/** global definitions and methods * @file * @author King Kévin * @copyright SPDX-License-Identifier: GPL-3.0-or-later * @date 2016-2020 */ /* standard libraries */ #include // standard integer types #include // general utilities #include // memory utilities /* STM32 (including CM3) libraries */ #include // Cortex M3 utilities #include // interrupt handler #include // SysTick library #include // real-time control clock library #include // general purpose input output library #include // external interrupt defines #include // system definitions #include // USB OTG utilities #include "global.h" // common methods volatile bool button_flag = false; volatile bool user_input_available = false; static volatile uint8_t user_input_buffer[64] = {0}; /**< ring buffer for received data */ static volatile uint8_t user_input_i = 0; /**< current position of read received data */ static volatile uint8_t user_input_used = 0; /**< how much data has been received and not red */ static volatile uint32_t sleep_duration = 0; /**< sleep duration count down (in SysTick interrupts) */ uint8_t addu8_safe(uint8_t a, uint8_t b) { if (a > UINT8_MAX - b) { return UINT8_MAX; } else { return a + b; } } uint16_t addu16_safe(uint16_t a, uint16_t b) { if (a > UINT16_MAX - b) { return UINT16_MAX; } else { return a + b; } } uint32_t addu32_safe(uint32_t a, uint32_t b) { if (a > UINT32_MAX - b) { return UINT32_MAX; } else { return a + b; } } int8_t adds8_safe(int8_t a, int8_t b) { if (b > 0) { if (a > INT8_MAX - b) { return INT8_MAX; } else { return a + b; } } else { if (a < INT8_MIN + b) { return INT8_MIN; } else { return a + b; } } } int16_t adds16_safe(int16_t a, int16_t b) { if (b > 0) { if (a > INT16_MAX - b) { return INT16_MAX; } else { return a + b; } } else { if (a < INT16_MIN + b) { return INT16_MIN; } else { return a + b; } } } int32_t adds32_safe(int32_t a, int32_t b) { if (b > 0) { if (a > INT32_MAX - b) { return INT32_MAX; } else { return a + b; } } else { if (a < INT32_MIN + b) { return INT32_MIN; } else { return a + b; } } } char* b2s(uint64_t binary, uint8_t rjust) { static char string[64 + 1] = {0}; // the string representation to return uint8_t bit = LENGTH(string) - 1; // the index of the bit to print string[bit--] = '\0'; // terminate string while (binary) { if (binary & 1) { string[bit--] = '1'; } else { string[bit--] = '0'; } binary >>= 1; } while (64 - bit - 1 < rjust && bit > 0) { string[bit--] = '0'; } return string; } /** switch on board LED */ inline void led_on(void) { #if defined(LED_PIN) #if defined(LED_ON) && LED_ON gpio_set(GPIO_PORT(LED_PIN), GPIO_PIN(LED_PIN)); #else gpio_clear(GPIO_PORT(LED_PIN), GPIO_PIN(LED_PIN)); #endif // LED_ON #endif // LED_PIN } /** switch off board LED */ inline void led_off(void) { #if defined(LED_PIN) #if defined(LED_ON) && LED_ON gpio_clear(GPIO_PORT(LED_PIN), GPIO_PIN(LED_PIN)); #else gpio_set(GPIO_PORT(LED_PIN), GPIO_PIN(LED_PIN)); #endif // LED_ON #endif // LED_PIN } /** toggle board LED */ inline void led_toggle(void) { #if defined(LED_PIN) gpio_toggle(GPIO_PORT(LED_PIN), GPIO_PIN(LED_PIN)); #endif // LED_PIN } void sleep_us(uint32_t duration) { if (duration <= 4) { // less than the setup time for (volatile uint32_t nop = 0; nop < 5 * duration; nop++); // busy loop, approximate return; } duration -= 4; // subtract setup time systick_counter_disable(); // disable SysTick to reconfigure it if (!systick_set_frequency(1000000, rcc_ahb_frequency)) { // set SysTick frequency to microseconds while (true); // unhandled error } systick_clear(); // reset SysTick systick_interrupt_enable(); // enable interrupt to count duration sleep_duration = duration; // save sleep duration for count down systick_counter_enable(); // start counting while (sleep_duration > 0) { // wait for count down to complete __WFI(); // go to sleep } } void sleep_ms(uint32_t duration) { if (0 == duration) { return; } systick_counter_disable(); // disable SysTick to reconfigure it if (!systick_set_frequency(1000, rcc_ahb_frequency)) { // set SysTick frequency to milliseconds while (true); // unhandled error } systick_clear(); // reset SysTick systick_interrupt_enable(); // enable interrupt to count duration sleep_duration = duration; // save sleep duration for count down systick_counter_enable(); // start counting while (sleep_duration > 0) { // wait for count down to complete __WFI(); // go to sleep } } /** SysTick interrupt handler */ void sys_tick_handler(void) { if (sleep_duration > 0) { sleep_duration--; // decrement duration } if (0 == sleep_duration) { // sleep complete systick_counter_disable(); // stop systick systick_interrupt_disable(); // stop interrupting sleep_duration = 0; // ensure it still is at 0 } } char user_input_get(void) { while (0 == user_input_used) { // wait for user input to be available (don't trust user_input_available since it user modifiable) __WFI(); // go to sleep } volatile char to_return = user_input_buffer[user_input_i]; // get the next available character user_input_i = (user_input_i + 1) % LENGTH(user_input_buffer); // update used buffer user_input_used--; // update used buffer user_input_available = (user_input_used != 0); // update available data return to_return; } void user_input_store(char c) { // only save data if there is space in the buffer if (user_input_used >= LENGTH(user_input_buffer)) { // if buffer is full user_input_i = (user_input_i + 1) % LENGTH(user_input_buffer); // drop oldest data user_input_used--; // update used buffer information } user_input_buffer[(user_input_i + user_input_used) % LENGTH(user_input_buffer)] = c; // put character in buffer user_input_used++; // update used buffer user_input_available = true; // update available data } void board_setup(void) { // setup main clock #if defined(MINIF401) rcc_clock_setup_pll(&rcc_hse_25mhz_3v3[RCC_CLOCK_3V3_84MHZ]); // the MINIF401 uses an STM32F401 which can go up to 84 MHz, and the board has a 25 MHz crystal #else rcc_clock_setup_pll(&rcc_hsi_configs[RCC_CLOCK_3V3_84MHZ]); // use HSI which is present on all boards, and limit to 84MHz (supported by all STM32F4 #endif #if defined(LED_PIN) && defined(LED_ON) // setup LED rcc_periph_clock_enable(GPIO_RCC(LED_PIN)); // enable clock for LED gpio_mode_setup(GPIO_PORT(LED_PIN), GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO_PIN(LED_PIN)); // set LED pin as output #if LED_ON // LED is on when sourcing gpio_set_output_options(GPIO_PORT(LED_PIN), GPIO_OTYPE_PP, GPIO_OSPEED_2MHZ, GPIO_PIN(LED_PIN)); // set LED pin output as push-pull #else // LED is on when sinking gpio_set_output_options(GPIO_PORT(LED_PIN), GPIO_OTYPE_OD, GPIO_OSPEED_2MHZ, GPIO_PIN(LED_PIN)); // set LED pin output as open-drain #endif led_off(); // switch off LED per default #endif // LED_PIN /* // setup button #if defined(BUTTON_PIN) && defined(BUTTON_PRESSED) rcc_periph_clock_enable(GPIO_RCC(BUTTON_PIN)); // enable clock for button exti_select_source(GPIO_EXTI(BUTTON_PIN), GPIO_PORT(BUTTON_PIN)); // mask external interrupt of this pin only for this port #if BUTTON_PRESSED // level goes high when pressed gpio_mode_setup(GPIO_PORT(BUTTON_PIN), GPIO_MODE_INPUT, GPIO_PUPD_PULLDOWN, GPIO_PIN(BUTTON_PIN)); // set GPIO to input and pull down exti_set_trigger(GPIO_EXTI(BUTTON_PIN), EXTI_TRIGGER_RISING); // trigger when button is pressed #else // level goes low when pressed gpio_mode_setup(GPIO_PORT(BUTTON_PIN), GPIO_MODE_INPUT, GPIO_PUPD_PULLUP, GPIO_PIN(BUTTON_PIN)); // set GPIO to input and pull up