update example, add RTC

This commit is contained in:
King Kévin 2016-08-14 21:02:38 +02:00
parent 5b68c5701e
commit f2d0184e00
1 changed files with 182 additions and 52 deletions

232
main.c
View File

@ -12,7 +12,11 @@
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* Copyright (c) 2016 King Kévin <kingkevin@cuvoodoo.info> */
/** STM32F1 project template
* @file main.c
* @author King Kévin <kingkevin@cuvoodoo.info>
* @date 2016
*/
/* standard libraries */
#include <stdint.h> // standard integer types
@ -20,6 +24,8 @@
#include <stdlib.h> // standard utilities
#include <unistd.h> // standard streams
#include <errno.h> // error number utilities
#include <string.h> // string utilities
#include <math.h> // mathematical utilities
/* STM32 (including CM3) libraries */
#include <libopencm3/stm32/rcc.h> // real-time control clock library
@ -28,28 +34,48 @@
#include <libopencmsis/core_cm3.h> // Cortex M3 utilities
#include <libopencm3/cm3/nvic.h> // interrupt utilities
#include <libopencm3/stm32/exti.h> // external interrupt utilities
#include <libopencm3/stm32/rtc.h> // real time clock utilities
/* own libraries */
#include "global.h" // board definitions
#include "usart.h" // USART utilities
#include "usb_cdcacm.h" // USB CDC ACM utilities
/* flag set in interrupts to be processed in main taks */
volatile bool button_flag = false; // button has been presse
/** @defgroup main_flags flag set in interrupts to be processed in main task
* @{
*/
volatile bool button_flag = false; /**< flag set when board user button has been pressed/released */
volatile bool rtc_internal_tick_flag = false; /**< flag set when internal RTC ticked */
/** @} */
/** user input command */
char command[32] = {0};
/** user input command index */
uint8_t command_i = 0;
/* default output (i.e. for printf) */
int _write(int file, char *ptr, int len)
{
int i;
int i; // how much data has been sent
static char newline = 0; // what newline has been sent
if (file == STDOUT_FILENO || file == STDERR_FILENO) {
for (i = 0; i < len; i++) {
if (ptr[i] == '\n') { // add carrier return before line feed. this is recommended for most UART terminals
usart_putchar_nonblocking('\r'); // a second line feed doesn't break the display
cdcacm_putchar('\r'); // a second line feed doesn't break the display
if (ptr[i] == '\r' || ptr[i] == '\n') { // send CR+LF newline for most carriage return and line feed combination
if (newline==0 || (newline==ptr[i])) { // newline has already been detected
usart_putchar_nonblocking('\r'); // send newline over USART
usart_putchar_nonblocking('\n'); // send newline over USART
cdcacm_putchar('\r'); // send newline over USB
cdcacm_putchar('\n'); // send newline over USB
newline = ptr[i]; // remember the newline
}
if (ptr[i] == '\n') { // line feed are always considered to end a line (the LF+CR combination is not supported to better support the others)
newline = 0; // clear new line
}
} else { // non-newline character
usart_putchar_nonblocking(ptr[i]); // send byte over USART
cdcacm_putchar(ptr[i]); // send byte over USB
newline = 0; // clear new line
}
usart_putchar_nonblocking(ptr[i]); // send byte over USART
cdcacm_putchar(ptr[i]); // send byte over USB
}
return i;
}
@ -57,82 +83,178 @@ int _write(int file, char *ptr, int len)
return -1;
}
/* switch on LED */
void led_on(void)
char* b2s(uint64_t binary, uint8_t rjust)
{
#ifdef SYSTEM_BOARD
gpio_clear(LED_PORT, LED_PIN);
#elif MAPLE_MINI
gpio_set(LED_PORT, LED_PIN);
#endif
static char string[64+1] = {0}; // the string representation to return
int8_t bit = LENGTH(string)-1; // the index of the bit to print
string[bit--] = 0; // terminate string
while (binary) {
if (binary & 1) {
string[bit--] = '1';
} else {
string[bit--] = '0';
}
binary >>= 1;
}
while (64-bit-1<rjust && bit>=0) {
string[bit--] = '0';
}
return &string[bit+1];
}
/* switch off LED */
void led_off(void)
/** process user command
* @param[in] str user command string (\0 ended)
*/
static void process_command(char* str)
