/** YouGotParcel firmware * @file * @author King Kévin * @copyright SPDX-License-Identifier: GPL-3.0-or-later * @date 2016-2020 */ /* standard libraries */ #include // standard integer types #include // standard utilities #include // string utilities #include // date/time utilities #include // utilities to check chars /* STM32 (including CM3) libraries */ #include // Cortex M3 utilities #include // vector table definition #include // interrupt utilities #include // general purpose input output library #include // real-time control clock library #include // external interrupt utilities #include // real time clock utilities #include // independent watchdog utilities #include // debug utilities #include // design utilities #include // flash utilities /* own libraries */ #include "global.h" // board definitions #include "print.h" // printing utilities #if !defined(STLINKV2) #include "uart.h" // USART utilities #endif #include "usb_cdcacm.h" // USB CDC ACM utilities #include "terminal.h" // handle the terminal interface #include "menu.h" // menu utilities #include "radio_sx172x.h" // LoRa module utilities /** watchdog period in ms */ #define WATCHDOG_PERIOD 10000 /** set to 0 if the RTC is reset when the board is powered on, only indicates the uptime * set to 1 if VBAT can keep the RTC running when the board is unpowered, indicating the date and time */ #if defined(CORE_BOARD) #define RTC_DATE_TIME 1 #else #define RTC_DATE_TIME 0 #endif /** number of RTC ticks per second * @note use integer divider of oscillator to keep second precision */ #define RTC_TICKS_SECOND 4 /** RTC time when device is started */ static time_t time_start = 0; /** @defgroup main_flags flag set in interrupts to be processed in main task * @{ */ static volatile bool rtc_internal_tick_flag = false; /**< flag set when internal RTC ticked */ static volatile bool radio_sx172x_irq_flag = false; /**< interrupt flag for the LoRa module */ static volatile bool keep_alive_flag = false; /**< periodic wake up to show current status */ static volatile bool lid_flag = false; /**< flag set when post box lid is opened */ static volatile bool door_flag = false; /**< flag set when post box door is opened */ /** @} */ /** time before sending/checking for keep alive, in RTC ticks */ #define KEEP_ALIVE_PERIOD (RTC_TICKS_SECOND * 60 * 15) /** the pin to decide the role of this device: if it should transmit (connected to ground), or receive constantly (open) */ #define ROLE_PIN PB8 /** DIO0 pin which will be used as interrupt from the LoRa module */ #define RADIO_SX172X_GPIO_IRQ PB6 /** frequency for the LoRa communication, in Hz */ #define LORA_FREQ 447.681E6 /** the common pin of the lid switch or LED anode */ #define LID_COMMON PB10 /** the normally open pin of the lid switch or LED cathode */ #define LID_NO PB1 /** value of message when lid is opened */ #define LID_VALUE 0xaa /** the common pin of the door switch or LED anode */ #define DOOR_COMMON PA7 /** the normally open pin of the door switch or LED cathode */ #define DOOR_NO PB0 /** value of message when door is opened */ #define DOOR_VALUE 0x55 /** maximum number of missed messaged before we indicate communication failed */ #define MAX_MISSED 5 /** if this device will transmit or receive */ static bool role_transmit = false; size_t putc(char c) { size_t length = 0; // number of characters printed static char last_c = 0; // to remember on which character we last sent if ('\n' == c) { // send carriage return (CR) + line feed (LF) newline for each LF if ('\r' != last_c) { // CR has not already been sent #if !defined(STLINKV2) uart_putchar_nonblocking('\r'); // send CR over USART #endif if (!role_transmit || DEBUG) { usb_cdcacm_putchar('\r'); // send CR over USB } length++; // remember we printed 1 character } } #if !defined(STLINKV2) uart_putchar_nonblocking(c); // send byte over USART #endif if (!role_transmit || DEBUG) { usb_cdcacm_putchar(c); // send byte over USB } length++; // remember we printed 1 character last_c = c; // remember last