/** library to control up to 4 independent receive and transmit software UART ports * @file * @author King Kévin * @copyright SPDX-License-Identifier: GPL-3.0-or-later * @date 2016-2020 * @note peripherals used: GPIO @ref uart_soft_gpio, timer @ref uart_soft_timer */ /* standard libraries */ #include // standard integer types #include // general utilities #include // memory utilisites /* STM32 (including CM3) libraries */ #include // real-time control clock library #include // general purpose input output library #include // timer library #include // interrupt handler #include // external interrupt defines #include // Cortex M3 utilities #include "uart_soft.h" // software UART library API #include "global.h" // common methods /** @defgroup uart_soft_gpio GPIO used for the software 4 UART ports * @note comment if unused * @warning only one port must be used per line (pin number) * @{ */ #define UART_SOFT_RX0_GPIO PB14 /**< pin for receive signal for UART port 0 */ //#define UART_SOFT_RX1_GPIO PA0 /**< pin for receive signal for UART port 1 */ //#define UART_SOFT_RX2_GPIO PA0 /**< pin for receive signal for UART port 2 */ //#define UART_SOFT_RX3_GPIO PA0 /**< pin for receive signal for UART port 3 */ #define UART_SOFT_TX0_GPIO PB13 /**< pin for transmit signal for UART port 0 */ //#define UART_SOFT_TX1_GPIO PA0 /**< pin for transmit signal for UART port 1 */ //#define UART_SOFT_TX2_GPIO PA0 /**< pin for transmit signal for UART port 2 */ //#define UART_SOFT_TX3_GPIO PA0 /**< pin for transmit signal for UART port 3 */ /** @} */ #if defined(UART_SOFT_RX3_GPIO) || defined(UART_SOFT_TX3_GPIO) #define UART_NB 4 /*< number of UART ports */ #elif defined(UART_SOFT_RX2_GPIO) || defined(UART_SOFT_TX2_GPIO) #define UART_NB 3 /*< number of UART ports */ #elif defined(UART_SOFT_RX1_GPIO) || defined(UART_SOFT_TX1_GPIO) #define UART_NB 2 /*< number of UART ports */ #elif defined(UART_SOFT_RX0_GPIO) || defined(UART_SOFT_TX0_GPIO) #define UART_NB 1 /*< number of UART ports */ #else #define UART_NB 0 /*< number of UART ports */ #endif /** buffer size for receive and transmit buffers (must be a power of 2) */ #define UART_SOFT_BUFFER 128 /** UART receive state definition */ struct soft_uart_rx_state { uint32_t port; /**< UART receive port */ uint16_t pin; /**< UART receive pin */ uint32_t rcc; /**< UART receive port peripheral clock */ uint32_t exti; /**< UART receive external interrupt */ uint32_t irq; /**< UART receive interrupt request */ uint32_t baudrate; /**< UART receive baud rate (in timer ticks, not bps) */ volatile uint16_t state; /**< GPIO state for receive pin */ volatile uint8_t bit; /**< next UART frame bit to receive */ volatile uint8_t byte; /**< byte being received */ volatile uint8_t buffer[UART_SOFT_BUFFER]; /**< receive buffer */ volatile uint8_t buffer_i; /**< index of current data to be read out */ volatile uint8_t buffer_used; /**< how much data is available */ }; /** UART transmit state definition */ struct soft_uart_tx_state { uint32_t port; /**< UART receive port */ uint16_t pin; /**< UART receive pin */ uint32_t rcc; /**< UART receive port peripheral clock */ uint32_t baudrate; /**< UART receive baud rate (in timer ticks, not bps) */ volatile uint8_t bit; /**< next UART frame bit to transmit */ volatile uint8_t byte; /**< byte being transmitted */ volatile uint8_t buffer[UART_SOFT_BUFFER]; /**< receive buffer */ volatile uint8_t buffer_i; /**< index of current data to be read out */ volatile uint8_t buffer_used; /**< how much data is available */ volatile bool transmit; /**< flag to know it transmission is ongoing */ }; static struct soft_uart_rx_state uart_soft_rx_states[UART_NB]; /**< states of UART receive ports */ static struct soft_uart_tx_state