{
#ifdef SYSTEM_BOARD
gpio_set(LED_PORT, LED_PIN);
#elif MAPLE_MINI
gpio_clear(LED_PORT, LED_PIN);
#endif
}
/* toggle LED */
void led_toggle(void)
{
gpio_toggle(LED_PORT, LED_PIN);
// split command
const char* delimiter = " ";
char* word = strtok(str,delimiter);
if (!word) {
goto error;
}
// parse command
if (0==strcmp(word,"help")) {
printf("available commands:\n");
printf("led [on|off|toggle]\n");
printf("time [HH:MM:SS]\n");
} else if (0==strcmp(word,"led")) {
word = strtok(NULL,delimiter);
if (!word) {
goto error;
} else if (0==strcmp(word,"on")) {
led_on(); // switch LED on
printf("LED switched on\n"); // notify user
} else if (0==strcmp(word,"off")) {
led_off(); // switch LED off
printf("LED switched off\n"); // notify user
} else if (0==strcmp(word,"toggle")) {
led_toggle(); // toggle LED
printf("LED toggled\n"); // notify user
} else {
goto error;
}
} else if (0==strcmp(word,"time")) {
word = strtok(NULL,delimiter);
if (!word) {
printf("current time: %02lu:%02lu:%02lu\n", rtc_get_counter_val()/(60*60), (rtc_get_counter_val()%(60*60))/60, (rtc_get_counter_val()%60)); // get and print time from internal RTC
} else if (strlen(word)!=8 || word[0]<'0' || word[0]>'2' || word[1]<'0' || word[1]>'9' || word[3]<'0' || word[3]>'5' || word[4]<'0' || word[4]>'9' || word[6]<'0' || word[6]>'5' || word[7]<'0' || word[7]>'9') { // time format is incorrect
goto error;
} else {
rtc_set_counter_val(((word[0]-'0')*10+(word[1]-'0')*1)*(60*60)+((word[3]-'0')*10+(word[4]-'0')*1)*60+((word[6]-'0')*10+(word[7]-'0')*1)); // set time in internal RTC counter
printf("time set\n");
}
} else {
goto error;
}
return; // command successfully processed
error:
printf("command not recognized. enter help to list commands\n");
}
/** program entry point
* this is the firmware function started by the micro-controller
*/
int main(void)
{
SCB_VTOR = (uint32_t) 0x08002000; // relocate vector table because of the bootloader
rcc_clock_setup_in_hse_8mhz_out_72mhz(); // use 8 MHz high speed external clock to generate 72 MHz internal clock
usart_setup(); // setup USART (for printing)
cdcacm_setup(); // setup USB CDC ACM (for printing)
setbuf(stdout, NULL); // set standard out buffer to NULL to immediately print
setbuf(stderr, NULL); // set standard error buffer to NULL to immediately print
// setup LED
rcc_periph_clock_enable(LED_RCC); // enable clock for LED
gpio_set_mode(LED_PORT, GPIO_MODE_OUTPUT_2_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, LED_PIN); // set LED pin to 'output push-pull'
led_off(); // switch off LED to indicate setup started
led_off(); // switch off LED per default
// setup USART and USB for user communication
usart_setup(); // setup USART (for printing)
cdcacm_setup(); // setup USB CDC ACM (for printing)
setbuf(stdout, NULL); // set standard out buffer to NULL to immediately print
setbuf(stderr, NULL); // set standard error buffer to NULL to immediately print
// minimal setup ready
printf("welcome to the STM32F1 CuVoodoo example code\n"); // print welcome message
// setup button
#if defined(BUTTON_RCC) && defined(BUTTON_PORT) && defined(BUTTON_PIN) && defined(BUTTON_EXTI) && defined(BUTTON_IRQ)
rcc_periph_clock_enable(BUTTON_RCC); // enable clock for button
gpio_set_mode(BUTTON_PORT, GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, BUTTON_PIN); // set button pin to input
gpio_set_mode(BUTTON_PORT, GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, BUTTON_PIN); // set button pin to input
gpio_clear(BUTTON_PORT, BUTTON_PIN); // pull down to be able to detect button push (go high)
rcc_periph_clock_enable(RCC_AFIO); // enable alternate function clock for external interrupt
exti_select_source(BUTTON_EXTI, BUTTON_PORT); // mask external interrupt of this pin only for this port
exti_set_trigger(BUTTON_EXTI, EXTI_TRIGGER_BOTH); // trigger on both edge
exti_set_trigger(BUTTON_EXTI, EXTI_TRIGGER_RISING); // trigger when button is pressed
exti_enable_request(BUTTON_EXTI); // enable external interrupt