character return length; // return number of characters printed } /** display available commands * @param[in] argument no argument required */ static void command_help(void* argument); /** show software and hardware version * @param[in] argument no argument required */ static void command_version(void* argument); /** show uptime * @param[in] argument no argument required */ static void command_uptime(void* argument); #if RTC_DATE_TIME /** show date and time * @param[in] argument date and time to set */ static void command_datetime(void* argument); #endif /** reset board * @param[in] argument no argument required */ static void command_reset(void* argument); /** switch to DFU bootloader * @param[in] argument no argument required */ static void command_bootloader(void* argument); static void command_scan(void* argument) { (void)argument; // we won't use the argument printf("scanning band:\n"); const uint8_t mode = radio_sx172x_read_register(RADIO_SX172X_REG_OP_MODE); // backup original mode uint32_t frf = (radio_sx172x_read_register(RADIO_SX172X_REG_FRF_MSB) << 8) + (radio_sx172x_read_register(RADIO_SX172X_REG_FRF_MID) << 8) + (radio_sx172x_read_register(RADIO_SX172X_REG_FRF_LSB) << 0); // backup frequency for (uint32_t freq = 0x690000; freq < 0x708000; freq += 100) { // 0x690000 = 420 MHz, 0x708000 = 450 MHz radio_sx172x_write_register(RADIO_SX172X_REG_OP_MODE, (mode & 0xf8) | 1); // go to standby mode to change frequency radio_sx172x_write_register(RADIO_SX172X_REG_FRF_MSB, (uint8_t)(freq >> 16)); // set frequency radio_sx172x_write_register(RADIO_SX172X_REG_FRF_MID, (uint8_t)(freq >> 8)); // set frequency radio_sx172x_write_register(RADIO_SX172X_REG_FRF_LSB, (uint8_t)(freq >> 0)); // set frequency radio_sx172x_write_register(RADIO_SX172X_REG_OP_MODE, (mode & 0xf8) | 5); // start continuous listening sleep_ms(100); // wait a be to get measurements const int16_t rssi = -164 + radio_sx172x_read_register(RADIO_SX172X_REG_LORA_RSSI_VALUE); printf("frequency: %.03f MHz (%+x), RSSI: %d dBm\n", freq * 32E6 / (1 << 19) / 1E6, freq, rssi); } radio_sx172x_write_register(RADIO_SX172X_REG_OP_MODE, (mode & 0xf8) | 1); // go to standby mode to change frequency radio_sx172x_write_register(RADIO_SX172X_REG_FRF_MSB, (uint8_t)(frf >> 16)); // set original frequency radio_sx172x_write_register(RADIO_SX172X_REG_FRF_MID, (uint8_t)(frf >> 8)); // set original frequency radio_sx172x_write_register(RADIO_SX172X_REG_FRF_LSB, (uint8_t)(frf >> 0)); // set original frequency radio_sx172x_write_register(RADIO_SX172X_REG_OP_MODE, mode); // start original mode } /** list of all supported commands */ static const struct menu_command_t menu_commands[] = { { .shortcut = 'h', .name = "help", .command_description = "display help", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_help, }, { .shortcut = 'v', .name = "version", .command_description = "show software and hardware version", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_version, }, { .shortcut = 'u', .name = "uptime", .command_description = "show uptime", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_uptime, }, #if RTC_DATE_TIME { .shortcut = 'd', .name = "date", .command_description = "show/set date and time", .argument = MENU_ARGUMENT_STRING, .argument_description = "[YYYY-MM-DD HH:MM:SS]", .command_handler = &command_datetime, }, #endif { .shortcut = 'r', .name = "reset", .command_description = "reset board", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_reset, }, { .shortcut = 'b', .name = "bootloader", .command_description = "reboot into DFU bootloader", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_bootloader, }, { .shortcut = 's', .name = "scan", .command_description = "get RSSI for RF band", .argument = MENU_ARGUMENT_NONE, .argument_description = NULL, .command_handler = &command_scan, }, }; static void command_help(void* argument) { (void)argument; // we won't use the argument printf("available commands:\n"); menu_print_commands(menu_commands, LENGTH(menu_commands)); // print