uart_soft_tx_states[UART_NB]; /**< states of UART transmit ports */ volatile bool uart_soft_received[4] = {false, false, false, false}; /** @defgroup uart_soft_timer timer used to sample UART signals * @{ */ #if defined(UART_SOFT_RX0_GPIO) || defined(UART_SOFT_RX1_GPIO) || defined(UART_SOFT_RX2_GPIO) || defined(UART_SOFT_RX3_GPIO) #define UART_SOFT_RX_TIMER 3 /**< timer peripheral for receive signals */ #endif #if defined(UART_SOFT_TX0_GPIO) || defined(UART_SOFT_TX1_GPIO) || defined(UART_SOFT_TX2_GPIO) || defined(UART_SOFT_TX3_GPIO) #define UART_SOFT_TX_TIMER 4 /**< timer peripheral for transmit signals */ #endif /** @} */ static const uint32_t timer_flags[4] = {TIM_SR_CC1IF, TIM_SR_CC2IF, TIM_SR_CC3IF, TIM_SR_CC4IF}; /**< the interrupt flags for the compare units */ static const uint32_t timer_interrupt[4] = {TIM_DIER_CC1IE, TIM_DIER_CC2IE, TIM_DIER_CC3IE, TIM_DIER_CC4IE}; /**< the interrupt enable for the compare units */ static const enum tim_oc_id timer_oc[4] = {TIM_OC1, TIM_OC2, TIM_OC3, TIM_OC4}; /**< the output compares for the compare units */ bool uart_soft_setup(const uint32_t* rx_baudrates, const uint32_t* tx_baudrates) { // save UART receive definition memset(&uart_soft_rx_states, 0, sizeof(uart_soft_rx_states)); // initialize receiver configuration array #if defined(UART_SOFT_RX0_GPIO) uart_soft_rx_states[0].port = GPIO_PORT(UART_SOFT_RX0_GPIO); // save receive port uart_soft_rx_states[0].pin = GPIO_PIN(UART_SOFT_RX0_GPIO); // save receive pin uart_soft_rx_states[0].rcc = GPIO_RCC(UART_SOFT_RX0_GPIO); // save receive port peripheral clock uart_soft_rx_states[0].exti = GPIO_EXTI(UART_SOFT_RX0_GPIO); // save receive external interrupt uart_soft_rx_states[0].irq = GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX0_GPIO); // save receive interrupt request #endif #if defined(UART_SOFT_RX1_GPIO) uart_soft_rx_states[1].port = GPIO_PORT(UART_SOFT_RX1_GPIO); // save receive port uart_soft_rx_states[1].pin = GPIO_PIN(UART_SOFT_RX1_GPIO); // save receive pin uart_soft_rx_states[1].rcc = GPIO_RCC(UART_SOFT_RX1_GPIO); // save receive port peripheral clock uart_soft_rx_states[1].exti = GPIO_EXTI(UART_SOFT_RX1_GPIO); // save receive external interrupt uart_soft_rx_states[1].irq = GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX1_GPIO); // save receive interrupt request #endif #if defined(UART_SOFT_RX2_GPIO) uart_soft_rx_states[2].port = GPIO_PORT(UART_SOFT_RX2_GPIO); // save receive port uart_soft_rx_states[2].pin = GPIO_PIN(UART_SOFT_RX2_GPIO); // save receive pin uart_soft_rx_states[2].rcc = GPIO_RCC(UART_SOFT_RX2_GPIO); // save receive port peripheral clock uart_soft_rx_states[2].exti = GPIO_EXTI(UART_SOFT_RX2_GPIO); // save receive external interrupt uart_soft_rx_states[2].irq = GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX2_GPIO); // save receive interrupt request #endif #if defined(UART_SOFT_RX3_GPIO) uart_soft_rx_states[3].port = GPIO_PORT(UART_SOFT_RX3_GPIO); // save receive port uart_soft_rx_states[3].pin = GPIO_PIN(UART_SOFT_RX3_GPIO); // save receive pin uart_soft_rx_states[3].rcc = GPIO_RCC(UART_SOFT_RX3_GPIO); // save receive port peripheral clock uart_soft_rx_states[3].exti = GPIO_EXTI(UART_SOFT_RX3_GPIO); // save receive external interrupt uart_soft_rx_states[3].irq = GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX3_GPIO); // save receive interrupt request #endif // setup UART receive GPIO for (uint8_t rx = 0; rx < UART_NB; rx++) { if (0 == uart_soft_rx_states[rx].port) { // verify is receive UART is defined continue; // skip configuration if not defined } if (!rx_baudrates || 0 == rx_baudrates[rx]) { // verify if receive baud rate has been defined return false; } uart_soft_rx_states[rx].baudrate = rcc_ahb_frequency / rx_baudrates[rx] - 