remove unused library
This commit is contained in:
parent
09dfd6c6f5
commit
940fa5b9b1
|
@ -1,611 +0,0 @@
|
|||
/* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
/** library to communicate with an SD card flash memory using the SPI mode (code)
|
||||
* @file flash_sdcard.c
|
||||
* @author King Kévin <kingkevin@cuvoodoo.info>
|
||||
* @date 2017
|
||||
* @note peripherals used: SPI @ref flash_sdcard_spi
|
||||
* @warning all calls are blocking
|
||||
* @implements SD Specifications, Part 1, Physical Layer, Simplified Specification, Version 6.00, 10 April 10 2017
|
||||
* @todo use SPI unidirectional mode, use DMA, force/wait going to idle state when initializing, filter out reserved values, check sector against size
|
||||
*/
|
||||
|
||||
/* standard libraries */
|
||||
#include <stdint.h> // standard integer types
|
||||
#include <stdlib.h> // general utilities
|
||||
|
||||
/* STM32 (including CM3) libraries */
|
||||
#include <libopencmsis/core_cm3.h> // Cortex M3 utilities
|
||||
#include <libopencm3/stm32/rcc.h> // real-time control clock library
|
||||
#include <libopencm3/stm32/gpio.h> // general purpose input output library
|
||||
#include <libopencm3/stm32/spi.h> // SPI library
|
||||
|
||||
#include "global.h" // global utilities
|
||||
#include "flash_sdcard.h" // SD card header and definitions
|
||||
|
||||
/** @defgroup flash_sdcard_spi SPI used to communication with SD card
|
||||
* @{
|
||||
*/
|
||||
#define FLASH_SDCARD_SPI 1 /**< SPI peripheral */
|
||||
/** @} */
|
||||
|
||||
/** if the card has been initialized successfully */
|
||||
static bool initialized = false;
|
||||
/** maximum N_AC value (in 8-clock cycles) (time between the response token R1 and data block when reading data (see section 7.5.4)
|
||||
* @note this is set to N_CR until we can read CSD (see section 7.2.6)
|
||||
*/
|
||||
static uint32_t n_ac = 8;
|
||||
/** is it a Standard Capacity SD card (true), or High Capacity SD cards (false)
|
||||
* @note this is indicated in the Card Capacity Status bit or OCR (set for high capacity)
|
||||
* @note this is important for addressing: for standard capacity cards the address is the byte number, for high capacity cards it is the 512-byte block number
|
||||
*/
|
||||
static bool sdsc = false;
|
||||
/** size of card in bytes */
|
||||
static uint64_t sdcard_size = 0;
|
||||
/** size of an erase block bytes */
|
||||
static uint32_t erase_size = 0;
|
||||
|
||||
/** table for CRC-7 calculation for the command messages (see section 4.5)
|
||||
* @note faster than calculating the CRC and doesn't cost a lot of space
|
||||
* @note generated using pycrc --width=7 --poly=0x09 --reflect-in=false --reflect-out=false --xor-in=0x00 --xor-out=0x00 --generate=table
|
||||
*/
|
||||
static const uint8_t crc7_table[] = {
|
||||
0x00, 0x09, 0x12, 0x1b, 0x24, 0x2d, 0x36, 0x3f, 0x48, 0x41, 0x5a, 0x53, 0x6c, 0x65, 0x7e, 0x77,
