Compare commits
15 Commits
master
...
sound_leve
Author | SHA1 | Date | |
---|---|---|---|
21a23e18c1 | |||
93d85322d5 | |||
56d540a04c | |||
9d98ab21fc | |||
58924500e3 | |||
69944a24cf | |||
df14317924 | |||
3779e848db | |||
fccf0b7c0b | |||
54bdd92222 | |||
b9e64f4913 | |||
d4fac33b6e | |||
5b0bb4fe10 | |||
136927c4cb | |||
605181cd26 |
100
README.md
100
README.md
@ -1,4 +1,5 @@
|
||||
This firmware template is designed for development boards based around [STM32 F1 series micro-controller](http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1031).
|
||||
This is the firmware for the sound lever meter.
|
||||
It will read the measurements from a GM1351 sound level meter and send them over Bluetooth.
|
||||
|
||||
project
|
||||
=======
|
||||
@ -6,48 +7,81 @@ project
|
||||
summary
|
||||
-------
|
||||
|
||||
*describe project purpose*
|
||||
The GM1351 is a digital hand held sound level meter.
|
||||
It is available under multiple brands.
|
||||
There is no connector/interface to read the measurements.
|
||||
Instead I am using test point on the back of the PCB.
|
||||
This allows me to monitoring the interface to the LCD and read back the data displayed into measurements.
|
||||
|
||||
The measurements are send transmitted over Bluetooth using a SPP module.
|
||||
|
||||
technology
|
||||
----------
|
||||
|
||||
*described electronic details*
|
||||
The firmware runs on a [black pill](https://wiki.cuvoodoo.info/doku.php?id=stm32f1xx#black_pill) development board.
|
||||
It is based on a STM32F103C8T6 micro-controller.
|
||||
This will do all the processing and control the peripherals.
|
||||
|
||||
board
|
||||
=====
|
||||
The Bluetooth module is a HC-05.
|
||||
It should be configured to be a slave and offer a SPP profile.
|
||||
The measurement will be forwarded by the micro-controller over the UART part configured at 115200 bps 8N1.
|
||||
It will transmit the measurement in the format "123.4 dBa\n".
|
||||
|
||||
The current implementation uses a [core board](https://wiki.cuvoodoo.info/doku.php?id=stm32f1xx#core_board).
|
||||
|
||||
The underlying template also supports following board:
|
||||
|
||||
- [Maple Mini](http://leaflabs.com/docs/hardware/maple-mini.html), based on a STM32F103CBT6
|
||||
- [System Board](https://wiki.cuvoodoo.info/doku.php?id=stm32f1xx#system_board), based on a STM32F103C8T6
|
||||
- [blue pill](https://wiki.cuvoodoo.info/doku.php?id=stm32f1xx#blue_pill), based on a STM32F103C8T6
|
||||
- [black pill](https://wiki.cuvoodoo.info/doku.php?id=stm32f1xx#black_pill), based on a STM32F103C8T6
|
||||
- [core board](https://wiki.cuvoodoo.info/doku.php?id=stm32f1xx#core_board), based on a STM32F103C8T6
|
||||
- [ST-LINK V2 mini](https://wiki.cuvoodoo.info/doku.php?id=jtag#mini_st-link_v2), a ST-LINK/V2 clone based on a STM32F101C8T6
|
||||
- [USB-Blaster](https://wiki.cuvoodoo.info/doku.php?id=jtag#armjishu_usb-blaster), an Altera USB-Blaster clone based on a STM32F101C8T6
|
||||
|
||||
**Which board is used is defined in the Makefile**.
|
||||
This is required to map the user LED and button provided on the board
|
||||
|
||||
The ST-LINK V2 mini clone has SWD test points on the board.
|
||||
Because read protection is enabled, you will first need to remove the protection to be able to flash the firmware.
|
||||
To remove the read protection (and erase flash), run `rake remove_protection` while a SWD adapter is connected.
|
||||
|
||||
The Altera USB-Blaster clone has a pin header for SWD and UART1 on the board.
|
||||
SWD is disabled in the main firmware, and it has read protection.
|
||||
To be able to flash using SWD (or the serial port), the BOOT0 pin must be set to 1 to boot the system memory install of the flash memory.
|
||||
To set BOOT0 to 1, apply 3.3 V on R11, between the resistor and the reference designator, when powering the device.
|
||||
The red LED should stay off while the green LED is on.
|
||||
Now you can remove the read protection (and erase flash), run `rake remove_protection` while a SWD adapter is connected.
|
||||
This does not use a Bluetooth Low Energy (BLE) module because it does not fit the needs.
|
||||
There is no need to save energy since the device needs permanent power just for the display.
|
||||
There is a constant stream of data (not fitting BLE principles).
|
||||
The is a specified Classic Bluetooth profile for serial data: Serial Port Profile (SPP).
|
||||
BLE module use non-standard GATT characteristics for serial data transfer.
|
||||
|
||||
connections
|
||||
===========
|
||||
|
||||
Connect the peripherals the following way (STM32F10X signal; STM32F10X pin; peripheral pin; peripheral signal; comment):
|
||||
Connect the peripherals as described below.
|
||||
|
||||
- *list board to peripheral pin connections*
|
||||
MT3608 voltage regulator module:
|
||||
|
||||
- IN-: ground
|
||||
- IN+: 5V
|
||||
- OUT-: ground
|
||||
- OUT+: IDC 2x3 pin 5
|
||||
|
||||
Set the MT3608 voltage output to 9V.
|
||||
This is meant to replace the GM1351 PP3 9V battery.
|
||||
It kind of also works with 5V, but the LCD is very dim.
|
||||
Since I don't know if the measurements remain accurate at 5V, I prefer to provide the voltage it was designed for.
|
||||
|
||||
HC-05 Bluetooth SPP module:
|
||||
|
||||
- STATE: no connect
|
||||
- RX: USART3_TX/PB10
|
||||
- TX: no connect
|
||||
- GND: ground
|
||||
- VCC: 5V
|
||||
- EN: no connect
|
||||
|
||||
n-channel MOSFET 2N7000:
|
||||
|
||||
- 1 source: ground
|
||||
- 2 gate: PB0, add pull down resistor
|
||||
- 3 drain: IDC 2x3 pin 2
|
||||
|
||||
IDC 2x3 2.54 mm, micro-controller side:
|
||||
|
||||
- 1: ground
|
||||
- 2: PB13, SPI2_SCK
|
||||
- 3: 2N7000 pin 3
|
||||
- 4: PB15, SPI2_MOSI
|
||||
- 5: MT3608 OUT+
|
||||
- 6: PA8
|
||||
|
||||
IDC 2x3 2.54 mm, GM1351 side (solder wires on the PCB):
|
||||
|
||||
- 1: B-
|
||||
- 2: LCD_WR
|
||||
- 3: D7/D8, on the text side, to control the ON/OFF button
|
||||
- 4: LCD_DATA
|
||||
- 5: B+
|
||||
- 6: LCD_CS
|
||||
|
||||
All pins are configured using `define`s in the corresponding source code.
|
||||
|
||||
@ -83,7 +117,7 @@ It is up to the application to advertise USB DFU support (i.e. as does the provi
|
||||
|
||||
The `bootlaoder` image will be flashed using SWD (Serial Wire Debug).
|
||||
For that you need an SWD adapter.
|
||||
The `Makefile` uses a Black Magic Probe (per default), or a ST-Link V2 along OpenOCD software.
|
||||
The `Makefile` uses a ST-Link V2 along OpenOCD software.
|
||||
To flash the `booltoader` using SWD run `rake flash_booloader`.
|
||||
|
||||
Once the `bootloader` is flashed it is possible to flash the `application` over USB using the DFU protocol by running `rake flash`.