1; // save baud rate rcc_periph_clock_enable(uart_soft_rx_states[rx].rcc); // enable clock for GPIO peripheral gpio_set(uart_soft_rx_states[rx].port, uart_soft_rx_states[rx].pin); // pull up to avoid noise when not connected gpio_set_mode(uart_soft_rx_states[rx].port, GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, uart_soft_rx_states[rx].pin); // setup GPIO pin UART receive rcc_periph_clock_enable(RCC_AFIO); // enable alternate function clock for external interrupt exti_select_source(uart_soft_rx_states[rx].exti, uart_soft_rx_states[rx].port); // mask external interrupt of this pin only for this port exti_enable_request(uart_soft_rx_states[rx].exti); // enable external interrupt exti_set_trigger(uart_soft_rx_states[rx].exti, EXTI_TRIGGER_BOTH); // trigger when button is pressed nvic_enable_irq(uart_soft_rx_states[rx].irq); // enable interrupt uart_soft_rx_states[rx].state = gpio_get(uart_soft_rx_states[rx].port, uart_soft_rx_states[rx].pin); // save state of GPIO uart_soft_rx_states[rx].bit = 0; // reset bits received } // save UART transmit definition memset(&uart_soft_tx_states, 0, sizeof(uart_soft_tx_states)); // initialize transmitter configuration array #if defined(UART_SOFT_TX0_GPIO) uart_soft_tx_states[0].port = GPIO_PORT(UART_SOFT_TX0_GPIO); // save receive port uart_soft_tx_states[0].pin = GPIO_PIN(UART_SOFT_TX0_GPIO); // save receive pin uart_soft_tx_states[0].rcc = GPIO_RCC(UART_SOFT_TX0_GPIO); // save receive port peripheral clock #endif #if defined(UART_SOFT_TX1_GPIO) uart_soft_tx_states[1].port = GPIO_PORT(UART_SOFT_TX1_GPIO); // save receive port uart_soft_tx_states[1].pin = GPIO_PIN(UART_SOFT_TX1_GPIO); // save receive pin uart_soft_tx_states[1].rcc = GPIO_RCC(UART_SOFT_TX1_GPIO); // save receive port peripheral clock #endif #if defined(UART_SOFT_TX2_GPIO) uart_soft_tx_states[2].port = GPIO_PORT(UART_SOFT_TX2_GPIO); // save receive port uart_soft_tx_states[2].pin = GPIO_PIN(UART_SOFT_TX2_GPIO); // save receive pin uart_soft_tx_states[2].rcc = GPIO_RCC(UART_SOFT_TX2_GPIO); // save receive port peripheral clock #endif #if defined(UART_SOFT_TX3_GPIO) uart_soft_tx_states[3].port = GPIO_PORT(UART_SOFT_TX3_GPIO); // save receive port uart_soft_tx_states[3].pin = GPIO_PIN(UART_SOFT_TX3_GPIO); // save receive pin uart_soft_tx_states[3].rcc = GPIO_RCC(UART_SOFT_TX3_GPIO); // save receive port peripheral clock #endif // setup UART transmit GPIO for (uint8_t tx = 0; tx < UART_NB; tx++) { if (0 == uart_soft_tx_states[tx].port) { // verify is transmit UART is defined continue; // skip configuration if not defined } if (!tx_baudrates || 0 == tx_baudrates[tx]) { // verify if transmit baud rate has been defined return false; } uart_soft_tx_states[tx].baudrate = rcc_ahb_frequency / tx_baudrates[tx] - 1; // save baud rate rcc_periph_clock_enable(uart_soft_tx_states[tx].rcc); // enable clock for GPIO peripheral gpio_set_mode(uart_soft_tx_states[tx].port, GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, uart_soft_tx_states[tx].pin); // setup GPIO UART transmit pin gpio_set(uart_soft_tx_states[tx].port, uart_soft_tx_states[tx].pin); // idle high } rcc_periph_clock_enable(GPIO_RCC(PB12)); gpio_set_mode(GPIO_PORT(PB12), GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, GPIO_PIN(PB12)); // setup timer #if defined(UART_SOFT_RX_TIMER) rcc_periph_clock_enable(RCC_TIM(UART_SOFT_RX_TIMER)); // enable clock for timer peripheral rcc_periph_reset_pulse(RST_TIM(UART_SOFT_RX_TIMER)); // reset timer state timer_set_mode(TIM(UART_SOFT_RX_TIMER), TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP); // set timer mode, use undivided timer clock, edge alignment (simple count), and count up timer_set_prescaler(TIM(UART_SOFT_RX_TIMER), 0); // prescaler to be able to sample 