* argument); /** switch to DFU bootloader * @param[in] argument no argument required */ static void command_bootloader(void* argument); /** test USB connectors intra-connections * @param[in] argument no argument required */ static void command_intra(void* argument) { (void)argument; // we won't use the argument usb_pins_float(); // start with all pins in safe floating state printf("= intra-connector check =\n"); for (uint8_t connector = 0; connector < LENGTH(usb_connectors); connector++) { // test from every connector printf("- %s -\n", usb_connectors[connector]->name); bool loaded = usb_cables_check_load(usb_connectors[connector]); if (loaded) { printf("there is %s load on the connector\n", loaded ? "a" : "no"); } usb_cables_check_intra(usb_connectors[connector], NULL); } usb_pins_float(); // put all pins back in safe floating state } /** test USB connectors inter-connections * @param[in] argument no argument required */ static void command_inter(void* argument) { (void)argument; // we won't use the argument usb_pins_float(); // start with all pins in safe floating state // step 1: find which connectors are connected printf("= inter-connector check =\n"); usb_cables_check_inter(usb_connectors, LENGTH(usb_connectors), NULL); usb_pins_float(); // put all pins back in safe floating state } /** test USB cables * @param[in] argument no argument required */ static void command_cables(void* argument) { // get cable number uint8_t cable_i = 0xff; if (argument) { cable_i = *(uint32_t*)argument; if (cable_i >= LENGTH(usb_cables)) { printf("cable number %u out of range 0-%u\n", cable_i, LENGTH(usb_cables) - 1); return; } } (void)argument; // we won't use the argument usb_pins_float(); // start with all pins in safe floating state // step 2: check for known cable configuration printf("= cable check =\n"); for (uint8_t cable = 0; cable < LENGTH(usb_cables); cable++) { // test every cable if (0xff == cable_i || cable == cable_i) { uint8_t pair_defined, pair_undefined; bool result = usb_cables_check_cable(&usb_cables[cable], &pair_defined, &pair_undefined, false); printf("%02u %s: %s (defined=%u/%u, undefined=%u)\n", cable, result ? "OK" : "KO", usb_cables[cable].name, pair_defined, usb_cables[cable].pin_pairs_nb, pair_undefined); } } usb_pins_float(); // put all pins back in safe floating state } /** find out which USB cable is connected * @param[in] argument no argument required */ static void command_find(void* argument) { (void)argument; // we won't use the argument printf("= cable finder =\n"); usb_pins_float(); // start with all pins in safe floating state // figure out which connectors are used bool connected[LENGTH(usb_connectors)]; //usb_cables_check_inter(usb_connectors, LENGTH(usb_connectors), connected); usb_cables_check_ground(usb_connectors, LENGTH(usb_connectors), connected); uint8_t connected_nb = 0; printf("connectors:\n"); for (uint8_t i = 0; i < LENGTH(connected); i++) { if (connected[i]) { printf("- %s", usb_connectors[i]->name); if (usb_connectors[i]->variant) { printf(" (%s)", usb_connectors[i]->variant); } putc('\n'); connected_nb++; } } // find cable with matching connector set uint8_t matches = 0; // number of cables matching the connector set bool cable_connectors[LENGTH(usb_cables)]; // which cable matches the connector set for (uint8_t cable = 0; cable < LENGTH(usb_cables); cable++) { cable_connectors[cable] = false; // start with not matching, and test if it matches // ensure we have the same number of connections as the cable if (usb_cables[cable].connectors_nb != connected_nb) { continue; } // ensure all the connectors we have are also in the cable bool match = true; for (uint8_t i = 0; i < LENGTH(usb_connectors) && match; i++) { if (!connected[i]) { continue; } bool found = false; for (uint8_t j = 0; j < usb_cables[cable].connectors_nb; j++) { if (usb_connectors[i] == usb_cables[cable].connectors[j]) { found = true; } } if (!found) { match = false; } } // ensure we also have all the connectors which are in the cable for (uint8_t i = 0; i < usb_cables[cable].connectors_nb && match; i++) { bool found = false; for (uint8_t j = 0; j < LENGTH(usb_connectors); j++) { if (!connected[j]) { continue; } if (usb_connectors[j] == usb_cables[cable].connectors[i]) { found = true; } } if (!found) { match = false; } } cable_connectors[cable] = match; if (match) { matches++; } } // test how well the pins of the cables with matching connectors match printf("found %u cable(s) with matching connectors%s\n", matches, matches > 0 ? ":" : ""); if (0 == matches) { return; } matches = 0; // number of matching cables uint8_t cable_score[LENGTH(usb_cables)]; // how close the cable matches (0 = perfect match) for (uint8_t cable = 0; cable < LENGTH(usb_cables); cable++) { cable_score[cable] = 0xff; // initialise with worst score if (!cable_connectors[cable]) { // skip if the cable connectors do not match continue; } // match cable uint8_t pair_defined, pair_undefined; bool match = usb_cables_check_cable(&usb_cables[cable], &pair_defined, &pair_undefined, false); printf("- %s: %s (defined=%u/%u, undefined=%u)\n", match ? "OK" : "KO", usb_cables[cable].name, pair_defined, usb_cables[cable].pin_pairs_nb, pair_undefined); cable_score[cable] = usb_cables[cable].pin_pairs_nb - pair_defined + pair_undefined; // calculate score if (match) { matches++; } } printf("%u perfect matching cable(s) found\n", matches); // find best matching cable uint8_t best_score = 0xff; for (uint8_t cable = 0; cable < LENGTH(usb_cables); cable++) { if (!cable_connectors[cable]) { // skip if the cable connectors do not match continue; } if (cable_score[cable] < best_score) { best_score = cable_score[cable]; } } printf("%smatching cable(s):\n", 0 == best_score ? "" : "closest "); for (uint8_t cable = 0; cable < LENGTH(usb_cables); cable++) { if (!cable_connectors[cable]) { // skip if the cable connectors do not match continue; } if (cable_score[cable] == best_score) { // print cable connections printf("- %s\n", usb_cables[cable].name); usb_cables_check_cable(&usb_cables[cable], NULL, NULL, true); // test if there is a load bool loaded = false; for (uint8_t connector = 0; connector < usb_cables[cable].connectors_nb; connector++) { loaded |= usb_cables_check_load(usb_cables[cable].connectors[connector]); } printf("there is %s load on the cable\n", loaded ? "a" : "no"); } } usb_pins_float(); // put all pins back in safe floating state } /** set or show pin value * @param[in] argument pin number and level */ static void command_pin(void* argument) { char* pin_str = NULL; // to parse the pin number char* pin_level = NULL; // to parse the pin level const char* delimiter = " "; // words are separated by spaces uint8_t pin_nb = 0; // parsed pin number if (argument) { // pin number and level might have been provided pin_str = strtok((char*)argument, delimiter); // get pin number string if (pin_str) { pin_nb = strtoul(pin_str, NULL, 10); // parse pin number pin_level = strtok(NULL, delimiter); // get pin level } } if (pin_str && pin_nb >= LENGTH(usb_pins)) { printf("pin %u out of range 0-%u\n", pin_nb, LENGTH(usb_pins) - 1); return; } // set pin if (pin_str && pin_level) { const struct usb_pin_t* usb_pin = &usb_pins[pin_nb]; switch (pin_level[0]) { case 'h': gpio_set(usb_pin->port, usb_pin->pin); gpio_set_mode(usb_pin->port, GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, usb_pin->pin); break; case 