global commands } static void command_version(void* argument) { (void)argument; // we won't use the argument printf("firmware date: %04u-%02u-%02u\n", BUILD_YEAR, BUILD_MONTH, BUILD_DAY); // show firmware build date const uint16_t dev_id = DBGMCU_IDCODE & DBGMCU_IDCODE_DEV_ID_MASK; const uint16_t rev_id = DBGMCU_IDCODE >> 16; printf("MCU_ID: DEV_ID=0x%03x REV_ID=0x%04x\n", dev_id, rev_id); // show flash size puts("flash size: "); if (0xffff == DESIG_FLASH_SIZE) { puts("unknown (probably a defective micro-controller\n"); } else { printf("%u KB\n", DESIG_FLASH_SIZE); } // display device identity printf("device id: %08x%08x%04x%04x\n", DESIG_UNIQUE_ID2, DESIG_UNIQUE_ID1, DESIG_UNIQUE_ID0 & 0xffff, DESIG_UNIQUE_ID0 >> 16); printf("CPUID: 0x%08x\n", SCB_CPUID); } static void command_uptime(void* argument) { (void)argument; // we won't use the argument const uint32_t uptime = (rtc_get_counter_val() - time_start) / RTC_TICKS_SECOND; // get time from internal RTC printf("uptime: %u.%02u:%02u:%02u\n", uptime / (24 * 60 * 60), (uptime / (60 * 60)) % 24, (uptime / 60) % 60, uptime % 60); } #if RTC_DATE_TIME static void command_datetime(void* argument) { char* datetime = (char*)argument; // argument is optional date time if (NULL == argument) { // no date and time provided, just show the current day and time time_t time_rtc = rtc_get_counter_val() / RTC_TICKS_SECOND; // get time from internal RTC struct tm* time_tm = localtime(&time_rtc); // convert time printf("date: %d-%02d-%02d %02d:%02d:%02d\n", 1900 + time_tm->tm_year, time_tm->tm_mon, time_tm->tm_mday, time_tm->tm_hour, time_tm->tm_min, time_tm->tm_sec); } else { // date and time provided, set it const char* malformed = "date and time malformed, expecting YYYY-MM-DD HH:MM:SS\n"; struct tm time_tm; // to store the parsed date time if (strlen(datetime) != (4 + 1 + 2 + 1 + 2) + 1 + (2 + 1 + 2 + 1 + 2)) { // verify date/time is long enough printf(malformed); return; } if (!(isdigit((int8_t)datetime[0]) && isdigit((int8_t)datetime[1]) && isdigit((int8_t)datetime[2]) && isdigit((int8_t)datetime[3]) && '-' == datetime[4] && isdigit((int8_t)datetime[5]) && isdigit((int8_t)datetime[6]) && '-' == datetime[7] && isdigit((int8_t)datetime[8]) && isdigit((int8_t)datetime[9]) && ' ' == datetime[10] && isdigit((int8_t)datetime[11]) && isdigit((int8_t)datetime[12]) && ':' == datetime[13] && isdigit((int8_t)datetime[14]) && isdigit((int8_t)datetime[15]) && ':' == datetime[16] && isdigit((int8_t)datetime[17]) && isdigit((int8_t)datetime[18]))) { // verify format (good enough to not fail parsing) printf(malformed); return; } time_tm.tm_year = strtol(&datetime[0], NULL, 10) - 1900; // parse year time_tm.tm_mon = strtol(&datetime[5], NULL, 10); // parse month time_tm.tm_mday = strtol(&datetime[8], NULL, 10); // parse day time_tm.tm_hour = strtol(&datetime[11], NULL, 10); // parse hour time_tm.tm_min = strtol(&datetime[14], NULL, 10); // parse minutes time_tm.tm_sec = strtol(&datetime[17], NULL, 10); // parse seconds time_t time_rtc = mktime(&time_tm); // get back seconds time_start = time_rtc * RTC_TICKS_SECOND + (rtc_get_counter_val() - time_start); // update uptime with current date rtc_set_counter_val(time_rtc * RTC_TICKS_SECOND); // save date/time to internal RTC printf("date and time saved: %d-%02d-%02d %02d:%02d:%02d\n", 1900 + time_tm.tm_year, time_tm.tm_mon, time_tm.tm_mday, time_tm.tm_hour, time_tm.tm_min, time_tm.tm_sec); } } #endif static void command_reset(void* argument) { (void)argument; // we won't use the argument scb_reset_system(); // reset device while (true); // wait for the reset to happen } static void command_bootloader(void* argument) { (void)argument; // we won't use the argument // set DFU magic to specific RAM location __dfu_magic[0] = 'D'; __dfu_magic[1] = 'F'; __dfu_magic[2] = 'U'; __dfu_magic[3] = '!'; scb_reset_system(); // reset system (core and peripherals) while (true); // wait for the reset to happen } /** process user command * @param[in] str user command string (\0 ended) */ static