2400-115200 bps (72MHz/2^16=1099<2400bps) nvic_enable_irq(NVIC_TIM_IRQ(UART_SOFT_RX_TIMER)); // allow interrupt for timer timer_enable_counter(TIM(UART_SOFT_RX_TIMER)); // start timer to generate interrupts for the receive pins #endif #if defined(UART_SOFT_TX_TIMER) rcc_periph_clock_enable(RCC_TIM(UART_SOFT_TX_TIMER)); // enable clock for timer peripheral rcc_periph_reset_pulse(RST_TIM(UART_SOFT_TX_TIMER)); // reset timer state timer_set_mode(TIM(UART_SOFT_TX_TIMER), TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP); // set timer mode, use undivided timer clock, edge alignment (simple count), and count up timer_set_prescaler(TIM(UART_SOFT_TX_TIMER), 0); // prescaler to be able to output 2400-115200 bps (72MHz/2^16=1099<2400bps) nvic_enable_irq(NVIC_TIM_IRQ(UART_SOFT_TX_TIMER)); // allow interrupt for timer timer_enable_counter(TIM(UART_SOFT_TX_TIMER)); // start timer to generate interrupts for the transmit pins #endif return true; // setup completed } #if defined(UART_SOFT_RX_TIMER) uint8_t uart_soft_getbyte(uint8_t uart) { if (uart >= UART_NB || 0 == uart_soft_rx_states[uart].port) { // ensure receive UART port is defined return 0; } if (0 == uart_soft_rx_states[uart].buffer_used) { // there is no data in the buffer return 0; } nvic_disable_irq(uart_soft_rx_states[uart].irq); // disable interrupt to protect the state of the buffer (interrupt can still get pending) uint8_t to_return = uart_soft_rx_states[uart].buffer[uart_soft_rx_states[uart].buffer_i]; // get the next available character uart_soft_rx_states[uart].buffer_i = (uart_soft_rx_states[uart].buffer_i + 1) & (LENGTH(uart_soft_rx_states[uart].buffer) - 1); // update used buffer uart_soft_rx_states[uart].buffer_used--; // update used buffer nvic_enable_irq(uart_soft_rx_states[uart].irq); // re-enable interrupt since critical part is finished uart_soft_received[uart] = (0 != uart_soft_rx_states[uart].buffer_used); // notify user if data is available return to_return; } /** timer interrupt service routine to generate parse receive signal */ void TIM_ISR(UART_SOFT_RX_TIMER)(void) { for (uint8_t rx = 0; rx < UART_NB; rx++) { if (timer_interrupt_source(TIM(UART_SOFT_RX_TIMER), timer_flags[rx])) { // got a match on compare for receive pin timer_clear_flag(TIM(UART_SOFT_RX_TIMER), timer_flags[rx]); // clear flag if (0 == uart_soft_rx_states[rx].port) { // verify if RX exists continue; // skip if receive port is not defined it } gpio_toggle(GPIO_PORT(PB12), GPIO_PIN(PB12)); uart_soft_rx_states[rx].byte += ((0 == gpio_get(uart_soft_rx_states[rx].port, uart_soft_rx_states[rx].pin) ? 0 : 1) << (uart_soft_rx_states[rx].bit - 1)); // save bit value if (uart_soft_rx_states[rx].bit < 8) { // not the last bit received timer_set_oc_value(TIM(UART_SOFT_RX_TIMER), timer_oc[rx], timer_get_counter(TIM(UART_SOFT_RX_TIMER)) + uart_soft_rx_states[rx].baudrate); // set timer to next bit uart_soft_rx_states[rx].bit++; // wait for next bit } else { // last bit received if (uart_soft_rx_states[rx].buffer_used >= LENGTH(uart_soft_rx_states[rx].buffer)) { // buffer is full uart_soft_rx_states[rx].buffer_i = (uart_soft_rx_states[rx].buffer_i + 1) & (LENGTH(uart_soft_rx_states[rx].buffer) - 1); // drop oldest byte uart_soft_rx_states[rx].buffer_used--; // update buffer usage } uart_soft_rx_states[rx].buffer[(uart_soft_rx_states[rx].buffer_i + uart_soft_rx_states[rx].buffer_used) & (LENGTH(uart_soft_rx_states[rx].buffer) - 1)] = uart_soft_rx_states[rx].byte; // put byte in buffer uart_soft_rx_states[rx].buffer_used++; // update used buffer uart_soft_received[rx] = true; // notify user data is available timer_disable_irq(TIM(UART_SOFT_RX_TIMER), timer_interrupt[rx]); // stop interrupting uart_soft_rx_states[rx].bit = 0; // next bit should