'H': gpio_set(usb_pin->port, usb_pin->pin); gpio_set_mode(usb_pin->port, GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, usb_pin->pin); break; case 'l': gpio_clear(usb_pin->port, usb_pin->pin); gpio_set_mode(usb_pin->port, GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, usb_pin->pin); break; case 'L': gpio_clear(usb_pin->port, usb_pin->pin); gpio_set_mode(usb_pin->port, GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, usb_pin->pin); break; case 'x': default: gpio_set_mode(usb_pin->port, GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, usb_pin->pin); } } // print pin level printf("pin state (H: out high, L: out low, h in high, l in low, x in floating) and actual level\n"); // output meaning uint8_t pin_i = 0; // current pin for (uint8_t connector = 0; connector < LENGTH(usb_connectors); connector++) { // test every connector bool connector_print = (!pin_str || (pin_str && pin_nb >= pin_i && pin_nb < pin_i + usb_connectors[connector]->pins_nb)); // if a pin information will be printed for this connector if (connector_print) { printf("%s", usb_connectors[connector]->name); if (usb_connectors[connector]->variant) { printf(" (%s)", usb_connectors[connector]->variant); } printf(":\n"); } for (uint8_t pin = 0; pin < usb_connectors[connector]->pins_nb; pin++) { // test every pin const struct usb_pin_t* usb_pin = &usb_pins[usb_connectors[connector]->pins[pin]]; // get pin if (!pin_str || pin_nb == pin_i) { // show pin state printf("%03u %s: ", pin_i, usb_pin->name); // print USB pin number uint8_t pin_pos = __builtin_ctz(usb_pin->pin); // get the pin number (position of the 1 in the 16-bit) uint8_t offset = (pin_pos < 8) ? (pin_pos * 4) : ((pin_pos - 8) * 4); // get pin offset within port uint8_t mode = (((pin_pos < 8) ? GPIO_CRL(usb_pin->port) : GPIO_CRH(usb_pin->port)) >> (offset + 0)) & 0x3; // get mode from pin for port uint8_t conf = (((pin_pos < 8) ? GPIO_CRL(usb_pin->port) : GPIO_CRH(usb_pin->port)) >> (offset + 2)) & 0x3; // get configuration from pin for port // show set value if (0 == mode) { // pin configured as input if (1 == conf) { // pin is in floating configuration putc('x'); } else if (0 == (GPIO_ODR(usb_pin->port) & usb_pin->pin)) { putc('l'); } else { putc('h'); } } else { // pin configured as output if (0 == (GPIO_ODR(usb_pin->port) & usb_pin->pin)) { putc('L'); } else { putc('H'); } } // show actual value if (gpio_get(usb_pin->port, usb_pin->pin)) { putc(0 == mode ? 'h': 'H'); } else { putc(0 == mode ? 'l': 'L'); } putc('\n'); } pin_i++; // increase global pin number } // pin if (connector_print) { putc('\n'); // separate connectors for readability } } // connector } /** run self test to test board connection to connectors * @param[in] argument no argument required */ static void command_test(void* argument) { (void)argument; // we won't use the argument usb_pins_float(); // start with all pins in safe floating state printf("= test =\n"); printf("run test to check board connections\n"); printf("press any key to interrupt test\n\n"); // ensure all pins are floating printf("remove all cables from connectors\n"); bool float_errors = true; // to test if all pins are floating while (float_errors) { float_errors = false; // restart test for (uint8_t connector = 0; connector < LENGTH(usb_connectors); connector++) { // test every connector for (uint8_t pin = 0; pin < usb_connectors[connector]->pins_nb; pin++) { // test every pin const struct usb_pin_t* usb_pin = &usb_pins[usb_connectors[connector]->pins[pin]]; // get pin gpio_set_mode(usb_pin->port, GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, usb_pin->pin); // we will test if the input is floating by checking against a pull up and down gpio_set(usb_pin->port, usb_pin->pin); // pull up sleep_us(10); // wait for