|
||||
|
4
Rakefile
4
Rakefile
@ -15,7 +15,7 @@ FIRMWARES = [BOOTLOADER, APPLICATION]
|
||||
|
||||
# which development board is used
|
||||
# supported are: SYSTEM_BOARD, MAPLE_MINI, BLUE_PILL, BLACK_PILL, CORE_BOARD, STLINKV2, BLASTER, BUSVOODOO
|
||||
BOARD = ENV["BOARD"] || "CORE_BOARD"
|
||||
BOARD = ENV["BOARD"] || "BLACK_PILL"
|
||||
|
||||
# libopencm3 definitions
|
||||
LIBOPENCM3_DIR = "libopencm3"
|
||||
@ -184,7 +184,7 @@ end
|
||||
|
||||
# SWD/JTAG adapter used
|
||||
# supported are : STLINKV2 (ST-Link V2), BMP (Black Magic Probe)
|
||||
SWD_ADAPTER = ENV["SWD_ADAPTER"] || "BMP"
|
||||
SWD_ADAPTER = ENV["SWD_ADAPTER"] || "STLINKV2"
|
||||
# openOCD path to control the adapter
|
||||
OOCD = ENV["OOCD"] || "openocd"
|
||||
# openOCD adapted name
|
||||
|
@ -12,7 +12,7 @@
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
/** STM32F1 application example
|
||||
/** STM32F1 application to read out measurements from GM1351 sound level meter and send the over Bluetooth
|
||||
* @file
|
||||
* @author King Kévin <kingkevin@cuvoodoo.info>
|
||||
* @date 2016-2020
|
||||
@ -47,6 +47,8 @@
|
||||
#include "usb_cdcacm.h" // USB CDC ACM utilities
|
||||
#include "terminal.h" // handle the terminal interface
|
||||
#include "menu.h" // menu utilities
|
||||
#include "sensor_gm1351.h" // sound level meter interface
|
||||
#include "spp_tx.h" // to communicate to the Bluetooth module
|
||||
|
||||
/** watchdog period in ms */
|
||||
#define WATCHDOG_PERIOD 10000
|
||||
@ -54,11 +56,7 @@
|
||||
/** set to 0 if the RTC is reset when the board is powered on, only indicates the uptime
|
||||
* set to 1 if VBAT can keep the RTC running when the board is unpowered, indicating the date and time
|
||||
*/
|
||||
#if defined(CORE_BOARD)
|
||||
#define RTC_DATE_TIME 1
|
||||
#else
|
||||
#define RTC_DATE_TIME 0
|
||||
#endif
|
||||
|
||||
/** number of RTC ticks per second
|
||||
* @note use integer divider of oscillator to keep second precision
|
||||
@ -74,6 +72,20 @@ static time_t time_start = 0;
|
||||
volatile bool rtc_internal_tick_flag = false; /**< flag set when internal RTC ticked */
|
||||
/** @} */
|
||||
|
||||
/** if we show the received value */
|
||||
static bool gm1351_show = false;
|
||||
|
||||
/** show/hide received sound level
|
||||
* @param[in] argument not used
|
||||
*/
|
||||
static void command_show(void* argument)
|
||||
{
|
||||
(void)argument; // we won't use the argument
|
||||
gm1351_show = !gm1351_show; // toggle setting
|
||||
puts(gm1351_show ? "show" : "hide");
|
||||
puts(" decoded sound level\n");
|
||||
}
|
||||
|
||||
size_t putc(char c)
|
||||
{
|
||||
size_t length = 0; // number of characters printed
|
||||
@ -128,6 +140,13 @@ static void command_reset(void* argument);
|
||||
*/
|
||||
static void command_bootloader(void* argument);
|
||||
|
||||
/** switch/toggle power of GM1351 sound level meter */
|
||||
static void command_power(void* argument)
|
||||
{
|
||||
(void)argument; // we won't use the argument
|
||||
sensor_gm1351_power_toggle(); // toggle power of meter
|
||||
}
|
||||
|
||||
/** list of all supported commands */
|
||||
static const struct menu_command_t menu_commands[] = {
|
||||
{
|
||||
@ -180,6 +199,23 @@ static const struct menu_command_t menu_commands[] = {
|
||||
.argument_description = NULL,
|
||||
.command_handler = &command_bootloader,
|
||||
},
|
||||
// custom actions
|
||||
{
|
||||
.shortcut = 'p',
|
||||
.name = "power",
|
||||
.command_description = "switch power of GM1351 sound level meter",
|
||||
.argument = MENU_ARGUMENT_NONE,
|
||||
.argument_description = NULL,
|
||||
.command_handler = &command_power,
|
||||
},
|
||||
{
|
||||
.shortcut = 's',
|
||||
.name = "show",
|
||||
.command_description = "show/hide decoded sound level",
|
||||
.argument = MENU_ARGUMENT_NONE,
|
||||
.argument_description = NULL,
|
||||
.command_handler = &command_show,
|
||||
},
|
||||
};
|
||||
|
||||
static void command_help(void* argument)
|
||||
@ -341,7 +377,7 @@ void main(void)
|
||||
uart_setup(); // setup USART (for printing)
|
||||
#endif
|
||||
usb_cdcacm_setup(); // setup USB CDC ACM (for printing)
|
||||
puts("\nwelcome to the CuVoodoo STM32F1 example application\n"); // print welcome message
|
||||
puts("\nwelcome to the CuVoodoo GM1351 sound level meter reader\n"); // print welcome message
|
||||
|
||||
#if DEBUG
|
||||
// show reset cause
|
||||
@ -394,6 +430,14 @@ void main(void)
|
||||
time_start = rtc_get_counter_val(); // get start time from internal RTC
|
||||
puts("OK\n");
|
||||
|
||||
puts("setup UART to Bluetooth SPP module: ");
|
||||
spp_tx_setup();
|
||||
puts("OK\n");
|
||||
|
||||
puts("setup GM1351 sound level meter: ");
|
||||
sensor_gm1351_setup();
|
||||
puts("OK\n");
|
||||
|
||||
// setup terminal
|
||||
terminal_prefix = ""; // set default prefix
|
||||
terminal_process = &process_command; // set central function to process commands
|
||||
@ -402,6 +446,7 @@ void main(void)
|
||||
// start main loop
|
||||
bool action = false; // if an action has been performed don't go to sleep
|
||||
button_flag = false; // reset button flag
|
||||
uint32_t gm1351_last = rtc_get_counter_val(); // last time a measurement has been received
|
||||
while (true) { // infinite loop
|
||||
iwdg_reset(); // kick the dog
|
||||
if (user_input_available) { // user input is available
|
||||
@ -420,8 +465,30 @@ void main(void)
|
||||
if (rtc_internal_tick_flag) { // the internal RTC ticked
|
||||
rtc_internal_tick_flag = false; // reset flag
|
||||
action = true; // action has been performed
|
||||
if (0 == (rtc_get_counter_val() % RTC_TICKS_SECOND)) { // one seond has passed
|
||||
if (0 == (rtc_get_counter_val() % RTC_TICKS_SECOND)) { // one second has passed
|
||||
led_toggle(); // toggle LED (good to indicate if main function is stuck)
|
||||
if ((rtc_get_counter_val() - gm1351_last) / RTC_TICKS_SECOND >= 3) { // no measurement has been received for some time
|
||||
sensor_gm1351_power_toggle(); // toggle power of meter
|
||||
gm1351_last = rtc_get_counter_val(); // restart the wait
|
||||
puts("no value received from GM1351. trying to power it on\n");
|
||||
}
|
||||
}
|
||||
}
|
||||
if (sensor_gm1351_received_flag) { // meter data has been received
|
||||
action = true; // action has been performed
|
||||
sensor_gm1351_received_flag = false; // reset flag
|
||||
if (sensor_gm1351_decode()) { // decode received value
|
||||
led_toggle(); // notify user about activity
|
||||
gm1351_last = rtc_get_counter_val(); // remember we got a value
|
||||
char measurement[10 + 1]; // to store the string with the measurement value
|
||||
snprintf(measurement, LENGTH(measurement), "%u.%u dBa\n", sensor_gm1351_decidba / 10, sensor_gm1351_decidba % 10); // generate string
|
||||
if (gm1351_show) {
|
||||
puts(measurement); // display measurement to user
|
||||
}
|
||||
// sen measurement to Bluetooth module
|
||||
for (uint8_t i = 0; i < LENGTH(measurement) && measurement[i] != '\0'; i++) {
|
||||
spp_tx_putchar_nonblocking( measurement[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (action) { // go to sleep if nothing had to be done, else recheck for activity
|
||||
|
2
global.h
2
global.h
@ -20,7 +20,7 @@
|
||||
#pragma once
|
||||
|
||||
/** enable debugging functionalities */
|
||||
#define DEBUG true
|
||||
#define DEBUG false
|
||||
|
||||
/** get the length of an array */
|
||||
#define LENGTH(x) (sizeof(x) / sizeof((x)[0]))
|
||||
|
@ -1,611 +0,0 @@
|
||||
/* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
/** library to communicate with an SD card flash memory using the SPI mode (code)
|
||||
* @file flash_sdcard.c
|
||||
* @author King Kévin <kingkevin@cuvoodoo.info>
|
||||
* @date 2017
|
||||
* @note peripherals used: SPI @ref flash_sdcard_spi
|
||||
* @warning all calls are blocking
|
||||
* @implements SD Specifications, Part 1, Physical Layer, Simplified Specification, Version 6.00, 10 April 10 2017
|
||||
* @todo use SPI unidirectional mode, use DMA, force/wait going to idle state when initializing, filter out reserved values, check sector against size
|
||||
*/
|
||||
|
||||