void process_command(char* str) { // ensure actions are available if (NULL == menu_commands || 0 == LENGTH(menu_commands)) { return; } // don't handle empty lines if (!str || 0 == strlen(str)) { return; } bool command_handled = false; if (!command_handled) { command_handled = menu_handle_command(str, menu_commands, LENGTH(menu_commands)); // try if this is not a global command } if (!command_handled) { printf("command not recognized. enter help to list commands\n"); } } /** program entry point * this is the firmware function started by the micro-controller */ void main(void); void main(void) { //rcc_clock_setup_in_hse_8mhz_out_72mhz(); // use 8 MHz high speed external clock to generate 72 MHz internal clock rcc_clock_setup_in_hsi_out_48mhz(); // use internal HSI at low speed to save energy, but fast enough for USB #if DEBUG // enable functionalities for easier debug DBGMCU_CR |= DBGMCU_CR_IWDG_STOP; // stop independent watchdog counter when code is halted DBGMCU_CR |= DBGMCU_CR_WWDG_STOP; // stop window watchdog counter when code is halted DBGMCU_CR |= DBGMCU_CR_STANDBY; // allow debug also in standby mode (keep digital part and clock powered) DBGMCU_CR |= DBGMCU_CR_STOP; // allow debug also in stop mode (keep clock powered) DBGMCU_CR |= DBGMCU_CR_SLEEP; // allow debug also in sleep mode (keep clock powered) #else // setup watchdog to reset in case we get stuck (i.e. when an error occurred) //iwdg_set_period_ms(WATCHDOG_PERIOD); // set independent watchdog period //iwdg_start(); // start independent watchdog // IMPORTANT: we can't use the watchdog because we can't disable it, it keeps running in stop mode, and we don't want to wake up every 20 second to just kick the dog. #endif board_setup(); // setup board // check role (transmit or receive) puts("device role: "); rcc_periph_clock_enable(GPIO_RCC(ROLE_PIN)); // enable clock for pin peripheral gpio_set(GPIO_PORT(ROLE_PIN), GPIO_PIN(ROLE_PIN)); // pull up to detect high when not tied to ground gpio_set_mode(GPIO_PORT(ROLE_PIN), GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, GPIO_PIN(ROLE_PIN)); // set button pin to input sleep_us(100); // wait a bit to settle role_transmit = (0 == gpio_get(GPIO_PORT(ROLE_PIN), GPIO_PIN(ROLE_PIN))); // if tied to ground, do into transmit mode #if !defined(STLINKV2) uart_setup(); // setup USART (for printing) #endif if (!role_transmit || DEBUG) { usb_cdcacm_setup(); // setup USB CDC ACM (for printing) } printf("\nwelcome to the CuVoodoo YouGotParcel notifier: %s\n", role_transmit ? "transmitter" : "receiver"); // print welcome message #if DEBUG /* // show reset cause if (RCC_CSR & (RCC_CSR_LPWRRSTF | RCC_CSR_WWDGRSTF | RCC_CSR_IWDGRSTF | RCC_CSR_SFTRSTF | RCC_CSR_PORRSTF | RCC_CSR_PINRSTF)) { puts("reset cause(s):"); if (RCC_CSR & RCC_CSR_LPWRRSTF) { puts(" low-power"); } if (RCC_CSR & RCC_CSR_WWDGRSTF) { puts(" window-watchdog"); } if (RCC_CSR & RCC_CSR_IWDGRSTF) { puts(" independent-watchdog"); } if (RCC_CSR & RCC_CSR_SFTRSTF) { puts(" software"); } if (RCC_CSR & RCC_CSR_PORRSTF) { puts(" POR/PDR"); } if (RCC_CSR & RCC_CSR_PINRSTF) { puts(" pin"); } putc('\n'); RCC_CSR |= RCC_CSR_RMVF; // clear reset flags } */ #endif #if !(DEBUG) /* // show watchdog information printf("setup watchdog: %.2fs", WATCHDOG_PERIOD / 1000.0); if (FLASH_OBR & FLASH_OBR_OPTERR) { puts(" (option bytes not set in flash: software wachtdog used, not automatically started at reset)\n"); } else if (FLASH_OBR & FLASH_OBR_WDG_SW) { puts(" (software watchdog used, not automatically started at reset)\n"); } else { puts(" (hardware watchdog used, automatically started at reset)\n"); } */ #endif // setup RTC puts("setup internal RTC: "); #if defined(BLUE_PILL) || defined(STLINKV2) || defined(BLASTER) // for boards without a Low Speed External oscillator // note: the blue pill LSE oscillator is affected when toggling the onboard LED, thus prefer the HSE rtc_auto_awake(RCC_HSE, 8000000 / 128 / RTC_TICKS_SECOND - 1); // use High Speed External oscillator (8 MHz / 128) as RTC clock (VBAT can't