exti_set_trigger(GPIO_EXTI(BUTTON_PIN), EXTI_TRIGGER_FALLING); // trigger when button is pressed #endif exti_enable_request(GPIO_EXTI(BUTTON_PIN)); // enable external interrupt nvic_enable_irq(GPIO_NVIC_EXTI_IRQ(BUTTON_PIN)); // enable interrupt #endif */ // reset user input buffer user_input_available = false; user_input_i = 0; user_input_used = 0; } /** disconnect USB by sending a reset condition */ static void usb_disconnect(void) { if (OTG_FS_GUSBCFG & OTG_GUSBCFG_FDMOD) { // USB configured as device // pull USB D+ low for a short while OTG_FS_DCTL |= OTG_DCTL_SDIS; // disconnect DP pull-up to simulate a disconnect // in case there is an external pull-up resistor, pull DP low // I have no idea why, but once USB is configured, I can't use PA12/DP back as GPIO gpio_mode_setup(GPIOA, GPIO_MODE_OUTPUT, GPIO_PUPD_NONE, GPIO12); // be sure the D+ pin can be used as GPIO output gpio_set_output_options(GPIOA, GPIO_OTYPE_PP, GPIO_OSPEED_2MHZ, GPIO12); // use push-pull output gpio_clear(GPIOA, GPIO12); // pull D+ low for (volatile uint32_t i = 0; i < 0x2000; i++); // USB disconnected must be at least 10 ms long, at most 100 ms } } void system_memory(void) { usb_disconnect(); // disconnect from USB (if necessary) // for more details, see https://stm32f4-discovery.net/2017/04/tutorial-jump-system-memory-software-stm32/ // deinit RCC (according to STM32CubeF4 source code) RCC_CR |= RCC_CR_HSION; // enable high speed internal clock while (!(RCC_CR & RCC_CR_HSIRDY)); // wait until clock is ready RCC_CR |= (0x10U << RCC_CR_HSITRIM_SHIFT); // set HSITRIM[4:0] bits to the reset value RCC_CFGR = 0;// reset CFGR register while (((RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK) != RCC_CFGR_SWS_HSI); // wait it till clock switch is ready RCC_CR &= ~(RCC_CR_HSEON | RCC_CR_HSEBYP | RCC_CR_CSSON); // clear HSEON, HSEBYP and CSSON bits while (RCC_CR & RCC_CR_HSERDY); // wait till HSE is disabled RCC_CR &= ~RCC_CR_PLLON; // Clear PLLON bit while (RCC_CR & RCC_CR_PLLRDY); // wait till PLL is disabled //RCC_PLLCFGR = 0x24003010; // reset PLLCFGR register to default value (value for STM32F401) RCC_CIR &= ~(RCC_CIR_LSIRDYIE | RCC_CIR_LSERDYIE | RCC_CIR_HSIRDYIE | RCC_CIR_HSERDYIE | RCC_CIR_PLLRDYIE); // disable all interrupts RCC_CIR |= (RCC_CIR_LSIRDYC | RCC_CIR_LSERDYC | RCC_CIR_HSIRDYC | RCC_CIR_HSERDYC | RCC_CIR_PLLRDYC | RCC_CIR_CSSC); // clear all interrupt flags RCC_CR &= ~RCC_CSR_LSION; // clear LSION bit RCC_CSR |= RCC_CSR_RMVF; // reset all CSR flags // switch to system memory RCC_APB2ENR = RCC_APB2ENR_SYSCFGEN; // enable system configure clock (all others are not required) cm_disable_interrupts(); // disable all interrupts SYSCFG_MEMRM = 1; // map system memory to 0x0000 0000 (this bypasses the BOOT0 pin) const uint32_t address = 0x1FFF0000; // system memory address __asm__ volatile ("MSR msp,%0" : :"r"(*(uint32_t*)address)); // set stack pointer to address provided in the beginning of the bootloader (loaded into a register first) (*(void(**)(void))((uint32_t)address + 4))(); // start system memory (by jumping to the reset function which address is stored as second entry of the vector table) // we should not reach this point } void dfu_bootloader(void) { usb_disconnect(); // disconnect from USB (if necessary) // set DFU magic to specific RAM location __dfu_magic[0] = 'D'; __dfu_magic[1] = 'F'; __dfu_magic[2] = 'U'; __dfu_magic[3] = '!'; scb_reset_system(); // reset system (core and peripherals) while (true); // wait for the reset to happen } #if defined(BUTTON_PIN) /** interrupt service routine called when button is pressed */ void GPIO_EXTI_ISR(BUTTON_PIN)(void) { exti_reset_request(GPIO_EXTI(BUTTON_PIN)); // reset interrupt button_flag = true; // perform button action } #endif