/* standard libraries */
|
||||
#include <stdint.h> // standard integer types
|
||||
#include <stdlib.h> // general utilities
|
||||
|
||||
/* STM32 (including CM3) libraries */
|
||||
#include <libopencmsis/core_cm3.h> // Cortex M3 utilities
|
||||
#include <libopencm3/stm32/rcc.h> // real-time control clock library
|
||||
#include <libopencm3/stm32/gpio.h> // general purpose input output library
|
||||
#include <libopencm3/stm32/spi.h> // SPI library
|
||||
|
||||
#include "global.h" // global utilities
|
||||
#include "flash_sdcard.h" // SD card header and definitions
|
||||
|
||||
/** @defgroup flash_sdcard_spi SPI used to communication with SD card
|
||||
* @{
|
||||
*/
|
||||
#define FLASH_SDCARD_SPI 1 /**< SPI peripheral */
|
||||
/** @} */
|
||||
|
||||
/** if the card has been initialized successfully */
|
||||
static bool initialized = false;
|
||||
/** maximum N_AC value (in 8-clock cycles) (time between the response token R1 and data block when reading data (see section 7.5.4)
|
||||
* @note this is set to N_CR until we can read CSD (see section 7.2.6)
|
||||
*/
|
||||
static uint32_t n_ac = 8;
|
||||
/** is it a Standard Capacity SD card (true), or High Capacity SD cards (false)
|
||||
* @note this is indicated in the Card Capacity Status bit or OCR (set for high capacity)
|
||||
* @note this is important for addressing: for standard capacity cards the address is the byte number, for high capacity cards it is the 512-byte block number
|
||||
*/
|
||||
static bool sdsc = false;
|
||||
/** size of card in bytes */
|
||||
static uint64_t sdcard_size = 0;
|
||||
/** size of an erase block bytes */
|
||||
static uint32_t erase_size = 0;
|
||||
|
||||
/** table for CRC-7 calculation for the command messages (see section 4.5)
|
||||
* @note faster than calculating the CRC and doesn't cost a lot of space
|
||||
* @note generated using pycrc --width=7 --poly=0x09 --reflect-in=false --reflect-out=false --xor-in=0x00 --xor-out=0x00 --generate=table
|
||||
*/
|
||||
static const uint8_t crc7_table[] = {
|
||||
0x00, 0x09, 0x12, 0x1b, 0x24, 0x2d, 0x36, 0x3f, 0x48, 0x41, 0x5a, 0x53, 0x6c, 0x65, 0x7e, 0x77,
|
||||
0x19, 0x10, 0x0b, 0x02, 0x3d, 0x34, 0x2f, 0x26, 0x51, 0x58, 0x43, 0x4a, 0x75, 0x7c, 0x67, 0x6e,
|
||||
0x32, 0x3b, 0x20, 0x29, 0x16, 0x1f, 0x04, 0x0d, 0x7a, 0x73, 0x68, 0x61, 0x5e, 0x57, 0x4c, 0x45,
|
||||
0x2b, 0x22, 0x39, 0x30, 0x0f, 0x06, 0x1d, 0x14, 0x63, 0x6a, 0x71, 0x78, 0x47, 0x4e, 0x55, 0x5c,
|
||||
0x64, 0x6d, 0x76, 0x7f, 0x40, 0x49, 0x52, 0x5b, 0x2c, 0x25, 0x3e, 0x37, 0x08, 0x01, 0x1a, 0x13,
|
||||
0x7d, 0x74, 0x6f, 0x66, 0x59, 0x50, 0x4b, 0x42, 0x35, 0x3c, 0x27, 0x2e, 0x11, 0x18, 0x03, 0x0a,
|
||||
0x56, 0x5f, 0x44, 0x4d, 0x72, 0x7b, 0x60, 0x69, 0x1e, 0x17, 0x0c, 0x05, 0x3a, 0x33, 0x28, 0x21,
|
||||
0x4f, 0x46, 0x5d, 0x54, 0x6b, 0x62, 0x79, 0x70, 0x07, 0x0e, 0x15, 0x1c, 0x23, 0x2a, 0x31, 0x38,
|
||||
0x41, 0x48, 0x53, 0x5a, 0x65, 0x6c, 0x77, 0x7e, 0x09, 0x00, 0x1b, 0x12, 0x2d, 0x24, 0x3f, 0x36,
|
||||
0x58, 0x51, 0x4a, 0x43, 0x7c, 0x75, 0x6e, 0x67, 0x10, 0x19, 0x02, 0x0b, 0x34, 0x3d, 0x26, 0x2f,
|
||||
0x73, 0x7a, 0x61, 0x68, 0x57, 0x5e, 0x45, 0x4c, 0x3b, 0x32, 0x29, 0x20, 0x1f, 0x16, 0x0d, 0x04,
|
||||
0x6a, 0x63, 0x78, 0x71, 0x4e, 0x47, 0x5c, 0x55, 0x22, 0x2b, 0x30, 0x39, 0x06, 0x0f, 0x14, 0x1d,
|
||||
0x25, 0x2c, 0x37, 0x3e, 0x01, 0x08, 0x13, 0x1a, 0x6d, 0x64, 0x7f, 0x76, 0x49, 0x40, 0x5b, 0x52,
|
||||
0x3c, 0x35, 0x2e, 0x27, 0x18, 0x11, 0x0a, 0x03, 0x74, 0x7d, 0x66, 0x6f, 0x50, 0x59, 0x42, 0x4b,
|
||||
0x17, 0x1e, 0x05, 0x0c, 0x33, 0x3a, 0x21, 0x28, 0x5f, 0x56, 0x4d, 0x44, 0x7b, 0x72, 0x69, 0x60,
|
||||
0x0e, 0x07, 0x1c, 0x15, 0x2a, 0x23, 0x38, 0x31, 0x46, 0x4f, 0x54, 0x5d, 0x62, 0x6b, 0x70, 0x79
|
||||
};
|
||||
|
||||
/** wait one SPI round (one SPI word)
|
||||
*/
|
||||
static void flash_sdcard_spi_wait(void)
|
||||
{
|
||||
spi_send(SPI(FLASH_SDCARD_SPI), 0xffff); // send not command token (i.e. starting with 1)
|
||||
}
|
||||
|
||||
/** read one SPI word
|
||||
* @return SPI word read
|
||||
*/
|
||||
static uint16_t flash_sdcard_spi_read(void)
|
||||
{
|
||||
spi_send(SPI(FLASH_SDCARD_SPI), 0xffff); // send not command token (i.e. starting with 1)
|
||||
(void)SPI_DR(SPI(FLASH_SDCARD_SPI)); // clear RXNE flag (by reading previously received data (not done by spi_read or spi_xref)
|
||||
while (!(SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_TXE)); // wait until Tx buffer is empty before clearing the (previous) RXNE flag
|
||||
while (!(SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_RXNE)); // wait for next data to be available
|
||||
return SPI_DR(SPI(FLASH_SDCARD_SPI)); // return received adat
|
||||
}
|
||||
|
||||
/** test if card is present
|
||||
* @return if card has been detected
|
||||
* @note this use the SD card detection mechanism (CD/CS is high card is inserted due to the internal 50 kOhm resistor)
|
||||
*/
|
||||
static bool flash_sdcard_card_detect(void)
|
||||
{
|
||||
rcc_periph_clock_enable(RCC_SPI_NSS_PORT(FLASH_SDCARD_SPI)); // enable clock for NSS pin port peripheral for SD card CD signal
|
||||
gpio_set_mode(SPI_NSS_PORT(FLASH_SDCARD_SPI), GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, SPI_NSS_PIN(FLASH_SDCARD_SPI)); // set NSS pin as input to read CD signal
|
||||
gpio_clear(SPI_NSS_PORT(FLASH_SDCARD_SPI), SPI_NSS_PIN(FLASH_SDCARD_SPI)); // pull pin low to avoid false positive when card in not inserted
|
||||
return (0!=gpio_get(SPI_NSS_PORT(FLASH_SDCARD_SPI), SPI_NSS_PIN(FLASH_SDCARD_SPI))); // read CD signal: is card is present the internal 50 kOhm pull-up resistor will override our 1 MOhm pull-down resistor and set the signal high (see section 6.2)
|
||||
}
|
||||
|
||||
/** transmit command token
|
||||
* @param[in] index command index
|
||||
* @param[in] argument command argument
|
||||
*/
|
||||
static void flash_sdcard_send_command(uint8_t index, uint32_t argument)
|
||||
{
|
||||
uint8_t command[5] = { 0x40+(index&0x3f), argument>>24, argument>>16, argument>>8, argument>>0 }; // commands are 5 bytes long, plus 1 bytes of CRC (see section 7.3.1.1)
|
||||
uint8_t crc7 = 0x00; // CRC-7 checksum for command message
|
||||
// send command
|
||||
for (uint8_t i=0; i<LENGTH(command); i++) {
|
||||
spi_send(SPI(FLASH_SDCARD_SPI), command[i]); // send data
|
||||
crc7 = (crc7_table[((crc7<<1)^command[i])])&0x7f; // update checksum
|
||||
}
|
||||
spi_send(SPI(FLASH_SDCARD_SPI), (crc7<<1)+0x01); // send CRC value (see section 7.3.1.1)
|
||||
}
|
||||
|
||||
/** transmit command token and receive response token
|
||||
* @param[in] index command index
|
||||
* @param[in] argument command argument
|
||||
* @param[out] response response data to read (if no error occurred)
|
||||
* @param[in] size size of response to read
|
||||
* @return response token R1 or 0xff if error occurred or card is not present
|
||||
*/
|
||||
static uint8_t flash_sdcard_command_response(uint8_t index, uint32_t argument, uint8_t* response, size_t size)
|
||||
{
|
||||
// send command token
|
||||
gpio_clear(SPI_NSS_PORT(FLASH_SDCARD_SPI), SPI_NSS_PIN(FLASH_SDCARD_SPI)); // set CS low to select slave and start SPI mode (see section 7.2)
|
||||
flash_sdcard_spi_wait(); // wait for N_CS (min. 0, but it works better with 8 clock cycles) before writing command (see section 7.5.1.1)
|
||||
flash_sdcard_send_command(index, argument); // send command token
|
||||
|
||||
// get response token R1
|
||||
uint8_t r1 = 0xff; // response token R1 (see section 7.3.2.1)
|
||||
for (uint8_t i=0; i<8 && r1&0x80; i++) { // wait for N_CR (1 to 8 8 clock cycles) before reading response (see section 7.5.1.1)
|
||||
r1 = flash_sdcard_spi_read(); // get response (see section 7.3.2.1)
|
||||
}
|
||||
if (0x00==(r1&0xfe) && 0!=size && NULL!=response) { // we have to read a response
|
||||
for (size_t i=0; i<size; i++) {
|
||||
response[i] = flash_sdcard_spi_read(); // get byte
|
||||
}
|
||||
}
|
||||
|
||||
// end communication
|
||||
while (SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_BSY); // wait until not busy (= transmission completed)
|
||||
// wait for N_EC (min. 0) before closing communication (see section 7.5.1.1)
|
||||