be first bit of next byte } } } } #endif #if defined(UART_SOFT_TX_TIMER) void uart_soft_flush(uint8_t uart) { if (uart >= UART_NB || 0 == uart_soft_tx_states[uart].port) { // ensure transmit UART port is defined return; // return } while (uart_soft_tx_states[uart].buffer_used) { // idle until buffer is empty __WFI(); // sleep until interrupt } while (uart_soft_tx_states[uart].transmit) { // idle until transmission is complete __WFI(); // sleep until interrupt } } /** start transmitting a byte from the buffer * @param[in] uart UART port used for transmission */ static void uart_soft_transmit(uint8_t uart) { if (uart >= UART_NB || 0 == uart_soft_tx_states[uart].port) { // ensure transmit UART port is defined return; // UART transmit port not defined } if (uart_soft_tx_states[uart].transmit) { // already transmitting return; // transmission is already ongoing } if (!uart_soft_tx_states[uart].buffer_used) { // no buffered data to transmit return; // nothing to transmit } timer_disable_irq(TIM(UART_SOFT_TX_TIMER), timer_interrupt[uart]); // disable interrupt to protect the state of the buffer (interrupt can still get pending) uart_soft_tx_states[uart].byte = uart_soft_tx_states[uart].buffer[uart_soft_tx_states[uart].buffer_i]; // get byte uart_soft_tx_states[uart].buffer_i = (uart_soft_tx_states[uart].buffer_i + 1) & (LENGTH(uart_soft_tx_states[uart].buffer) - 1); // update index uart_soft_tx_states[uart].buffer_used--; // update used buffer uart_soft_tx_states[uart].bit = 0; // LSb is transmitted first uart_soft_tx_states[uart].transmit = true; // start transmission gpio_clear(uart_soft_tx_states[uart].port, uart_soft_tx_states[uart].pin); // output start bit timer_set_oc_value(TIM(UART_SOFT_TX_TIMER), timer_oc[uart], timer_get_counter(TIM(UART_SOFT_TX_TIMER)) + uart_soft_tx_states[uart].baudrate); // set timer to output UART frame 1 (data bit 0) in 1 bit timer_clear_flag(TIM(UART_SOFT_TX_TIMER), timer_flags[uart]); // clear flag before enabling interrupt timer_enable_irq(TIM(UART_SOFT_TX_TIMER), timer_interrupt[uart]); // enable timer IRQ for TX for this UART } void uart_soft_putbyte_nonblocking(uint8_t uart, uint8_t byte) { if (uart >= UART_NB || 0 == uart_soft_tx_states[uart].port) { // ensure transmit UART port is defined return; // return } while (uart_soft_tx_states[uart].buffer_used >= LENGTH(uart_soft_tx_states[uart].buffer)); // wait until there is place in the buffer timer_disable_irq(TIM(UART_SOFT_TX_TIMER), timer_interrupt[uart]); // disable interrupt to protect the state of the buffer (interrupt can still get pending) uart_soft_tx_states[uart].buffer[(uart_soft_tx_states[uart].buffer_i + uart_soft_tx_states[uart].buffer_used) & (LENGTH(uart_soft_tx_states[uart].buffer) - 1)] = byte; // save byte to be transmitted uart_soft_tx_states[uart].buffer_used++; // update used buffer timer_enable_irq(TIM(UART_SOFT_TX_TIMER), timer_interrupt[uart]); // re-enable interrupts to resume transmission uart_soft_transmit(uart); // start transmission } void uart_soft_putbyte_blocking(uint8_t uart, uint8_t byte) { if (uart >= UART_NB || 0 == uart_soft_tx_states[uart].port) { // ensure transmit UART port is defined return; // return } uart_soft_putbyte_nonblocking(uart, byte); // put byte in queue uart_soft_flush(uart); // wait for all byte to be transmitted } /** timer interrupt service routine to transmit data */ void TIM_ISR(UART_SOFT_TX_TIMER)(void) { for (uint8_t tx = 0; tx < UART_NB; tx++) { if (timer_interrupt_source(TIM(UART_SOFT_TX_TIMER), timer_flags[tx])) { // got a match on compare for transmit pin timer_clear_flag(TIM(UART_SOFT_TX_TIMER), timer_flags[tx]); // clear flag if (0 == uart_soft_tx_states[tx].port) { // verify if transmit is defined continue; // skip if