GPIO/line to settle bool high = (0 != gpio_get(usb_pin->port, usb_pin->pin)); // test if pin is high gpio_clear(usb_pin->port, usb_pin->pin); // pull down sleep_us(10); // wait for GPIO/line to settle bool low = (0 == gpio_get(usb_pin->port, usb_pin->pin)); // test if pin is low gpio_set_mode(usb_pin->port, GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, usb_pin->pin); // put back to floating if (high && low) { // pull up and down worked } else { // pull up or down did not work printf("%s ", usb_connectors[connector]->name); if (usb_connectors[connector]->variant) { printf("(%s) ", usb_connectors[connector]->variant); } printf("%s is not floating\n", usb_pin->name); // print erroneous pin float_errors = true; // remember there is an error } } // pin } // connector if (float_errors) { if (user_input_available) { // user interruption goto end; } sleep_ms(500); // wait a bit before retesting if (user_input_available) { // user interruption goto end; } } } // float_errors printf("all pins are floating\n\n"); // cables to test const struct usb_cable_t test_cables[] = { usb_cables[2], // A (host) - B 3.0 shielded cable usb_cables[5], // A (device) - B 3.0 shielded cable usb_cables[12], // A (host) - miniB 2.0 shielded cable usb_cables[19], // A (host) - microB 3.0 shielded cable usb_cables[23], // C (host) shunt usb_cables[24], // C (device) shunt }; for (uint8_t cable = 0; cable < LENGTH(test_cables); cable++) { printf("connect %s cable to connectors:\n", test_cables[cable].name); for (uint8_t connector = 0; connector < test_cables[cable].connectors_nb; connector++) { printf("- %s", usb_connectors[connector]->name); if (usb_connectors[connector]->variant) { printf(" (%s)", usb_connectors[connector]->variant); } putc('\n'); } bool cable_ok = false; // if the cable is connected while (!cable_ok) { // wait until all pin pairs of cable are connected uint8_t defined, undefined; // pair counting variables cable_ok = usb_cables_check_cable(&test_cables[cable], &defined, &undefined, true); // test cable if (!cable_ok && defined > 0) { // not all pairs are connected printf("connection issues: defined=%u/%u, undefined=%u\n", defined, test_cables[cable].pin_pairs_nb, undefined); // show issue summary } if (!cable_ok) { if (user_input_available) { // user interruption goto end; } sleep_ms(500); // wait a bit before retesting if (user_input_available) { // user interruption goto end; } } } printf("cable connections are OK\n\n"); } printf("all connectors are OK, the board is fine\n"); end: usb_pins_float(); // put pins back to safe state if (user_input_available) { printf("test interrupted\n"); while (user_input_available) { // test has been interrupted user_input_get(); // discard input } } } /** list of all supported commands */ static const struct menu_command_t menu_commands[] = { { .shortcut = 'h', .name = "help", .command_description = "display help", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_help, }, { .shortcut = 'V', .name = "version", .command_description = "show software and hardware version", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_version, }, { .shortcut = 'U', .name = "uptime", .command_description = "show uptime", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_uptime, }, #if RTC_DATE_TIME { .shortcut = 'D', .name = "date", .command_description = "show/set date and time", .argument = MENU_ARGUMENT_STRING, .argument_description = "[YYYY-MM-DD HH:MM:SS]", .command_handler = &command_datetime, }, #endif { .shortcut = 'R', .name = "reset", .command_description = "reset board", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_reset, }, { .shortcut = 'B', .name = "bootloader", .command_description = "reboot into DFU