gpio_set(SPI_NSS_PORT(FLASH_SDCARD_SPI), SPI_NSS_PIN(FLASH_SDCARD_SPI)); // set CS high to unselect card
|
||||
// wait for N_DS (min. 0) before allowing any further communication (see section 7.5.1.1)
|
||||
return r1;
|
||||
}
|
||||
|
||||
/** read a data block
|
||||
* @param[out] data data block to read (if no error occurred)
|
||||
* @param[in] size size of response to read (a multiple of 2)
|
||||
* @return 0 if succeeded, else control token (0xff for other errors)
|
||||
*/
|
||||
static uint8_t flash_sdcard_read_block(uint8_t* data, size_t size)
|
||||
{
|
||||
if (size%2 || 0==size || NULL==data) { // can't (and shouldn't) read odd number of bytes
|
||||
return 0xff;
|
||||
}
|
||||
|
||||
uint8_t token = 0xff; // to save the control block token (see section 7.3.3)
|
||||
for (uint32_t i=0; i<n_ac && token==0xff; i++) { // wait for N_AC before reading data block (see section 7.5.2.1)
|
||||
token = flash_sdcard_spi_read(); // get control token (see section 7.3.3)
|
||||
}
|
||||
if (0==(token&0xf0)) { // data error token received (see section 7.3.3.3)
|
||||
if (0==(token&0x0f)) { // unknown error
|
||||
token = 0xff;
|
||||
}
|
||||
} else if (0xfe==token) { // start block token received (see section 7.3.3.2)
|
||||
// switch to 16-bits SPI data frame so we can use use built-in CRC-16
|
||||
while (!(SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_TXE)); // wait until the end of any transmission
|
||||
while (SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_BSY); // wait until not busy before disabling
|
||||
spi_disable(SPI(FLASH_SDCARD_SPI)); // disable SPI to change format
|
||||
spi_set_dff_16bit(SPI(FLASH_SDCARD_SPI)); // set SPI frame to 16 bits
|
||||
SPI_CRC_PR(FLASH_SDCARD_SPI) = 0x1021; // set CRC-16-CCITT polynomial for data blocks (x^16+x^12+x^5+1) (see section 7.2.3)
|
||||
spi_enable_crc(SPI(FLASH_SDCARD_SPI)); // enable and clear CRC
|
||||
spi_enable(SPI(FLASH_SDCARD_SPI)); // enable SPI back
|
||||
// get block data (ideally use DMA, but switching makes it more complex and this part doesn't take too much time)
|
||||
for (size_t i=0; i<size/2; i++) {
|
||||
uint16_t word = flash_sdcard_spi_read(); // get word
|
||||
data[i*2+0] = (word>>8); // save byte
|
||||
data[i*2+1] = (word>>0); // save byte
|
||||
}
|
||||
flash_sdcard_spi_read(); // read CRC (the CRC after the data block should clear the computed CRC)
|
||||
if (SPI_CRC_RXR(FLASH_SDCARD_SPI)) { // CRC is wrong
|
||||
token = 0xff;
|
||||
} else { // no error occurred
|
||||
token = 0;
|
||||
}
|
||||
// switch back to 8-bit SPI frames
|
||||
while (!(SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_TXE)); // wait until the end of any transmission
|
||||
while (SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_BSY); // wait until not busy before disabling
|
||||
spi_disable(SPI(FLASH_SDCARD_SPI)); // disable SPI to change format
|
||||
spi_disable_crc(SPI(FLASH_SDCARD_SPI)); // disable CRC since we don't use it anymore (and this allows us to clear the CRC next time we use it)
|
||||
spi_set_dff_8bit(SPI(FLASH_SDCARD_SPI)); // set SPI frame to 8 bits
|
||||
spi_enable(SPI(FLASH_SDCARD_SPI)); // enable SPI back
|
||||
} else { // start block token not received
|
||||
token = 0xff;
|
||||
}
|
||||
|
||||
return token;
|
||||
}
|
||||
|
||||
/** write a data block
|
||||
* @param[in] data data block to write
|
||||
* @param[in] size size of response to read (a multiple of 2)
|
||||
* @return data response token (0xff for other errors)
|
||||
*/
|
||||
static uint8_t flash_sdcard_write_block(uint8_t* data, size_t size)
|
||||
{
|
||||
if (size%2 || 0==size || NULL==data) { // can't (and shouldn't) read odd number of bytes
|
||||
return 0xff;
|
||||
}
|
||||
|
||||
spi_send(SPI(FLASH_SDCARD_SPI), 0xfe); // send start block token (see section 7.3.3.2)
|
||||
|
||||
// switch to 16-bits SPI data frame so we can use use built-in CRC-16
|
||||
while (!(SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_TXE)); // wait until the end of any transmission
|
||||
while (SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_BSY); // wait until not busy before disabling
|
||||
spi_disable(SPI(FLASH_SDCARD_SPI)); // disable SPI to change format
|
||||
spi_set_dff_16bit(SPI(FLASH_SDCARD_SPI)); // set SPI frame to 16 bits
|
||||
SPI_CRC_PR(FLASH_SDCARD_SPI) = 0x1021; // set CRC-16-CCITT polynomial for data blocks (x^16+x^12+x^5+1) (see section 7.2.3)
|
||||
spi_enable_crc(SPI(FLASH_SDCARD_SPI)); // enable and clear CRC
|
||||
spi_enable(SPI(FLASH_SDCARD_SPI)); // enable SPI back
|
||||
// send block data (ideally use DMA, but switching makes it more complex and this part doesn't take too much time)
|
||||
for (size_t i=0; i<size/2; i++) {
|
||||
uint16_t word = (data[i*2+0]<<8)+data[i*2+1]; // prepare SPI frame
|
||||
spi_send(SPI(FLASH_SDCARD_SPI), word); // senf data frame
|
||||
}
|
||||
spi_set_next_tx_from_crc(SPI(FLASH_SDCARD_SPI)); // send CRC
|
||||
// switch back to 8-bit SPI frames
|
||||
while (!(SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_TXE)); // wait until the end of any transmission
|
||||
while (SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_BSY); // wait until not busy before disabling
|
||||
spi_disable(SPI(FLASH_SDCARD_SPI)); // disable SPI to change format
|
||||
spi_set_next_tx_from_buffer(SPI(FLASH_SDCARD_SPI)); // don't send CRC
|
||||
spi_disable_crc(SPI(FLASH_SDCARD_SPI)); // disable CRC since we don't use it anymore (and this allows us to clear the CRC next time we use it)
|
||||
spi_set_dff_8bit(SPI(FLASH_SDCARD_SPI)); // set SPI frame to 8 bits
|
||||
spi_enable(SPI(FLASH_SDCARD_SPI)); // enable SPI back
|
||||
|
||||
uint8_t token = 0xff;
|
||||
while (0x01!=(token&0x11)) {
|
||||
token = flash_sdcard_spi_read(); // get data response token (see section 7.3.3.1)
|
||||
}
|
||||
while (0==flash_sdcard_spi_read()); // wait N_EC while the card is busy programming the data
|
||||
|
||||
return token;
|
||||
}
|
||||
/** get card status
|
||||
* @param[out] status SD status (512 bits)
|
||||
* @return response token R2 or 0xffff if error occurred or card is not present
|
||||
*/
|
||||
static uint16_t flash_sdcard_status(uint8_t* status)
|
||||
{
|
||||
// send CMD55 (APP_CMD) to issue following application command (see table 7-4)
|
||||
uint8_t r1 = flash_sdcard_command_response(55, 0, NULL, 0); // (see table 7-3)
|
||||
if ((r1&0xfe)) { // error occurred, not in idle state
|
||||
return false;
|
||||
}
|
||||
|
||||
// send ACMD13 command
|
||||
gpio_clear(SPI_NSS_PORT(FLASH_SDCARD_SPI), SPI_NSS_PIN(FLASH_SDCARD_SPI)); // set CS low to select slave and start SPI mode (see section 7.2)
|
||||
flash_sdcard_spi_wait(); // wait for N_CS (min. 0, but it works better with 8 clock cycles) before writing command (see section 7.5.2.1)
|
||||
flash_sdcard_send_command(13, 0); // send ACMD13 (SD_STATUS) (see table 7-4)
|
||||
|
||||
// get response token R2
|
||||
uint16_t r2 = 0xffff; // response token R2 (see section 7.3.2.3)
|
||||
for (uint8_t i=0; i<8 && r2&0x8000; i++) { // wait for N_CR (1 to 8 8 clock cycles) before reading response (see section 7.5.1.1)
|
||||
r2 = (flash_sdcard_spi_read()<<8); // get first byte of response (see section 7.3.2.1)
|
||||
}
|
||||
if (0==(r2&0x8000)) { // got the first byte
|
||||
r2 += flash_sdcard_spi_read(); // read second byte (see 7.3.2.3)
|
||||
}
|
||||
|
||||
// get data block
|
||||
if (0==r2) { // no error
|
||||
if (flash_sdcard_read_block(status, 64)) { // read 512 bits data block containing SD status
|
||||
r2 |= (1<<11); // set communication error
|
||||
}
|
||||
}
|
||||
|
||||
// end communication
|
||||
while (SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_BSY); // wait until not busy (= transmission completed)
|
||||
// wait for N_EC (min. 0) before closing communication (see section 7.5.1.1)
|
||||
gpio_set(SPI_NSS_PORT(FLASH_SDCARD_SPI), SPI_NSS_PIN(FLASH_SDCARD_SPI)); // set CS high to unselect card
|
||||
// wait for N_DS (min. 0) before allowing any further communication (see section 7.5.1.1)
|
||||
return r2;
|
||||
}
|
||||
|
||||