transmit port is not defined it } if (uart_soft_tx_states[tx].bit < 8) { // there is a data bit to transmit if ((uart_soft_tx_states[tx].byte >> uart_soft_tx_states[tx].bit) & 0x01) { // bit to transmit is a 1 gpio_set(uart_soft_tx_states[tx].port, uart_soft_tx_states[tx].pin); // set output to high } else { // bit to transmit is a 0 gpio_clear(uart_soft_tx_states[tx].port, uart_soft_tx_states[tx].pin); // set output to low } timer_set_oc_value(TIM(UART_SOFT_TX_TIMER), timer_oc[tx], timer_get_counter(TIM(UART_SOFT_TX_TIMER)) + uart_soft_tx_states[tx].baudrate); // wait for the next frame bit uart_soft_tx_states[tx].bit++; // go to next bit } else if (8 == uart_soft_tx_states[tx].bit) { // transmit stop bit gpio_set(uart_soft_tx_states[tx].port, uart_soft_tx_states[tx].pin); // go idle high timer_set_oc_value(TIM(UART_SOFT_TX_TIMER), timer_oc[tx], timer_get_counter(TIM(UART_SOFT_TX_TIMER)) + uart_soft_tx_states[tx].baudrate); // wait for 1 stop bit uart_soft_tx_states[tx].bit++; // go to next bit } else { // UART frame is complete timer_disable_irq(TIM(UART_SOFT_TX_TIMER), timer_interrupt[tx]);// enable timer IRQ for TX for this UART uart_soft_tx_states[tx].transmit = false; // transmission finished uart_soft_transmit(tx); // start next transmission (if there is) } } // compare match } // go through UARTs } #endif /** central function handling receive signal activity */ static void uart_soft_receive_activity(void) { for (uint8_t rx = 0; rx < UART_NB; rx++) { if (0 == uart_soft_rx_states[rx].port) { // verify if receive port is not configured continue; // skip if receive port is not defined it } const uint16_t state_new = gpio_get(uart_soft_rx_states[rx].port, uart_soft_rx_states[rx].pin); // get new state if (uart_soft_rx_states[rx].state != state_new) { // only do something if state changed uart_soft_rx_states[rx].state = state_new; // save new state if (0 == uart_soft_rx_states[rx].bit) { // start bit edge detected if (0 == uart_soft_rx_states[rx].state) { // start bit has to be low timer_set_oc_value(TIM(UART_SOFT_RX_TIMER), timer_oc[rx], timer_get_counter(TIM(UART_SOFT_RX_TIMER)) + (uart_soft_rx_states[rx].baudrate) * 3 / 2); // set timer to sample data bit 0 in 1.5 bits timer_clear_flag(TIM(UART_SOFT_RX_TIMER), timer_flags[rx]); // clear flag before enabling interrupt timer_enable_irq(TIM(UART_SOFT_RX_TIMER), timer_interrupt[rx]);// enable timer IRQ for RX for this UART uart_soft_rx_states[rx].byte = 0; // reset byte value uart_soft_rx_states[rx].bit = 1; // wait for first bit } } else { // data bit detected timer_set_oc_value(TIM(UART_SOFT_RX_TIMER), timer_oc[rx], timer_get_counter(TIM(UART_SOFT_RX_TIMER)) + (uart_soft_rx_states[rx].baudrate) / 2); // resync timer to half a bit (good for drifting transmission, bad if the line is noisy) } } } } /** GPIO interrupt service routine to detect UART receive activity */ #if (defined(UART_SOFT_RX0_GPIO) && NVIC_EXTI0_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX0_GPIO)) || (defined(UART_SOFT_RX1_GPIO) && NVIC_EXTI0_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX1_GPIO)) || (defined(UART_SOFT_RX2_GPIO) && NVIC_EXTI0_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX2_GPIO)) || (defined(UART_SOFT_RX3_GPIO) && NVIC_EXTI0_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX3_GPIO)) void exti0_isr(void) { exti_reset_request(EXTI0); // clear interrupt flag for pin triggers this ISR (pin state will be checked independently) uart_soft_receive_activity(); // check which GPIO changed } #endif #if (defined(UART_SOFT_RX0_GPIO) && NVIC_EXTI1_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX0_GPIO)) || (defined(UART_SOFT_RX1_GPIO) && NVIC_EXTI1_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX1_GPIO)) || (defined(UART_SOFT_RX2_GPIO) && NVIC_EXTI1_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX2_GPIO)) || (defined(UART_SOFT_RX3_GPIO) && NVIC_EXTI1_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX3_GPIO)) void