bootloader", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_bootloader, }, { .shortcut = 'a', .name = "intra", .command_description = "test connector intra-connection", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_intra, }, { .shortcut = 'e', .name = "inter", .command_description = "test connector inter-connection", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_inter, }, { .shortcut = 'c', .name = "cables", .command_description = "test cable(s)", .argument = MENU_ARGUMENT_UNSIGNED, .argument_description = "[nb]", .command_handler = &command_cables, }, { .shortcut = 'f', .name = "find", .command_description = "find cable", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_find, }, { .shortcut = 'p', .name = "pin", .command_description = "set/show pin level", .argument = MENU_ARGUMENT_STRING, .argument_description = "[nb] [H/L/h/l/x]", .command_handler = &command_pin, }, { .shortcut = 't', .name = "test", .command_description = "run board test", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_test, }, }; static void command_help(void* argument) { (void)argument; // we won't use the argument printf("available commands:\n"); menu_print_commands(menu_commands, LENGTH(menu_commands)); // print global commands } static void command_version(void* argument) { (void)argument; // we won't use the argument printf("firmware date: %04u-%02u-%02u\n", BUILD_YEAR, BUILD_MONTH, BUILD_DAY); // show firmware build date // get device identifier (DEV_ID) // 0x412: low-density, 16-32 kB flash // 0x410: medium-density, 64-128 kB flash // 0x414: high-density, 256-512 kB flash // 0x430: XL-density, 768-1024 kB flash // 0x418: connectivity puts("device family: "); switch (DBGMCU_IDCODE & DBGMCU_IDCODE_DEV_ID_MASK) { case 0: // this is a known issue document in STM32F10xxC/D/E Errata sheet, without workaround puts("unreadable\n"); break; case 0x412: puts("low-density\n"); break; case 0x410: puts("medium-density\n"); break; case 0x414: puts("high-density\n"); break; case 0x430: puts("XL-density\n"); break; case 0x418: puts("connectivity\n"); break; default: puts("unknown\n"); break; } // show flash size puts("flash size: "); if (0xffff == DESIG_FLASH_SIZE) { puts("unknown (probably a defective micro-controller\n"); } else { printf("%u KB\n", DESIG_FLASH_SIZE); } // display device identity printf("device id: %08x%08x%08x\n", DESIG_UNIQUE_ID0, DESIG_UNIQUE_ID1, DESIG_UNIQUE_ID2); } static void command_uptime(void* argument) { (void)argument; // we won't use the argument uint32_t uptime = (rtc_get_counter_val() - time_start) / RTC_TICKS_SECOND; // get time from internal RTC printf("uptime: %u.%02u:%02u:%02u\n", uptime / (24 * 60 * 60), (uptime / (60 * 60)) % 24, (uptime / 60) % 60, uptime % 60); } #if RTC_DATE_TIME static void command_datetime(void* argument) { char* datetime = (char*)argument; // argument is optional date time if (NULL == argument) { // no date and time provided, just show the current day and time time_t time_rtc = rtc_get_counter_val() / RTC_TICKS_SECOND; // get time from internal RTC struct tm* time_tm = localtime(&time_rtc); // convert time printf("date: %d-%02d-%02d %02d:%02d:%02d\n", 1900 + time_tm->tm_year, time_tm->tm_mon, time_tm->tm_mday, time_tm->tm_hour, time_tm->tm_min, time_tm->tm_sec); } else { // date and time provided, set it const char* malformed = "date and time malformed, expecting YYYY-MM-DD HH:MM:SS\n"; struct tm time_tm; // to store the parsed date time if (strlen(datetime) != (4 + 1 + 2 + 1 + 2) + 1 + (2 + 1 + 2 + 1 + 2)) { // verify date/time is long enough printf(malformed); return; } if (!