be used to keep the RTC running) #else // for boards with an precise Low Speed External oscillator rtc_auto_awake(RCC_LSE, 32768 / RTC_TICKS_SECOND - 1); // ensure internal RTC is on, uses the 32.678 kHz LSE, and the prescale is set to our tick speed, else update backup registers accordingly (power off the micro-controller for the change to take effect) #endif time_start = rtc_get_counter_val(); // get start time from internal RTC rtc_interrupt_enable(RTC_SEC); // enable RTC interrupt on "seconds" nvic_enable_irq(NVIC_RTC_IRQ); // allow the RTC to interrupt // configure the Auto-Wake-Up (AWU) using the RTC alarm rtc_set_alarm_time(rtc_get_counter_val() + KEEP_ALIVE_PERIOD); // set the alarm period rtc_enable_alarm(); // provide RTC alarm flag (and signal for EXTI) rtc_interrupt_enable(RTC_ALR); // enable RTC interrupt on alarm exti_set_trigger(EXTI17, EXTI_TRIGGER_RISING); // trigger on RTC alarm exti_enable_request(EXTI17); // use EXTI line to be able to wake up from stop (curious this is not needed for standby) nvic_enable_irq(NVIC_RTC_ALARM_IRQ); // allow the alarm to interrupt puts("OK\n"); // setup switch input/LED output printf("setup %s: ", role_transmit ? "switches" : "LEDs"); rcc_periph_clock_enable(GPIO_RCC(LID_COMMON)); // enable clock for pin peripheral gpio_set(GPIO_PORT(LID_COMMON), GPIO_PIN(LID_COMMON)); // set high gpio_set_mode(GPIO_PORT(LID_COMMON), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, GPIO_PIN(LID_COMMON)); // set to output rcc_periph_clock_enable(GPIO_RCC(DOOR_COMMON)); // enable clock for pin peripheral gpio_set(GPIO_PORT(DOOR_COMMON), GPIO_PIN(DOOR_COMMON)); // set high gpio_set_mode(GPIO_PORT(DOOR_COMMON), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, GPIO_PIN(DOOR_COMMON)); // set to output rcc_periph_clock_enable(GPIO_RCC(LID_NO)); // enable clock for pin peripheral rcc_periph_clock_enable(GPIO_RCC(DOOR_NO)); // enable clock for pin peripheral if (role_transmit) { rcc_periph_clock_enable(RCC_AFIO); // enable alternate function clock for external interrupt gpio_clear(GPIO_PORT(LID_NO), GPIO_PIN(LID_NO)); // pull low to detect closing gpio_set_mode(GPIO_PORT(LID_NO), GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, GPIO_PIN(LID_NO)); // set pin to input sleep_ms(10); // let pin settle exti_select_source(GPIO_EXTI(LID_NO), GPIO_PORT(LID_NO)); // mask external interrupt of the pin only for this port exti_set_trigger(GPIO_EXTI(LID_NO), EXTI_TRIGGER_RISING); // switch goes high when activated exti_reset_request(GPIO_EXTI(LID_NO)); // clear possible interrupt exti_enable_request(GPIO_EXTI(LID_NO)); // enable external interrupt nvic_enable_irq(GPIO_NVIC_EXTI_IRQ(LID_NO)); // enable interrupt gpio_clear(GPIO_PORT(DOOR_NO), GPIO_PIN(DOOR_NO)); // pull low to detect closing gpio_set_mode(GPIO_PORT(DOOR_NO), GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, GPIO_PIN(DOOR_NO)); // set pin to input sleep_ms(10); // let pin settle exti_select_source(GPIO_EXTI(DOOR_NO), GPIO_PORT(DOOR_NO)); // mask external interrupt of the pin only for this port exti_set_trigger(GPIO_EXTI(DOOR_NO), EXTI_TRIGGER_RISING); // switch goes high when activated exti_reset_request(GPIO_EXTI(DOOR_NO)); // clear possible interrupt exti_enable_request(GPIO_EXTI(DOOR_NO)); // enable external interrupt nvic_enable_irq(GPIO_NVIC_EXTI_IRQ(DOOR_NO)); // enable interrupt } else { gpio_set(GPIO_PORT(LID_NO), GPIO_PIN(LID_NO)); // set high to switch LED off gpio_set_mode(GPIO_PORT(LID_NO), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, GPIO_PIN(LID_NO)); // set to output gpio_set(GPIO_PORT(DOOR_NO), GPIO_PIN(DOOR_NO)); // set high to switch LED off gpio_set_mode(GPIO_PORT(DOOR_NO), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, GPIO_PIN(DOOR_NO)); // set to output } puts("OK\n"); // setup LoRa communication using SX172x module printf("setup LoRa communication (%u.