/** transmit command token, receive response token and data block
|
||||
* @param[in] index command index
|
||||
* @param[in] argument command argument
|
||||
* @param[out] data data block to read (if no error occurred)
|
||||
* @param[in] size size of data to read (a multiple of 2)
|
||||
* @return response token R1 or 0xff if error occurred or card is not present
|
||||
*/
|
||||
static uint8_t flash_sdcard_data_read(uint8_t index, uint32_t argument, uint8_t* data, size_t size)
|
||||
{
|
||||
if (size%2 || 0==size || NULL==data) { // can't (and shouldn't) read odd number of bytes
|
||||
return 0xff;
|
||||
}
|
||||
|
||||
// send command token
|
||||
gpio_clear(SPI_NSS_PORT(FLASH_SDCARD_SPI), SPI_NSS_PIN(FLASH_SDCARD_SPI)); // set CS low to select slave and start SPI mode (see section 7.2)
|
||||
flash_sdcard_spi_wait(); // wait for N_CS (min. 0, but it works better with 8 clock cycles) before writing command (see section 7.5.2.1)
|
||||
flash_sdcard_send_command(index, argument); // send command token
|
||||
|
||||
// get response token R1
|
||||
uint8_t r1 = 0xff; // response token R1 (see section 7.3.2.1)
|
||||
for (uint8_t i=0; i<8 && r1&0x80; i++) { // wait for N_CR (1 to 8 8 clock cycles) before reading response (see section 7.5.1.1)
|
||||
r1 = flash_sdcard_spi_read(); // get response (see section 7.3.2.1)
|
||||
}
|
||||
|
||||
// get data block
|
||||
if (0x00==r1) { // we can read a data block
|
||||
if (flash_sdcard_read_block(data, size)) { // read data block
|
||||
r1 |= (1<<3); // set communication error
|
||||
}
|
||||
}
|
||||
|
||||
// end communication
|
||||
while (SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_BSY); // wait until not busy (= transmission completed)
|
||||
// wait for N_EC (min. 0) before closing communication (see section 7.5.1.1)
|
||||
gpio_set(SPI_NSS_PORT(FLASH_SDCARD_SPI), SPI_NSS_PIN(FLASH_SDCARD_SPI)); // set CS high to unselect card
|
||||
// wait for N_DS (min. 0) before allowing any further communication (see section 7.5.1.1)
|
||||
return r1;
|
||||
}
|
||||
|
||||
/** transmit command token, receive response token and write data block
|
||||
* @param[in] index command index
|
||||
* @param[in] argument command argument
|
||||
* @param[out] data data block to write
|
||||
* @param[in] size size of data to write (a multiple of 2)
|
||||
* @return data response token, or 0xff if error occurred or card is not present
|
||||
* @note at the end of a write operation the SD status should be check to ensure no error occurred during programming
|
||||
*/
|
||||
static uint8_t flash_sdcard_data_write(uint8_t index, uint32_t argument, uint8_t* data, size_t size)
|
||||
{
|
||||
if (size%2 || 0==size || NULL==data) { // can't (and shouldn't) write odd number of bytes
|
||||
return 0xff;
|
||||
}
|
||||
|
||||
// send command token
|
||||
gpio_clear(SPI_NSS_PORT(FLASH_SDCARD_SPI), SPI_NSS_PIN(FLASH_SDCARD_SPI)); // set CS low to select slave and start SPI mode (see section 7.2)
|
||||
flash_sdcard_spi_wait(); // wait for N_CS (min. 0, but it works better with 8 clock cycles) before writing command (see section 7.5.2.1)
|
||||
flash_sdcard_send_command(index, argument); // send command token
|
||||
|
||||
// get response token R1
|
||||
uint8_t r1 = 0xff; // response token R1 (see section 7.3.2.1)
|
||||
for (uint8_t i=0; i<8 && r1&0x80; i++) { // wait for N_CR (1 to 8 8 clock cycles) before reading response (see section 7.5.1.1)
|
||||
r1 = flash_sdcard_spi_read(); // get response (see section 7.3.2.1)
|
||||
}
|
||||
|
||||
// write data block
|
||||
uint8_t drt = 0xff; // data response token (see section 7.3.3.1)
|
||||
if (0x00==r1) { // we have to write the data block
|
||||
drt = flash_sdcard_write_block(data, size); // write data block
|
||||
}
|
||||
|
||||
// end communication
|
||||
while (SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_BSY); // wait until not busy (= transmission completed)
|
||||
// wait for N_EC (min. 0) before closing communication (see section 7.5.1.1)
|
||||
gpio_set(SPI_NSS_PORT(FLASH_SDCARD_SPI), SPI_NSS_PIN(FLASH_SDCARD_SPI)); // set CS high to unselect card
|
||||
// wait for N_DS (min. 0) before allowing any further communication (see section 7.5.1.1)
|
||||
|
||||
return drt;
|
||||
}
|
||||
|
||||
bool flash_sdcard_setup(void)
|
||||
{
|
||||
// reset values
|
||||
initialized = false;
|
||||
n_ac = 8;
|
||||
sdcard_size = 0;
|
||||
erase_size = 0;
|
||||
|
||||
// check if card is present
|
||||
if (!flash_sdcard_card_detect()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// configure SPI peripheral
|
||||
rcc_periph_clock_enable(RCC_SPI_SCK_PORT(FLASH_SDCARD_SPI)); // enable clock for GPIO peripheral for clock signal
|
||||
gpio_set_mode(SPI_SCK_PORT(FLASH_SDCARD_SPI), GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, SPI_SCK_PIN(FLASH_SDCARD_SPI)); // set SCK as output (clock speed will be negotiated later)
|
||||
rcc_periph_clock_enable(RCC_SPI_MOSI_PORT(FLASH_SDCARD_SPI)); // enable clock for GPIO peripheral for MOSI signal
|
||||
gpio_set_mode(SPI_MOSI_PORT(FLASH_SDCARD_SPI), GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, SPI_MOSI_PIN(FLASH_SDCARD_SPI)); // set MOSI as output
|
||||
rcc_periph_clock_enable(RCC_SPI_MISO_PORT(FLASH_SDCARD_SPI)); // enable clock for GPIO peripheral for MISO signal
|
||||
gpio_set_mode(SPI_MISO_PORT(FLASH_SDCARD_SPI), GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, SPI_MISO_PIN(FLASH_SDCARD_SPI)); // set MISO as input
|
||||
gpio_set(SPI_MISO_PORT(FLASH_SDCARD_SPI), SPI_MISO_PIN(FLASH_SDCARD_SPI)); // pull pin high to detect when the card is not answering (or not present) since responses always start with MSb 0
|
||||
rcc_periph_clock_enable(RCC_SPI_NSS_PORT(FLASH_SDCARD_SPI)); // enable clock for GPIO peripheral for NSS (CS) signal
|
||||
gpio_set_mode(SPI_NSS_PORT(FLASH_SDCARD_SPI), GPIO_MODE_OUTPUT_10_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, SPI_NSS_PIN(FLASH_SDCARD_SPI)); // set NSS (CS) as output
|
||||
rcc_periph_clock_enable(RCC_AFIO); // enable clock for SPI alternate function
|
||||
rcc_periph_clock_enable(RCC_SPI(FLASH_SDCARD_SPI)); // enable clock for SPI peripheral
|
||||
spi_reset(SPI(FLASH_SDCARD_SPI)); // clear SPI values to default
|
||||
spi_init_master(SPI(FLASH_SDCARD_SPI), SPI_CR1_BAUDRATE_FPCLK_DIV_256, SPI_CR1_CPOL_CLK_TO_0_WHEN_IDLE, SPI_CR1_CPHA_CLK_TRANSITION_1, SPI_CR1_DFF_8BIT, SPI_CR1_MSBFIRST); // initialise SPI as master, divide clock by 256 (72E6/256=281 kHz) since maximum SD card clock frequency (fOD, see section 7.8/6.6.6) during initial card-identification mode is 400 kHz (maximum SPI PCLK clock is 72 Mhz, depending on which SPI is used), set clock polarity to idle low (not that important), set clock phase to do bit change on falling edge (from SD card spec, polarity depends on clock phase), use 8 bits frames (as per spec), use MSb first
|
||||
spi_set_full_duplex_mode(SPI(FLASH_SDCARD_SPI)); // ensure we are in full duplex mode
|
||||
spi_enable_software_slave_management(SPI(FLASH_SDCARD_SPI)); // control NSS (CS) manually
|
||||
spi_set_nss_high(SPI(FLASH_SDCARD_SPI)); // set NSS high (internally) so we can output
|
||||
spi_disable_ss_output(SPI(FLASH_SDCARD_SPI)); // disable NSS output since we control CS manually
|
||||
gpio_set(SPI_NSS_PORT(FLASH_SDCARD_SPI), SPI_NSS_PIN(FLASH_SDCARD_SPI)); // set CS high to unselect card
|
||||
// sadly we can't use the interrupts as events to sleep (WFE) since sleep disables also communication (e.g. going to sleep until Rx buffer is not empty prevents transmission)
|
||||
spi_enable(SPI(FLASH_SDCARD_SPI)); // enable SPI
|
||||
|
||||
// start card-identification (see section 7.2.1/4.2)
|
||||
uint8_t r1 = 0;
|
||||
// send CMD0 (GO_IDLE_START) to start the card identification (see section 7.2.1)
|
||||
r1 = flash_sdcard_command_response(0, 0, NULL, 0); // (see table 7-3)
|
||||
if (0x01!=r1) { // error occurred, not in idle state
|
||||
return false;
|
||||
}
|
||||
// send CMD8 (SEND_IF_COND) to inform about voltage (1: 2.7-3.6V, aa: recommended check pattern) (see section 7.2.1)
|
||||
uint8_t r7[4] = {0}; // to store response toke R7 (see section 7.3.2.6)