(isdigit((int8_t)datetime[0]) && isdigit((int8_t)datetime[1]) && isdigit((int8_t)datetime[2]) && isdigit((int8_t)datetime[3]) && '-' == datetime[4] && isdigit((int8_t)datetime[5]) && isdigit((int8_t)datetime[6]) && '-' == datetime[7] && isdigit((int8_t)datetime[8]) && isdigit((int8_t)datetime[9]) && ' ' == datetime[10] && isdigit((int8_t)datetime[11]) && isdigit((int8_t)datetime[12]) && ':' == datetime[13] && isdigit((int8_t)datetime[14]) && isdigit((int8_t)datetime[15]) && ':' == datetime[16] && isdigit((int8_t)datetime[17]) && isdigit((int8_t)datetime[18]))) { // verify format (good enough to not fail parsing) printf(malformed); return; } time_tm.tm_year = strtol(&datetime[0], NULL, 10) - 1900; // parse year time_tm.tm_mon = strtol(&datetime[5], NULL, 10); // parse month time_tm.tm_mday = strtol(&datetime[8], NULL, 10); // parse day time_tm.tm_hour = strtol(&datetime[11], NULL, 10); // parse hour time_tm.tm_min = strtol(&datetime[14], NULL, 10); // parse minutes time_tm.tm_sec = strtol(&datetime[17], NULL, 10); // parse seconds time_t time_rtc = mktime(&time_tm); // get back seconds time_start = time_rtc * RTC_TICKS_SECOND + (rtc_get_counter_val() - time_start); // update uptime with current date rtc_set_counter_val(time_rtc * RTC_TICKS_SECOND); // save date/time to internal RTC printf("date and time saved: %d-%02d-%02d %02d:%02d:%02d\n", 1900 + time_tm.tm_year, time_tm.tm_mon, time_tm.tm_mday, time_tm.tm_hour, time_tm.tm_min, time_tm.tm_sec); } } #endif static void command_reset(void* argument) { (void)argument; // we won't use the argument scb_reset_system(); // reset device while (true); // wait for the reset to happen } static void command_bootloader(void* argument) { (void)argument; // we won't use the argument // set DFU magic to specific RAM location __dfu_magic[0] = 'D'; __dfu_magic[1] = 'F'; __dfu_magic[2] = 'U'; __dfu_magic[3] = '!'; scb_reset_system(); // reset system (core and peripherals) while (true); // wait for the reset to happen } /** process user command * @param[in] str user command string (\0 ended) */ static void process_command(char* str) { // ensure actions are available if (NULL == menu_commands || 0 == LENGTH(menu_commands)) { return; } // don't handle empty lines if (!str || 0 == strlen(str)) { return; } bool command_handled = false; if (!command_handled) { command_handled = menu_handle_command(str, menu_commands, LENGTH(menu_commands)); // try if this is not a global command } if (!command_handled) { printf("command not recognized. enter help to list commands\n"); } } /** program entry point * this is the firmware function started by the micro-controller */ void main(void); void main(void) { rcc_clock_setup_in_hse_8mhz_out_72mhz(); // use 8 MHz high speed external clock to generate 72 MHz internal clock #if DEBUG // enable functionalities for easier debug DBGMCU_CR |= DBGMCU_CR_IWDG_STOP; // stop independent watchdog counter when code is halted DBGMCU_CR |= DBGMCU_CR_WWDG_STOP; // stop window watchdog counter when code is halted DBGMCU_CR |= DBGMCU_CR_STANDBY; // allow debug also in standby mode (keep digital part and clock powered) DBGMCU_CR |= DBGMCU_CR_STOP; // allow debug also in stop mode (keep clock powered) DBGMCU_CR |= DBGMCU_CR_SLEEP; // allow debug also in sleep mode (keep clock powered) #else // setup watchdog to reset in case we get stuck (i.e. when an error occurred) iwdg_set_period_ms(WATCHDOG_PERIOD); // set independent watchdog period iwdg_start(); // start independent watchdog #endif board_setup(); // setup board usb_cdcacm_setup(); // setup USB CDC ACM (for printing) printf("\nwelcome to the CuVoodoo USB cable tester\n"); // print welcome message #if DEBUG // show reset cause if (RCC_CSR & (RCC_CSR_LPWRRSTF | RCC_CSR_WWDGRSTF | RCC_CSR_IWDGRSTF | RCC_CSR_SFTRSTF | RCC_CSR_PORRSTF | RCC_CSR_PINRSTF)) { puts("reset cause(s):"); if (RCC_CSR & RCC_CSR_LPWRRSTF) { puts(" low-power"); } if (RCC_CSR & RCC_CSR_WWDGRSTF) { puts(" window-watchdog"); } if (RCC_CSR & RCC_CSR_IWDGRSTF) { puts(" independent-watchdog"); } if (RCC_CSR & RCC_CSR_SFTRSTF) { puts(" software"); } if (RCC_CSR & RCC_CSR_PORRSTF) { puts(" POR/PDR"); } if (RCC_CSR & RCC_CSR_PINRSTF) { puts(" pin"); } putc('\n'); RCC_CSR |= RCC_CSR_RMVF; // clear reset flags } #endif #if !