%02u MHz): ", (uint32_t)(LORA_FREQ / 1E6), (uint32_t)(LORA_FREQ / 10E3) % 100); const uint8_t mode_lora = (1 << 7) | (1 << 3); // use LoRa mode, access low frequency (433 < 800 MHz) if (radio_sx172x_setup()) { radio_sx172x_reset(); // reset registers to default radio_sx172x_write_register(RADIO_SX172X_REG_LORA_DETECT_OPTIMIZE, (0 << 7) | (0x03 << 0)); // set AutomaticIFOn to 0 after reset (see errata) radio_sx172x_write_register(RADIO_SX172X_REG_OP_MODE, 0); // put in sleep mode to be able to change mode radio_sx172x_write_register(RADIO_SX172X_REG_OP_MODE, mode_lora); // set LoRa mode radio_sx172x_write_register(RADIO_SX172X_REG_PA_CONFIG, (1 << 7) | (7 << 4) | (15 << 0)); // use power amplifier (select boost, use max power and output) IMPORTANT transmission will not work with the module I used radio_sx172x_write_register(RADIO_SX172X_REG_LNA, (1 << 5)); // use maximum gain for LNA radio_sx172x_write_register(RADIO_SX172X_REG_LORA_MODEM_CONFIG_1, (6 << 4) | (4 << 1) | (0 << 0)); // use lowest bandwidth (62.5 kHz using XTAL) and coding rate (4/8) to have best sensitivity (we don't care about the bandwidth) + explicit header radio_sx172x_write_register(RADIO_SX172X_REG_LORA_MODEM_CONFIG_2, (12 << 4) | (1 << 2)); // use largest spreading factor (12) to get best SNR (-20 dB), add CRC on payload radio_sx172x_write_register(RADIO_SX172X_REG_LORA_MODEM_CONFIG_3, (1 << 3) | (1 << 2)); // optimize for low data rate and use AGC for LNA // NOTE: with these settings it take almost 2 seconds to send one byte const uint32_t lora_frf = ((LORA_FREQ * (1 << 19)) / 32E6); // the register frequency value radio_sx172x_write_register(RADIO_SX172X_REG_FRF_MSB, (uint8_t)(lora_frf >> 16)); // set frequency radio_sx172x_write_register(RADIO_SX172X_REG_FRF_MID, (uint8_t)(lora_frf >> 8)); // set frequency radio_sx172x_write_register(RADIO_SX172X_REG_FRF_LSB, (uint8_t)(lora_frf >> 0)); // set frequency // setup interrupt rcc_periph_clock_enable(GPIO_RCC(RADIO_SX172X_GPIO_IRQ)); // enable clock for GPIO port gpio_set_mode(GPIO_PORT(RADIO_SX172X_GPIO_IRQ), GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, GPIO_PIN(RADIO_SX172X_GPIO_IRQ)); // set interrupt as input rcc_periph_clock_enable(RCC_AFIO); // enable alternate function clock for external interrupt exti_select_source(GPIO_EXTI(RADIO_SX172X_GPIO_IRQ), GPIO_PORT(RADIO_SX172X_GPIO_IRQ)); // mask external interrupt of the IRQ pin only for this port exti_set_trigger(GPIO_EXTI(RADIO_SX172X_GPIO_IRQ), EXTI_TRIGGER_RISING); // IRQ goes high in interrupt exti_reset_request(GPIO_EXTI(RADIO_SX172X_GPIO_IRQ)); // clear possible interrupt exti_enable_request(GPIO_EXTI(RADIO_SX172X_GPIO_IRQ)); // enable external interrupt nvic_enable_irq(GPIO_NVIC_EXTI_IRQ(RADIO_SX172X_GPIO_IRQ)); // enable interrupt radio_sx172x_write_register(RADIO_SX172X_REG_LORA_IRQ_FLAGS, 0xff); // clear all flags if (role_transmit) { radio_sx172x_write_register(RADIO_SX172X_REG_DIO_MAPPING_1, (1 << 6)); // map DIO0 for TxDone output radio_sx172x_write_register(RADIO_SX172X_REG_OP_MODE, mode_lora); // put in sleep mode } else { radio_sx172x_write_register(RADIO_SX172X_REG_DIO_MAPPING_1, (0 << 6)); // map DIO0 for RxDone output radio_sx172x_write_register(RADIO_SX172X_REG_OP_MODE, mode_lora | 5); // start continuous listening } puts("OK\n"); } else { puts("could not switch on\n"); } // setup terminal terminal_prefix = ""; // set default prefix terminal_process = &process_command; // set central function to process commands terminal_setup(); // start terminal // blink on-board LED to indicate we started led_off(); for (uint8_t i = 0; i < 6; i++) { led_toggle(); sleep_ms(100); } led_off(); // start main loop bool action = false; // if an action has been performed don't go to sleep keep_alive_flag = true; // set status over LoRa on boot uint8_t keep_alive_missed = MAX_MISSED; // number of times we did not get a keep alive message (start with no message received) bool yougotparcel = false; // if a parcel is in the post box while (true) { // infinite loop //iwdg_reset(); // kick the dog if (user_input_available) { // user input is available action = true; // action has been performed led_toggle(); // toggle