|
||||
r1 = flash_sdcard_command_response(8, 0x000001aa, r7, sizeof(r7)); // (see table 7-3)
|
||||
if (0x01==r1) { // command supported, in idle state
|
||||
if (!(r7[2]&0x1)) { // 2.7-3.6V not supported (see table 5-1)
|
||||
return false;
|
||||
} else if (0xaa!=r7[3]) { // recommended pattern not returned (see section 4.3.13)
|
||||
return false;
|
||||
}
|
||||
} else if (0x05!=r1) { // illegal command (cards < physical spec v2.0 don't support CMD8) (see section 7.2.1)
|
||||
return false;
|
||||
}
|
||||
// send CMD58 (READ_OCR) to read Operation Conditions Register (see section 7.2.1)
|
||||
uint8_t r3[4] = {0}; // to store response token R3 (see section 7.3.2.4)
|
||||
r1 = flash_sdcard_command_response(58, 0, r3, sizeof(r3)); // (see table 7-3)
|
||||
if (0x01!=r1) { // error occurred, not in idle state
|
||||
return false;
|
||||
} else if (!(r3[1]&0x30)) { // 3.3V not supported (see table 5-1)
|
||||
return false;
|
||||
}
|
||||
do {
|
||||
// send CMD55 (APP_CMD) to issue following application command (see table 7-4)
|
||||
r1 = flash_sdcard_command_response(55, 0, NULL, 0); // (see table 7-3)
|
||||
if (0x01!=r1) { // error occurred, not in idle state
|
||||
return false;
|
||||
}
|
||||
// send ACMD41 (SD_SEND_OP_COND) with Host Capacity Support (0b: SDSC Only Host, 1b: SDHC or SDXC Supported) (see section 7.2.1)
|
||||
r1 = flash_sdcard_command_response(41, 0x40000000, NULL, 0); // (see table 7-4)
|
||||
if (r1&0xfe) { // error occurred
|
||||
return false;
|
||||
}
|
||||
} while (0x00!=r1); // wait until card is ready (see section 7.2.1)
|
||||
// send CMD58 (READ_OCR) to read Card Capacity Status (CCS) (see section 7.2.1)
|
||||
r1 = flash_sdcard_command_response(58, 0, r3, sizeof(r3)); // (see table 7-3)
|
||||
if (r1) { // error occurred
|
||||
return false;
|
||||
}
|
||||
// card power up status bit (bit 31) is set when power up is complete (see table 5-1)
|
||||
if (0x00==(r3[0]&0x80)) {
|
||||
return false;
|
||||
}
|
||||
sdsc = (0==(r3[0]&0x40)); // CCS is bit 30 in OCR (see table 5-1)
|
||||
// now the card identification is complete and we should be in data-transfer mode (see figure 7-1)
|
||||
|
||||
// we can switch clock frequency to fPP (max. 25 MHz) (see section 4.3/6.6.6)
|
||||
while (!(SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_TXE)); // wait until the end of any transmission
|
||||
while (SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_BSY); // wait until not busy before disabling
|
||||
spi_disable(SPI(FLASH_SDCARD_SPI)); // disable SPI to change clock speed
|
||||
spi_set_baudrate_prescaler(SPI(FLASH_SDCARD_SPI), SPI_CR1_BR_FPCLK_DIV_4); // set clock speed to 18 MHz (72/4=18, < 25 MHz)
|
||||
spi_enable(SPI(FLASH_SDCARD_SPI)); // enable SPI back
|
||||
|
||||
// send CMD9 (SEND_CSD) to get Card Specific Data (CSD) and calculate N_AC (see section 7.2.6)
|
||||
uint8_t csd[16] = {0}; // CSD response (see chapter 7.2.6)
|
||||
r1 = flash_sdcard_data_read(9, 0, csd, sizeof(csd)); // (see table 7-3)
|
||||
if (r1) { // error occurred
|
||||
return false;
|
||||
}
|
||||
// check if CSD structure version matches capacity (see section 5.3.1)
|
||||
if ((sdsc && (csd[0]>>6)) || (!sdsc && 0==(csd[0]>>6))) {
|
||||
return false;
|
||||
}
|
||||
// calculate N_AC value (we use our set minimum frequency 16 MHz to calculate time)
|
||||
if (sdsc) { // calculate N_AC using TAAC and NSAC
|
||||
static const float TAAC_UNITS[] = {1E-9, 10E-9, 100E-9, 1E-6, 10E-6, 100E-6, 1E-3, 10E-3}; // (see table 5-5)
|
||||
static const float TAAC_VALUES[] = {10.0, 1.0, 1.2, 1.3, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 7.0, 8.0}; // (see table 5-5)
|
||||
double taac = TAAC_VALUES[(csd[1]>>2)&0xf]*TAAC_UNITS[csd[1]&0x7]; // time in ns
|
||||
n_ac=100*((taac*16E6)+(csd[2]*100))/8; // (see section 7.5.4)
|
||||
} else { // value is fixed to 100 ms
|
||||
n_ac=100E-3*16E6/8;
|
||||
}
|
||||
// calculate card size
|
||||
if (sdsc) { // see section 5.3.2
|
||||
uint16_t c_size = (((uint16_t)csd[6]&0x03)<<10)+((uint16_t)csd[7]<<2)+(csd[8]>>6);
|
||||
uint8_t c_size_mutl = ((csd[9]&0x03)<<1)+((csd[10]&0x80)>>7);
|
||||
uint8_t read_bl_len = (csd[5]&0x0f);
|
||||
sdcard_size = ((c_size+1)*(1UL<<(c_size_mutl+2)))*(1UL<<read_bl_len);
|
||||
} else { // see section 5.3.3
|
||||
uint32_t c_size = ((uint32_t)(csd[7]&0x3f)<<16)+((uint16_t)csd[8]<<8)+csd[9];
|
||||
sdcard_size = (c_size+1)*(512<<10);
|
||||
}
|
||||
// calculate erase size
|
||||
if (sdsc) { // see section 5.3.2
|
||||
erase_size = (((csd[10]&0x3f)<<1)+((csd[11]&0x80)>>7)+1)<<(((csd[12]&0x03)<<2)+(csd[13]>>6));
|
||||
} else {
|
||||
uint8_t status[64] = {0}; // SD status (see section 4.10.2)
|
||||
uint16_t r2 = flash_sdcard_status(status); // get status (see table 7-4)
|
||||
if (r2) { // error occurred
|
||||
return false;
|
||||
}
|
||||
erase_size = (8192UL<<(status[10]>>4)); // calculate erase size (see table 4-44, section 4.10.2.4)
|
||||
}
|
||||
|
||||
// ensure block length is 512 bytes for SDSC (should be per default) to we match SDHC/SDXC block size
|
||||
if (sdsc) {
|
||||
r1 = flash_sdcard_command_response(16, 512, NULL, 0); // set block size using CMD16 (SET_BLOCKLEN) (see table 7-3)
|
||||
if (r1) { // error occurred
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// try to switch to high speed mode (see section 7.2.14/4.3.10)
|
||||
if (csd[4]&0x40) { // ensure CMD6 is supported by checking if command class 10 is set
|
||||
uint32_t n_ac_back = n_ac; // backup N_AC
|
||||
n_ac = 100E-3*16E6/8; // temporarily set timeout to 100 ms (see section 4.3.10.1)
|
||||
// query access mode (group function 1) to check if high speed is supported (fPP=50MHz at 3.3V, we can be faster)
|
||||
uint8_t fnc[64] = {0}; // function status response (see table 4-12)
|
||||
r1 = flash_sdcard_data_read(6, 0x00fffff1, fnc, sizeof(fnc)); // check high speed function using CMD6 (SWITCH_FUNC) to check (mode 0) access mode (function group 1) (see table 7-3/4-30)
|
||||
if (r1) { // error occurred
|
||||
return false;
|
||||
}
|
||||
if (0x1==(fnc[16]&0x0f)) { // we can to access mode function 1 (see table 4-12)
|
||||
r1 = flash_sdcard_data_read(6, 0x80fffff1, fnc, sizeof(fnc)); // switch to high speed function using CMD6 (SWITCH_FUNC) to switch (mode 1) access mode (function group 1) (see table 7-3/4-30)
|
||||
if (r1) { // error occurred
|
||||
return false;
|
||||
}
|
||||
if (0x1!=(fnc[16]&0x0f)) { // could not switch to high speed
|
||||
return false;
|
||||
}
|
||||
// we can switch clock frequency to fPP (max. 50 MHz) (see section 6.6.7)
|
||||
while (!(SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_TXE)); // wait until the end of any transmission
|
||||
while (SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_BSY); // wait until not busy before disabling
|
||||
spi_disable(SPI(FLASH_SDCARD_SPI)); // disable SPI to change clock speed
|
||||
spi_set_baudrate_prescaler(SPI(FLASH_SDCARD_SPI), SPI_CR1_BR_FPCLK_DIV_2); // set clock speed to 36 MHz (72/2=36 < 50 MHz)
|
||||
spi_enable(SPI(FLASH_SDCARD_SPI)); // enable SPI back
|
||||
n_ac_back /= 2; // since we go twice faster the N_AC timeout has to be halved
|
||||
}
|
||||
n_ac = n_ac_back; // restore N_AC
|
||||
}
|
||||
|
||||
initialized = true;
|
||||
|
||||
return initialized;
|
||||
}
|
||||
|
||||
uint64_t flash_sdcard_size(void)
|
||||
{
|
||||
return sdcard_size;
|
||||
}
|
||||
|
||||
uint32_t flash_sdcard_erase_size(void)
|
||||
{
|
||||
return erase_size;
|
||||
}
|
||||
|
||||
bool flash_sdcard_read_data(uint32_t block, uint8_t* data)
|
||||
{
|
||||
if (NULL==data) {
|
||||
return false;
|
||||
}
|
||||
if (sdsc) { // the address for standard capacity cards must be provided in bytes
|
||||
if (block>UINT32_MAX/512) { // check for integer overflow
|
||||
return false;
|
||||
} else {
|
||||
block *= 512; // calculate byte address from block address
|
||||
}
|
||||
}
|
||||
return (0==flash_sdcard_data_read(17, block, data, 512)); // read single data block using CMD17 (READ_SINGLE_BLOCK) (see table 7-3)
|
||||
}
|
||||
|
||||
bool flash_sdcard_write_data(uint32_t block, uint8_t* data)