exti1_isr(void) { exti_reset_request(EXTI1); // clear interrupt flag for pin triggers this ISR (pin state will be checked independently) uart_soft_receive_activity(); // check which GPIO changed } #endif #if (defined(UART_SOFT_RX0_GPIO) && NVIC_EXTI2_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX0_GPIO)) || (defined(UART_SOFT_RX1_GPIO) && NVIC_EXTI2_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX1_GPIO)) || (defined(UART_SOFT_RX2_GPIO) && NVIC_EXTI2_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX2_GPIO)) || (defined(UART_SOFT_RX3_GPIO) && NVIC_EXTI2_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX3_GPIO)) void exti2_isr(void) { exti_reset_request(EXTI2); // clear interrupt flag for pin triggers this ISR (pin state will be checked independently) uart_soft_receive_activity(); // check which GPIO changed } #endif #if (defined(UART_SOFT_RX0_GPIO) && NVIC_EXTI3_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX0_GPIO)) || (defined(UART_SOFT_RX1_GPIO) && NVIC_EXTI3_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX1_GPIO)) || (defined(UART_SOFT_RX2_GPIO) && NVIC_EXTI3_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX2_GPIO)) || (defined(UART_SOFT_RX3_GPIO) && NVIC_EXTI3_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX3_GPIO)) void exti3_isr(void) { exti_reset_request(EXTI3); // clear interrupt flag for pin triggers this ISR (pin state will be checked independently) uart_soft_receive_activity(); // check which GPIO changed } #endif #if (defined(UART_SOFT_RX0_GPIO) && NVIC_EXTI4_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX0_GPIO)) || (defined(UART_SOFT_RX1_GPIO) && NVIC_EXTI4_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX1_GPIO)) || (defined(UART_SOFT_RX2_GPIO) && NVIC_EXTI4_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX2_GPIO)) || (defined(UART_SOFT_RX3_GPIO) && NVIC_EXTI4_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX3_GPIO)) void exti4_isr(void) { exti_reset_request(EXTI4); // clear interrupt flag for pin triggers this ISR (pin state will be checked independently) uart_soft_receive_activity(); // check which GPIO changed } #endif #if (defined(UART_SOFT_RX0_GPIO) && NVIC_EXTI9_5_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX0_GPIO)) || (defined(UART_SOFT_RX1_GPIO) && NVIC_EXTI9_5_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX1_GPIO)) || (defined(UART_SOFT_RX2_GPIO) && NVIC_EXTI9_5_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX2_GPIO)) || (defined(UART_SOFT_RX3_GPIO) && NVIC_EXTI9_5_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX3_GPIO)) void exti9_5_isr(void) { exti_reset_request(EXTI5 | EXTI6 | EXTI7 | EXTI8 | EXTI9); // clear interrupt flag for pin triggers this ISR (pin state will be checked independently) uart_soft_receive_activity(); // check which GPIO changed } #endif #if (defined(UART_SOFT_RX0_GPIO) && NVIC_EXTI15_10_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX0_GPIO)) || (defined(UART_SOFT_RX1_GPIO) && NVIC_EXTI15_10_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX1_GPIO)) || (defined(UART_SOFT_RX2_GPIO) && NVIC_EXTI15_10_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX2_GPIO)) || (defined(UART_SOFT_RX3_GPIO) && NVIC_EXTI15_10_IRQ == GPIO_NVIC_EXTI_IRQ(UART_SOFT_RX3_GPIO)) void exti15_10_isr(void) { exti_reset_request(EXTI10 | EXTI11 | EXTI12 | EXTI13 | EXTI14 | EXTI15); // clear interrupt flag for pin triggers this ISR (pin state will be checked independently) uart_soft_receive_activity(); // check which GPIO changed } #endif