LED char c = user_input_get(); // store receive character terminal_send(c); // send received character to terminal } if (lid_flag) { puts("lid opened\n"); sleep_ms(100); // wait a bit to remove noise and double trigger lid_flag = false; // reset flag if (!yougotparcel) { // empty post box got filled yougotparcel = true; // remember we received a parcel keep_alive_flag = true; // set message } action = true; // action has been performed } if (door_flag) { puts("door opened\n"); sleep_ms(100); // wait a bit to remove noise and double trigger door_flag = false; // reset flag if (yougotparcel) { // full post box got emptied yougotparcel = false; // remember we removed the parcel from the post box keep_alive_flag = true; // set message } action = true; // action has been performed } if (rtc_internal_tick_flag) { // the internal RTC ticked rtc_internal_tick_flag = false; // reset flag if (0 == (rtc_get_counter_val() % RTC_TICKS_SECOND)) { // one second has passed //led_toggle(); // toggle LED (good to indicate if main function is stuck). don't use LED since it's used for SX172x chip select //printf("modem status: %+05b, flags: %+08b\n", radio_sx172x_read_register(RADIO_SX172X_REG_LORA_MODEM_STAT) & 0x1f, radio_sx172x_read_register(RADIO_SX172X_REG_LORA_IRQ_FLAGS)); } action = true; // action has been performed } radio_sx172x_irq_flag = (0 != gpio_get(GPIO_PORT(RADIO_SX172X_GPIO_IRQ), GPIO_PIN(RADIO_SX172X_GPIO_IRQ))); // update interrupt status if (radio_sx172x_irq_flag) { // LoRa module signals activity const uint8_t lora_flags = radio_sx172x_read_register(RADIO_SX172X_REG_LORA_IRQ_FLAGS); // read flags if (role_transmit && (lora_flags & (1 << 3))) { // transmit completed puts("OK\n"); // should end the TX: line start radio_sx172x_write_register(RADIO_SX172X_REG_LORA_IRQ_FLAGS, (1 << 3)); // clear TxDone flag radio_sx172x_write_register(RADIO_SX172X_REG_OP_MODE, mode_lora); // put back to sleep mode } else if (!role_transmit && (lora_flags & (1 << 6))) { // packet has been received const uint32_t uptime = (rtc_get_counter_val() - time_start) / RTC_TICKS_SECOND; // get time from internal RTC printf("%u.%02u:%02u:%02u ", uptime / (24 * 60 * 60), (uptime / (60 * 60)) % 24, (uptime / 60) % 60, uptime % 60); // show time stamp puts("RX: "); if (lora_flags & (1 << 5)) { // CRC error goto clear_rx; } if (!(lora_flags & (1 << 4))) { // header invalid goto clear_rx; } const uint8_t payload_length = radio_sx172x_read_register(RADIO_SX172X_REG_LORA_RX_NB_BYTES); // get number of bytes received if (1 != payload_length) { // unexpected payload length goto clear_rx; } const uint8_t payload_addr = radio_sx172x_read_register(RADIO_SX172X_REG_LORA_FIFO_RX_CURRENT_ADDR); // get address in FIFO of data received uint8_t payload; radio_sx172x_read_fifo(payload_addr, &payload, payload_length); // read received data const int8_t packet_snr = (int8_t)radio_sx172x_read_register(RADIO_SX172X_REG_LORA_PKT_SNR_VALUE) / 4; // read SNR value const int16_t packet_rssi = -164 + radio_sx172x_read_register(RADIO_SX172X_REG_LORA_PKT_RSSI_VALUE); // read RSSI value printf("%+02x (SNR: %d dB, RSSI: %d dBm)", payload, packet_snr, packet_rssi); keep_alive_missed = 0; // reset the missed counter // remember if we received a parcel if (LID_VALUE == payload) { yougotparcel = true; } else if (DOOR_VALUE == payload) { yougotparcel = false; } clear_rx: radio_sx172x_write_register(RADIO_SX172X_REG_LORA_IRQ_FLAGS, (1 << 6) | (1 << 5) | (1 << 4)); // clear RxDone, PayloadCrcError, ValidHeader flags const uint8_t rx_addr = radio_sx172x_read_register(RADIO_SX172X_REG_LORA_FIFO_RX_BASE_ADDR); // get start of receive buffer radio_sx172x_write_register(RADIO_SX172X_REG_LORA_FIFO_ADDR_PTR, rx_addr); // reset receive FIFO putc('\n'); } else { printf("unhandled LoRa interrupt: %+08b\n", lora_flags); } radio_sx172x_write_register(RADIO_SX172X_REG_LORA_IRQ_FLAGS, 0xff); // clear all flags radio_sx172x_irq_flag = false; // reset notification action = true; // action has been performed } if (keep_alive_flag) { keep_alive_flag = false; // reset flag if (keep_alive_missed < MAX_MISSED) { keep_alive_missed++; // increase missed counter, which is reset when receiving a message } rtc_set_alarm_time(rtc_get_counter_val() + KEEP_ALIVE_PERIOD); // reset the alarm if (role_transmit && 3 != (radio_sx172x_read_register(RADIO_SX172X_REG_OP_MODE) & 0x7)) { // periodically transmit (when no already transmitting const uint8_t tx_data = (yougotparcel ? LID_VALUE : DOOR_VALUE); // transmit which has been opened const uint32_t uptime = (rtc_get_counter_val() - time_start) / RTC_TICKS_SECOND; // get time from internal RTC printf("%u.%02u:%02u:%02u ", uptime / (24 * 60 * 60), (uptime / (60 * 60)) % 24, (uptime / 60) % 60, uptime % 60); printf("TX: %+02x ... ", tx_data); const uint8_t fifx_tx_addr = radio_sx172x_read_register(RADIO_SX172X_REG_LORA_FIFO_TX_BASE_ADDR); // get the FIFO address to write the data radio_sx172x_write_fifo(fifx_tx_addr, &tx_data, 1); // write payload data to TX FIFO radio_sx172x_write_register(RADIO_SX172X_REG_LORA_PAYLOAD_LENGTH, 1); // indicate the payload length to be transmitted radio_sx172x_write_register(RADIO_SX172X_REG_LORA_IRQ_FLAGS, (1 << 3)); // clear TxDone flag radio_sx172x_write_register(RADIO_SX172X_REG_OP_MODE, mode_lora | 3); // start transmission } action = true; // action has been performed } // update LED status if (!role_transmit) { if (keep_alive_missed >= MAX_MISSED) { gpio_clear(GPIO_PORT(LID_NO), GPIO_PIN(LID_NO)); // set low to switch LED on gpio_clear(GPIO_PORT(DOOR_NO), GPIO_PIN(DOOR_NO)); // set low to switch LED on } else if (yougotparcel) { gpio_clear(GPIO_PORT(LID_NO), GPIO_PIN(LID_NO)); // set low to switch LED on gpio_set(GPIO_PORT(DOOR_NO), GPIO_PIN(DOOR_NO)); // set high to switch LED off } else { gpio_set(GPIO_PORT(LID_NO), GPIO_PIN(LID_NO)); // set high to switch LED off gpio_clear(GPIO_PORT(DOOR_NO), GPIO_PIN(DOOR_NO)); // set low to switch LED on } } if (action) { // go to sleep if nothing had to be done, else recheck for activity action = false; } else { if (role_transmit && !DEBUG) { // only go to stop mode when transmitting, to save battery (the receiver needs/has a permanent power source) puts("zzz\n"); uart_flush(); // wait for all communication to complete SCB_SCR |= SCB_SCR_SLEEPDEEP; // set deep sleep in CPU pwr_set_stop_mode(); // clear power control pwr_voltage_regulator_low_power_in_stop(); // save even more power at the cost of wake up time } __WFI(); // go to sleep (or stop mode) SCB_SCR &= ~SCB_SCR_SLEEPDEEP; // stop going to deep sleep if (role_transmit) { rcc_clock_setup_in_hsi_out_48mhz(); // after exiting stop mode, default HSI RC is used as clock, we need to set it again } } } // main loop } /** interrupt service routine called when tick passed or alarm triggered on RTC */ void rtc_isr(void) { if (rtc_check_flag(RTC_SEC)) { // tick passed rtc_clear_flag(RTC_SEC); // clear flag rtc_internal_tick_flag = true; // notify to show new time } else if (rtc_check_flag(RTC_ALR)) { // alarm triggered rtc_clear_flag(RTC_ALR); // clear flag keep_alive_flag = true; // notify user } } /** interrupt service routine called when alarm triggered on RTC */ void rtc_alarm_isr(void) { exti_reset_request(EXTI17); // reset interrupt keep_alive_flag = true; // notify user } /** interrupt service routine called upon LoRa IRQ */ void GPIO_EXTI_ISR(RADIO_SX172X_GPIO_IRQ)(void) { radio_sx172x_irq_flag = true; // notify main loop (the IRQ lien will actually be verified by the main loop, but at least this should start the loop/wake up) exti_reset_request(GPIO_EXTI(RADIO_SX172X_GPIO_IRQ)); // reset interrupt } /** interrupt service routine called upon post box lid being opened */ void GPIO_EXTI_ISR(LID_NO)(void) { lid_flag = true; // notify main loop exti_reset_request(GPIO_EXTI(LID_NO)); // reset interrupt } /** interrupt service routine called upon post box door being opened */ void GPIO_EXTI_ISR(DOOR_NO)(void) { door_flag = true; // notify main loop exti_reset_request(GPIO_EXTI(DOOR_NO)); // reset interrupt }