/** USB DFU bootloader * @file * @author King Kévin * @copyright SPDX-License-Identifier: GPL-3.0-or-later * @date 2017-2019 */ /* standard libraries */ #include // standard integer types #include // boolean types /* STM32 (including CM3) libraries */ #include // vector table definition #include // clock utilities #include // GPIO utilities /* own libraries */ #include "global.h" // board definitions #include "usb_dfu.h" // USB DFU utilities /** bootloader entry point */ void main(void); void main(void) { // check of DFU mode is forced bool dfu_force = false; // to remember if DFU mode is forced // check if DFU magic DFU! has been written to RAM (e.g. by application to indicate we want to start the DFU bootloader) if ('D' == __dfu_magic[0] && 'F' == __dfu_magic[1] && 'U' == __dfu_magic[2] && '!' == __dfu_magic[3]) { // verify if the DFU magic is set dfu_force = true; // clear DFU magic __dfu_magic[0] = 0; __dfu_magic[1] = 0; __dfu_magic[2] = 0; __dfu_magic[3] = 0; } else if (0 == (RCC_CSR & 0xfc000000)) { // no reset flag present -> this was a soft reset using scb_reset_core() after clearing the flags using RCC_CSR_RMVF, this was the legacy way to start the DFU mode dfu_force = true; } else { // check if the force DFU mode input is set // disable SWJ pin to use as GPIO #if (defined(DFU_FORCE_PIN) && defined(DFU_FORCE_VALUE)) #if ((GPIO(B) == GPIO_PORT(DFU_FORCE_PIN)) && (GPIO(4) == GPIO_PIN(DFU_FORCE_PIN))) // JNTRST pin is used as DFU pin rcc_periph_clock_enable(RCC_AFIO); // enable clock for alternate function domain gpio_primary_remap(AFIO_MAPR_SWJ_CFG_FULL_SWJ_NO_JNTRST, 0); // keep SWJ enable bit don't use JNTRST #elif ((GPIO(B) == GPIO_PORT(DFU_FORCE_PIN)) && (GPIO(3) == GPIO_PIN(DFU_FORCE_PIN))) || ((GPIO(A) == GPIO_PORT(DFU_FORCE_PIN)) && (GPIO(15) == GPIO_PIN(DFU_FORCE_PIN))) // JTAG but not SWD pin used as DFU pin rcc_periph_clock_enable(RCC_AFIO); // enable clock for alternate function domain gpio_primary_remap(AFIO_MAPR_SWJ_CFG_JTAG_OFF_SW_ON, 0); // disable JTAG but keep SWD #elif ((GPIO(A) == GPIO_PORT(DFU_FORCE_PIN)) && (GPIO(14) == GPIO_PIN(DFU_FORCE_PIN))) || ((GPIO(A) == GPIO_PORT(DFU_FORCE_PIN)) && (GPIO(13) == GPIO_PIN(DFU_FORCE_PIN))) // JTAG and SWD pin used as DFU pin rcc_periph_clock_enable(RCC_AFIO); // enable clock for alternate function domain gpio_primary_remap(AFIO_MAPR_SWJ_CFG_JTAG_OFF_SW_OFF, 0); // disable JTAG and SWD #endif // DFU_FORCE_PIN rcc_periph_clock_enable(GPIO_RCC(DFU_FORCE_PIN)); // enable clock for GPIO domain gpio_set_mode(GPIO_PORT(DFU_FORCE_PIN), GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, GPIO_PIN(DFU_FORCE_PIN)); // set GPIO to input // pull on the opposite of the expected value #if (DFU_FORCE_VALUE == 1) gpio_clear(GPIO_PORT(DFU_FORCE_PIN), GPIO_PIN(DFU_FORCE_PIN)); // pull down to be able to detect when tied to high if (gpio_get(GPIO_PORT(DFU_FORCE_PIN), GPIO_PIN(DFU_FORCE_PIN))) { // check if output is set to the value to force DFU mode #else gpio_set(GPIO_PORT(DFU_FORCE_PIN), GPIO_PIN(DFU_FORCE_PIN)); // pull up to be able to detect when tied to low if (0 == gpio_get(GPIO_PORT(DFU_FORCE_PIN), GPIO_PIN(DFU_FORCE_PIN))) { // check if output is set to the value to force DFU mode #endif // DFU_FORCE_VALUE dfu_force = true; // DFU mode forced } #endif // defined(DFU_FORCE_PIN) } // start application if valid /* the application starts with the vector table * the first entry in the vector table is the initial stack pointer (SP) address * the stack will be placed in RAM * on STM32F1xx SRAM begins at 0x2000 0000, and on STM32F103xx there is up to 96 KB of RAM (0x18000). * since the stack grown "downwards" it should start at the end of the RAM: max 0x2001 8000 * if the SP is not in this range (e.g. flash has been erased) there is no valid application * the second entry in the vector table is the reset address, corresponding to the application start */ volatile uint32_t* application = (uint32_t*)&__application_beginning; // get the value of the application address symbol (use a register instead on the stack since the stack pointer will be changed) if (!dfu_force && (((*application) & 0xFFFE0000) == 0x20000000)) { // application at address seems valid SCB_VTOR = (volatile uint32_t)(application); // set vector table to application vector table (store at the beginning of the application) __asm__ volatile ("MSR msp,%0" : :"r"(*application)); // set stack pointer to address provided in the beginning of the application (loaded into a register first) (*(void(**)(void))((uint32_t)application + 4))(); // start application (by jumping to the reset function which address is stored as second entry of the vector table) } rcc_clock_setup_in_hse_8mhz_out_72mhz(); // start main clock board_setup(); // setup board to control LED led_on(); // indicate bootloader started #if defined(BUSVOODOO) led_toggle(); // switch from blue to red LED #endif usb_dfu_setup(); // setup USB DFU for firmware upload usb_dfu_start(); // run DFU mode }