(DEBUG) // show watchdog information printf("setup watchdog: %.2fs", WATCHDOG_PERIOD / 1000.0); if (FLASH_OBR & FLASH_OBR_OPTERR) { puts(" (option bytes not set in flash: software wachtdog used, not automatically started at reset)\n"); } else if (FLASH_OBR & FLASH_OBR_WDG_SW) { puts(" (software watchdog used, not automatically started at reset)\n"); } else { puts(" (hardware watchdog used, automatically started at reset)\n"); } #endif // setup RTC rtc_auto_awake(RCC_HSE, 8000000 / 128 / RTC_TICKS_SECOND - 1); // use High Speed External oscillator (8 MHz / 128) as RTC clock (VBAT can't be used to keep the RTC running) rtc_auto_awake(RCC_HSE, 8000000 / 128 - 1); // use High Speed External oscillator (8 MHz / 128) as RTC clock (VBAT can't be used to keep the RTC running) rtc_interrupt_enable(RTC_SEC); // enable RTC interrupt on "seconds" nvic_enable_irq(NVIC_RTC_IRQ); // allow the RTC to interrupt time_start = rtc_get_counter_val(); // get start time from internal RTC // setup LCD display led_on(); // this actually power the I²C backpack and display lcd_hd44780_i2c_addr = 0x3f; if (lcd_hd44780_setup(true, false)) { lcd_hd44780_display_control(true, false, true); lcd_hd44780_write_line(false, "USB cable tester", 16); lcd_hd44780_write_line(true, "testing ...", 11); } else { printf("could not start LCD\n"); } // setup USB connectors gpio_primary_remap(AFIO_MAPR_SWJ_CFG_JTAG_OFF_SW_ON, 0); // only use SWD and reuse JTAG pins rcc_periph_clock_enable(RCC_GPIOA); // enable clock to all GPIO port domains since we use them all rcc_periph_clock_enable(RCC_GPIOB); // enable clock to all GPIO port domains since we use them all rcc_periph_clock_enable(RCC_GPIOC); // enable clock to all GPIO port domains since we use them all rcc_periph_clock_enable(RCC_GPIOD); // enable clock to all GPIO port domains since we use them all rcc_periph_clock_enable(RCC_GPIOE); // enable clock to all GPIO port domains since we use them all rcc_periph_clock_enable(RCC_GPIOF); // enable clock to all GPIO port domains since we use them all rcc_periph_clock_enable(RCC_GPIOG); // enable clock to all GPIO port domains since we use them all usb_pins_float(); // pull all pins to floating // setup terminal terminal_prefix = ""; // set default prefix terminal_process = &process_command; // set central function to process commands terminal_setup(); // start terminal // start main loop bool action = false; // if an action has been performed don't go to sleep while (true) { // infinite loop iwdg_reset(); // kick the dog if (user_input_available) { // user input is available action = true; // action has been performed //led_toggle(); // toggle LED char c = user_input_get(); // store receive character terminal_send(c); // send received character to terminal } if (rtc_internal_tick_flag) { // the internal RTC ticked rtc_internal_tick_flag = false; // reset flag action = true; // action has been performed //led_toggle(); // toggle LED (good to indicate if main function is stuck) } if (action) { // go to sleep if nothing had to be done, else recheck for activity action = false; } else { __WFI(); // go to sleep } } // main loop } /** @brief interrupt service routine called when tick passed on RTC */ void rtc_isr(void) { rtc_clear_flag(RTC_SEC); // clear flag rtc_internal_tick_flag = true; // notify to show new time }