|
||||
{
|
||||
if (NULL==data) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (sdsc) { // the address for standard capacity cards must be provided in bytes
|
||||
if (block>UINT32_MAX/512) { // check for integer overflow
|
||||
return false;
|
||||
} else {
|
||||
block *= 512; // calculate byte address from block address
|
||||
}
|
||||
}
|
||||
|
||||
uint8_t drt = flash_sdcard_data_write(24, block, data, 512); // write single data block using CMD24 (WRITE_SINGLE_BLOCK) (see table 7-3)
|
||||
if (0x05!=(drt&0x1f)) { // write block failed
|
||||
return false;
|
||||
}
|
||||
|
||||
// get status to check if programming succeeded
|
||||
uint8_t r2[1] = {0}; // to store response token R2 (see section 7.3.2.3)
|
||||
uint8_t r1 = flash_sdcard_command_response(13, 0, r2, sizeof(r2)); // get SD status using CMD13 (SEND_STATUS) (see table 7-3)
|
||||
if (0x00!=r1) { // error occurred
|
||||
return false;
|
||||
} else if (r2[0]) { // programming error
|
||||
return false;
|
||||
}
|
||||
|
||||
return true; // programming succeeded
|
||||
}
|
@ -1,47 +0,0 @@
|
||||
/* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
/** library to communicate with an SD card flash memory using the SPI mode (API)
|
||||
* @file flash_sdcard.h
|
||||
* @author King Kévin <kingkevin@cuvoodoo.info>
|
||||
* @date 2017
|
||||
* @note peripherals used: SPI @ref flash_sdcard_spi
|
||||
* @warning all calls are blocking
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
/** setup communication with SD card
|
||||
* @return if card has been initialized correctly
|
||||
*/
|
||||
bool flash_sdcard_setup(void);
|
||||
/** get size of SD card flash memory
|
||||
* @return size of SD card flash memory (in bytes)
|
||||
*/
|
||||
uint64_t flash_sdcard_size(void);
|
||||
/** get size of a erase block
|
||||
* @return size of a erase block (in bytes)
|
||||
*/
|
||||
uint32_t flash_sdcard_erase_size(void);
|
||||
/** read data on flash of SD card
|
||||
* @param[in] block address of data to read (in block in 512 bytes unit)
|
||||
* @param[out] data data block to read (with a size of 512 bytes)
|
||||
* @return if read succeeded
|
||||
*/
|
||||
bool flash_sdcard_read_data(uint32_t block, uint8_t* data);
|
||||
/** write data on flash of SD card
|
||||
* @param[in] block address of data to write (in block in 512 bytes unit)
|
||||
* @param[in] data data block to write (with a size of 512 bytes)
|
||||
* @return if write succeeded
|
||||
*/
|
||||
bool flash_sdcard_write_data(uint32_t block, uint8_t* data);
|
692
lib/i2c_master.c
692
lib/i2c_master.c
@ -1,692 +0,0 @@
|
||||
/* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
/** library to communicate using I²C as master (code)
|
||||
* @file
|
||||
* @author King Kévin <kingkevin@cuvoodoo.info>
|
||||
* @date 2017-2020
|
||||
* @note peripherals used: I2C
|
||||
*/
|
||||
|
||||
/* standard libraries */
|
||||
#include <stdint.h> // standard integer types
|
||||
#include <stdlib.h> // general utilities
|
||||
|
||||
/* STM32 (including CM3) libraries */
|
||||
#include <libopencm3/cm3/systick.h> // SysTick library
|
||||
#include <libopencm3/cm3/assert.h> // assert utilities
|
||||
#include <libopencm3/stm32/rcc.h> // real-time control clock library
|
||||
#include <libopencm3/stm32/gpio.h> // general purpose input output library
|
||||
#include <libopencm3/stm32/i2c.h> // I²C library
|
||||
|
||||
/* own libraries */
|
||||
#include "global.h" // global utilities
|
||||
#include "i2c_master.h" // I²C header and definitions
|
||||
|
||||
/** get RCC for I²C based on I²C identifier
|
||||
* @param[in] i2c I²C base address
|
||||
* @return RCC address for I²C peripheral
|
||||
*/
|
||||
static uint32_t RCC_I2C(uint32_t i2c)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
switch (i2c) {
|
||||
case I2C1:
|
||||
return RCC_I2C1;
|
||||
break;
|
||||
case I2C2:
|
||||
return RCC_I2C2;
|
||||
break;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/** get RCC for GPIO port for SCL pin based on I²C identifier
|
||||
* @param[in] i2c I²C base address
|
||||
* @return RCC GPIO address
|
||||
*/
|
||||
static uint32_t RCC_GPIO_PORT_SCL(uint32_t i2c)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
switch (i2c) {
|
||||
case I2C1:
|
||||
case I2C2:
|
||||
return RCC_GPIOB;
|
||||
break;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/** get RCC for GPIO port for SDA pin based on I²C identifier
|
||||
* @param[in] i2c I²C base address
|
||||
* @return RCC GPIO address
|
||||
*/
|
||||
static uint32_t RCC_GPIO_PORT_SDA(uint32_t i2c)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
switch (i2c) {
|
||||
case I2C1:
|
||||
case I2C2:
|
||||
return RCC_GPIOB;
|
||||
break;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/** get GPIO port for SCL pin based on I²C identifier
|
||||
* @param[in] i2c I²C base address
|
||||
* @return GPIO address
|
||||
*/
|
||||
static uint32_t GPIO_PORT_SCL(uint32_t i2c)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
switch (i2c) {
|
||||
case I2C1:
|
||||
if (AFIO_MAPR & AFIO_MAPR_I2C1_REMAP) {
|
||||
return GPIO_BANK_I2C1_RE_SCL;
|
||||
} else {
|
||||
return GPIO_BANK_I2C1_SCL;
|
||||
}
|
||||
break;
|
||||
case I2C2:
|
||||
return GPIO_BANK_I2C2_SCL;
|
||||
break;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/** get GPIO port for SDA pin based on I²C identifier
|
||||
* @param[in] i2c I²C base address
|
||||
* @return GPIO address
|
||||
*/
|
||||
static uint32_t GPIO_PORT_SDA(uint32_t i2c)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
switch (i2c) {
|
||||
case I2C1:
|
||||
if (AFIO_MAPR & AFIO_MAPR_I2C1_REMAP) {
|
||||
return GPIO_BANK_I2C1_RE_SDA;
|
||||
} else {
|
||||
return GPIO_BANK_I2C1_SDA;
|
||||
}
|
||||
break;
|
||||
case I2C2:
|
||||
return GPIO_BANK_I2C2_SDA;
|
||||
break;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/** get GPIO pin for SCL pin based on I²C identifier
|
||||
* @param[in] i2c I²C base address
|
||||
* @return GPIO address
|
||||
*/
|
||||
static uint32_t GPIO_PIN_SCL(uint32_t i2c)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
switch (i2c) {
|
||||
case I2C1:
|
||||
if (AFIO_MAPR & AFIO_MAPR_I2C1_REMAP) {
|
||||
return GPIO_I2C1_RE_SCL;
|
||||
} else {
|
||||
return GPIO_I2C1_SCL;
|
||||
}
|
||||
break;
|
||||
case I2C2:
|
||||
return GPIO_I2C2_SCL;
|
||||
break;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/** get GPIO pin for SDA pin based on I²C identifier
|
||||
* @param[in] i2c I²C base address
|
||||
* @return GPIO address
|
||||
*/
|
||||
static uint32_t GPIO_PIN_SDA(uint32_t i2c)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
switch (i2c) {
|
||||
case I2C1:
|
||||
if (AFIO_MAPR & AFIO_MAPR_I2C1_REMAP) {
|
||||
return GPIO_I2C1_RE_SDA;
|
||||
} else {
|
||||
return GPIO_I2C1_SDA;
|
||||
}
|
||||
break;
|
||||
case I2C2:
|
||||
return GPIO_I2C2_SDA;
|
||||
break;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
void i2c_master_setup(uint32_t i2c, uint16_t frequency)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
// configure I²C peripheral
|
||||
rcc_periph_clock_enable(RCC_GPIO_PORT_SCL(i2c)); // enable clock for I²C I/O peripheral
|
||||
gpio_set(GPIO_PORT_SCL(i2c), GPIO_PIN_SCL(i2c)); // already put signal high to avoid small pulse
|
||||
gpio_set_mode(GPIO_PORT_SCL(i2c), GPIO_MODE_OUTPUT_10_MHZ, GPIO_CNF_OUTPUT_ALTFN_OPENDRAIN, GPIO_PIN_SCL(i2c)); // setup I²C I/O pins
|
||||
rcc_periph_clock_enable(RCC_GPIO_PORT_SDA(i2c)); // enable clock for I²C I/O peripheral
|
||||
gpio_set(GPIO_PORT_SDA(i2c), GPIO_PIN_SDA(i2c)); // already put signal high to avoid small pulse
|
||||
gpio_set_mode(GPIO_PORT_SDA(i2c), GPIO_MODE_OUTPUT_10_MHZ, GPIO_CNF_OUTPUT_ALTFN_OPENDRAIN, GPIO_PIN_SDA(i2c)); // setup I²C I/O pins
|
||||
rcc_periph_clock_enable(RCC_AFIO); // enable clock for alternate function
|
||||
rcc_periph_clock_enable(RCC_I2C(i2c)); // enable clock for I²C peripheral
|
||||
i2c_reset(i2c); // reset peripheral domain
|
||||
i2c_peripheral_disable(i2c); // I²C needs to be disable to be configured
|
||||
I2C_CR1(i2c) |= I2C_CR1_SWRST; // reset peripheral
|
||||