nvic_enable_irq(BUTTON_IRQ); // enable interrupt
#endif
printf("welcome to the STM32F1 CuVoodoo example code\n"); // print welcome message
led_on(); // switch on LED to indicate setup completed
// setup RTC
printf("setup internal RTC: ");
rtc_auto_awake(RCC_LSE, 32768-1); // ensure internal RTC is on, uses the 32.678 kHz LSE, and the prescale is set to our tick speed, else update backup registers accordingly (power off the micro-controller for the change to take effect)
rtc_interrupt_enable(RTC_SEC); // enable RTC interrupt on "seconds"
nvic_enable_irq(NVIC_RTC_IRQ); // allow the RTC to interrupt
printf("OK\n");
// get date and time
uint32_t ticks_time = 0;
ticks_time = rtc_get_counter_val(); // get time/date from internal RTC
printf("current time: %02lu:%02lu:%02lu\n", ticks_time/(60*60), (ticks_time%(60*60))/60, (ticks_time%60)); // display time
// main loop
printf("command input: ready\n");
bool action = false; // if an action has been performed don't go to sleep
button_flag = false; // reset button flag
/* toggle the LED with every transmitted character */
char c = ' '; // to store received character
bool char_flag = false; // a new character has been received
while (true) { // infinite loop
while (usart_received) { // echo every received character
while (usart_received) { // data received over UART
action = true; // action has been performed
led_toggle(); // toggle LED
printf("%c",usart_getchar()); // transmit receive character
c = usart_getchar(); // store receive character
char_flag = true; // notify character has been received
}
while (cdcacm_received) { // echo every received character
while (cdcacm_received) { // data received over USB
action = true; // action has been performed
led_toggle(); // toggle LED
printf("%c",cdcacm_getchar()); // transmit receive character
c = cdcacm_getchar(); // store receive character
char_flag = true; // notify character has been received
}
while (button_flag) {
while (char_flag) { // user data received
char_flag = false; // reset flag
action = true; // action has been performed
printf("%c",c); // echo receive character
if (c=='\r' || c=='\n') { // end of command received
if (command_i>0) { // there is a command to process
command[command_i] = 0; // end string
command_i = 0; // prepare for next command
process_command(command); // process user command
}
} else { // user command input
command[command_i] = c; // save command input
if (command_i<LENGTH(command)-2) { // verify if there is place to save next character
command_i++; // save next character
}
}
}
while (button_flag) { // user pressed button
action = true; // action has been performed
printf("button pressed\n");
led_toggle(); // toggle LED
for (uint32_t i=0; i<1000000; i++) { // wait a bit to remove noise and double trigger
__asm__("nop");
}
button_flag = false; // reset flag
action = true; // action has been performed
led_toggle(); // toggle LED
}
// go to sleep if nothing had to be done, else recheck for activity
if (action) {
while (rtc_internal_tick_flag) { // the internal RTC ticked
rtc_internal_tick_flag = false; // reset flag
ticks_time = rtc_get_counter_val(); // copy time from internal RTC for processing
action = true; // action has been performed
if ((ticks_time%(60*60))==0) { // one minute passed
printf("%02lu:%02lu:%02lu\n", ticks_time/(60*60), (ticks_time%(60*60))/60, (ticks_time%60)); // display external time
}
}
if (action) { // go to sleep if nothing had to be done, else recheck for activity
action = false;
} else {
__WFI(); // go to sleep
@ -143,9 +265,17 @@ int main(void)
}
#if defined(BUTTON_ISR) && defined(BUTTON_EXTI)
/** interrupt service routine called when button is pressed */
void BUTTON_ISR(void)
{
exti_reset_request(BUTTON_EXTI); // reset interrupt
button_flag = true; // perform button action
}
#endif
/** @brief interrupt service routine called when tick passed on RTC */
void rtc_isr(void)
{
rtc_clear_flag(RTC_SEC); // clear flag
rtc_internal_tick_flag = true; // notify to show new time
}