I2C_CR1(i2c) &= ~I2C_CR1_SWRST; // clear peripheral reset
|
||||
if (0==frequency) { // don't allow null frequency
|
||||
frequency = 1;
|
||||
} else if (frequency > 400) { // limit frequency to 400 kHz
|
||||
frequency = 400;
|
||||
}
|
||||
i2c_set_clock_frequency(i2c, rcc_apb1_frequency / 1000000); // configure the peripheral clock to the APB1 freq (where it is connected to)
|
||||
if (frequency>100) { // use fast mode for frequencies over 100 kHz
|
||||
i2c_set_fast_mode(i2c); // set fast mode (Fm)
|
||||
i2c_set_ccr(i2c, rcc_apb1_frequency / (frequency * 1000 * 2)); // set Thigh/Tlow to generate frequency (fast duty not used)
|
||||
i2c_set_trise(i2c, (300 / (1000 / (rcc_apb1_frequency / 1000000))) + 1); // max rise time for Fm mode (< 400) kHz is 300 ns
|
||||
} else { // use fast mode for frequencies below 100 kHz
|
||||
i2c_set_standard_mode(i2c); // set standard mode (Sm)
|
||||
i2c_set_ccr(i2c, rcc_apb1_frequency / (frequency * 1000 * 2)); // set Thigh/Tlow to generate frequency of 100 kHz
|
||||
i2c_set_trise(i2c, (1000 / (1000 / (rcc_apb1_frequency / 1000000))) + 1); // max rise time for Sm mode (< 100 kHz) is 1000 ns (~1 MHz)
|
||||
}
|
||||
i2c_peripheral_enable(i2c); // enable I²C after configuration completed
|
||||
}
|
||||
|
||||
void i2c_master_release(uint32_t i2c)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
i2c_reset(i2c); // reset I²C peripheral configuration
|
||||
i2c_peripheral_disable(i2c); // disable I²C peripheral
|
||||
rcc_periph_clock_disable(RCC_I2C(i2c)); // disable clock for I²C peripheral
|
||||
gpio_set_mode(GPIO_PORT_SCL(i2c), GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, GPIO_PIN_SCL(i2c)); // put I²C I/O pins back to floating
|
||||
gpio_set_mode(GPIO_PORT_SDA(i2c), GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, GPIO_PIN_SDA(i2c)); // put I²C I/O pins back to floating
|
||||
}
|
||||
|
||||
bool i2c_master_check_signals(uint32_t i2c)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
// enable GPIOs to read SDA and SCL
|
||||
rcc_periph_clock_enable(RCC_GPIO_PORT_SDA(i2c)); // enable clock for I²C I/O peripheral
|
||||
rcc_periph_clock_enable(RCC_GPIO_PORT_SCL(i2c)); // enable clock for I²C I/O peripheral
|
||||
|
||||
// pull SDA and SDC low to check if there are pull-up resistors
|
||||
uint32_t sda_crl = GPIO_CRL(GPIO_PORT_SDA(i2c)); // backup port configuration
|
||||
uint32_t sda_crh = GPIO_CRH(GPIO_PORT_SDA(i2c)); // backup port configuration
|
||||
uint32_t sda_bsrr = GPIO_BSRR(GPIO_PORT_SDA(i2c)); // backup port configuration
|
||||
uint32_t scl_crl = GPIO_CRL(GPIO_PORT_SCL(i2c)); // backup port configuration
|
||||
uint32_t scl_crh = GPIO_CRH(GPIO_PORT_SCL(i2c)); // backup port configuration
|
||||
uint32_t scl_bsrr = GPIO_BSRR(GPIO_PORT_SCL(i2c)); // backup port configuration
|
||||
gpio_set_mode(GPIO_PORT_SDA(i2c), GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, GPIO_PIN_SDA(i2c)); // configure signal as pull down
|
||||
gpio_set_mode(GPIO_PORT_SCL(i2c), GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, GPIO_PIN_SCL(i2c)); // configure signal as pull down
|
||||
gpio_clear(GPIO_PORT_SDA(i2c), GPIO_PIN_SDA(i2c)); // pull down
|
||||
gpio_clear(GPIO_PORT_SCL(i2c), GPIO_PIN_SCL(i2c)); // pull down
|
||||
bool to_return = (0 != gpio_get(GPIO_PORT_SCL(i2c), GPIO_PIN_SCL(i2c)) && 0 != gpio_get(GPIO_PORT_SDA(i2c), GPIO_PIN_SDA(i2c))); // check if the signals are still pulled high by external stronger pull-up resistors
|
||||
GPIO_CRL(GPIO_PORT_SDA(i2c)) = sda_crl; // restore port configuration
|
||||
GPIO_CRH(GPIO_PORT_SDA(i2c)) = sda_crh; // restore port configuration
|
||||
GPIO_BSRR(GPIO_PORT_SDA(i2c)) = sda_bsrr; // restore port configuration
|
||||
GPIO_CRL(GPIO_PORT_SCL(i2c)) = scl_crl; // restore port configuration
|
||||
GPIO_CRH(GPIO_PORT_SCL(i2c)) = scl_crh; // restore port configuration
|
||||
GPIO_BSRR(GPIO_PORT_SCL(i2c)) = scl_bsrr; // restore port configuration
|
||||
|
||||
return to_return;
|
||||
}
|
||||
|
||||
bool i2c_master_reset(uint32_t i2c)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
bool to_return = true;
|
||||
// follow procedure described in STM32F10xxC/D/E Errata sheet, Section 2.14.7
|
||||
i2c_peripheral_disable(i2c); // disable I²C peripheral
|
||||
gpio_set_mode(GPIO_PORT_SCL(i2c), GPIO_MODE_OUTPUT_10_MHZ, GPIO_CNF_OUTPUT_OPENDRAIN, GPIO_PIN_SCL(i2c)); // put I²C I/O pins to general output
|
||||
gpio_set(GPIO_PORT_SCL(i2c), GPIO_PIN_SCL(i2c)); // set high
|
||||
to_return &= !gpio_get(GPIO_PORT_SCL(i2c), GPIO_PIN_SCL(i2c)); // ensure it is high
|
||||
gpio_set_mode(GPIO_PORT_SDA(i2c), GPIO_MODE_OUTPUT_10_MHZ, GPIO_CNF_OUTPUT_OPENDRAIN, GPIO_PIN_SDA(i2c)); // put I²C I/O pins to general output
|
||||
gpio_set(GPIO_PORT_SDA(i2c), GPIO_PIN_SDA(i2c)); // set high
|
||||
to_return &= !gpio_get(GPIO_PORT_SDA(i2c), GPIO_PIN_SDA(i2c)); // ensure it is high
|
||||
gpio_clear(GPIO_PORT_SDA(i2c), GPIO_PIN_SDA(i2c)); // set low (try first transition)
|
||||
to_return &= gpio_get(GPIO_PORT_SDA(i2c), GPIO_PIN_SDA(i2c)); // ensure it is low
|
||||
gpio_clear(GPIO_PORT_SCL(i2c), GPIO_PIN_SCL(i2c)); // set low (try first transition)
|
||||
to_return &= gpio_get(GPIO_PORT_SCL(i2c), GPIO_PIN_SCL(i2c)); // ensure it is low
|
||||
gpio_set(GPIO_PORT_SCL(i2c), GPIO_PIN_SCL(i2c)); // set high (try second transition)
|
||||
to_return &= !gpio_get(GPIO_PORT_SCL(i2c), GPIO_PIN_SCL(i2c)); // ensure it is high
|
||||
gpio_set(GPIO_PORT_SDA(i2c), GPIO_PIN_SDA(i2c)); // set high (try second transition)
|
||||
to_return &= !gpio_get(GPIO_PORT_SDA(i2c), GPIO_PIN_SDA(i2c)); // ensure it is high
|
||||
gpio_set_mode(GPIO_PORT_SCL(i2c), GPIO_MODE_OUTPUT_10_MHZ, GPIO_CNF_OUTPUT_ALTFN_OPENDRAIN, GPIO_PIN_SCL(i2c)); // set I²C I/O pins back
|
||||
gpio_set_mode(GPIO_PORT_SDA(i2c), GPIO_MODE_OUTPUT_10_MHZ, GPIO_CNF_OUTPUT_ALTFN_OPENDRAIN, GPIO_PIN_SDA(i2c)); // set I²C I/O pins back
|
||||
I2C_CR1(i2c) |= I2C_CR1_SWRST; // reset device
|
||||
I2C_CR1(i2c) &= ~I2C_CR1_SWRST; // reset device
|
||||
i2c_peripheral_enable(i2c); // re-enable device
|
||||
|
||||
return to_return;
|
||||
}
|
||||
|
||||
enum i2c_master_rc i2c_master_start(uint32_t i2c)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
bool retry = true; // retry after reset if first try failed
|
||||
enum i2c_master_rc to_return; // return code
|
||||
uint16_t sr1; // read register once, since reading/writing other registers or other events clears some flags
|
||||
try:
|
||||
to_return = I2C_MASTER_RC_NONE; // return code
|
||||
// send (re-)start condition
|
||||
if (I2C_CR1(i2c) & (I2C_CR1_START | I2C_CR1_STOP)) { // ensure start or stop operations are not in progress
|
||||
return I2C_MASTER_RC_START_STOP_IN_PROGESS;
|
||||
}
|
||||
// prepare timer in case the peripheral hangs on sending stop condition (see errata 2.14.4 Wrong behavior of I²C peripheral in master mode after a misplaced Stop)
|
||||
systick_counter_disable(); // disable SysTick to reconfigure it
|
||||
systick_set_frequency(500, rcc_ahb_frequency); // set timer to 2 ms (that should be long enough to send a start condition)
|
||||
systick_clear(); // reset SysTick (set to 0)
|
||||
systick_interrupt_disable(); // disable interrupt to prevent ISR to read the flag
|
||||
systick_get_countflag(); // reset flag (set when counter is going for 1 to 0)
|
||||
i2c_send_start(i2c); // send start condition to start transaction
|
||||
bool timeout = false; // remember if the timeout has been reached
|
||||
systick_counter_enable(); // start timer
|
||||
while ((I2C_CR1(i2c) & I2C_CR1_START) && !((sr1 = I2C_SR1(i2c)) & (I2C_SR1_BERR | I2C_SR1_ARLO)) && !timeout) { // wait until start condition has been accepted and cleared
|
||||
timeout |= systick_get_countflag(); // verify if timeout has been reached
|
||||
}
|
||||
sr1 = I2C_SR1(i2c); // be sure to get the current value
|
||||
if (sr1 & (I2C_SR1_BERR | I2C_SR1_ARLO)) {
|
||||
to_return = I2C_MASTER_RC_BUS_ERROR;
|
||||
}
|
||||
while (!((sr1 = I2C_SR1(i2c)) & (I2C_SR1_SB | I2C_SR1_BERR | I2C_SR1_ARLO)) && !timeout && I2C_MASTER_RC_NONE == to_return) { // wait until start condition is transmitted
|
||||
|