|
||||
0x19, 0x10, 0x0b, 0x02, 0x3d, 0x34, 0x2f, 0x26, 0x51, 0x58, 0x43, 0x4a, 0x75, 0x7c, 0x67, 0x6e,
|
||||
0x32, 0x3b, 0x20, 0x29, 0x16, 0x1f, 0x04, 0x0d, 0x7a, 0x73, 0x68, 0x61, 0x5e, 0x57, 0x4c, 0x45,
|
||||
0x2b, 0x22, 0x39, 0x30, 0x0f, 0x06, 0x1d, 0x14, 0x63, 0x6a, 0x71, 0x78, 0x47, 0x4e, 0x55, 0x5c,
|
||||
0x64, 0x6d, 0x76, 0x7f, 0x40, 0x49, 0x52, 0x5b, 0x2c, 0x25, 0x3e, 0x37, 0x08, 0x01, 0x1a, 0x13,
|
||||
0x7d, 0x74, 0x6f, 0x66, 0x59, 0x50, 0x4b, 0x42, 0x35, 0x3c, 0x27, 0x2e, 0x11, 0x18, 0x03, 0x0a,
|
||||
0x56, 0x5f, 0x44, 0x4d, 0x72, 0x7b, 0x60, 0x69, 0x1e, 0x17, 0x0c, 0x05, 0x3a, 0x33, 0x28, 0x21,
|
||||
0x4f, 0x46, 0x5d, 0x54, 0x6b, 0x62, 0x79, 0x70, 0x07, 0x0e, 0x15, 0x1c, 0x23, 0x2a, 0x31, 0x38,
|
||||
0x41, 0x48, 0x53, 0x5a, 0x65, 0x6c, 0x77, 0x7e, 0x09, 0x00, 0x1b, 0x12, 0x2d, 0x24, 0x3f, 0x36,
|
||||
0x58, 0x51, 0x4a, 0x43, 0x7c, 0x75, 0x6e, 0x67, 0x10, 0x19, 0x02, 0x0b, 0x34, 0x3d, 0x26, 0x2f,
|
||||
0x73, 0x7a, 0x61, 0x68, 0x57, 0x5e, 0x45, 0x4c, 0x3b, 0x32, 0x29, 0x20, 0x1f, 0x16, 0x0d, 0x04,
|
||||
0x6a, 0x63, 0x78, 0x71, 0x4e, 0x47, 0x5c, 0x55, 0x22, 0x2b, 0x30, 0x39, 0x06, 0x0f, 0x14, 0x1d,
|
||||
0x25, 0x2c, 0x37, 0x3e, 0x01, 0x08, 0x13, 0x1a, 0x6d, 0x64, 0x7f, 0x76, 0x49, 0x40, 0x5b, 0x52,
|
||||
0x3c, 0x35, 0x2e, 0x27, 0x18, 0x11, 0x0a, 0x03, 0x74, 0x7d, 0x66, 0x6f, 0x50, 0x59, 0x42, 0x4b,
|
||||
0x17, 0x1e, 0x05, 0x0c, 0x33, 0x3a, 0x21, 0x28, 0x5f, 0x56, 0x4d, 0x44, 0x7b, 0x72, 0x69, 0x60,
|
||||
0x0e, 0x07, 0x1c, 0x15, 0x2a, 0x23, 0x38, 0x31, 0x46, 0x4f, 0x54, 0x5d, 0x62, 0x6b, 0x70, 0x79
|
||||
};
|
||||
|
||||
/** wait one SPI round (one SPI word)
|
||||
*/
|
||||
static void flash_sdcard_spi_wait(void)
|
||||
{
|
||||
spi_send(SPI(FLASH_SDCARD_SPI), 0xffff); // send not command token (i.e. starting with 1)
|
||||
}
|
||||
|
||||
/** read one SPI word
|
||||
* @return SPI word read
|
||||
*/
|
||||
static uint16_t flash_sdcard_spi_read(void)
|
||||
{
|
||||
spi_send(SPI(FLASH_SDCARD_SPI), 0xffff); // send not command token (i.e. starting with 1)
|
||||
(void)SPI_DR(SPI(FLASH_SDCARD_SPI)); // clear RXNE flag (by reading previously received data (not done by spi_read or spi_xref)
|
||||
while (!(SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_TXE)); // wait until Tx buffer is empty before clearing the (previous) RXNE flag
|
||||
while (!(SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_RXNE)); // wait for next data to be available
|
||||
return SPI_DR(SPI(FLASH_SDCARD_SPI)); // return received adat
|
||||
}
|
||||
|
||||
/** test if card is present
|
||||
* @return if card has been detected
|
||||
* @note this use the SD card detection mechanism (CD/CS is high card is inserted due to the internal 50 kOhm resistor)
|
||||
*/
|
||||
static bool flash_sdcard_card_detect(void)
|
||||
{
|
||||
rcc_periph_clock_enable(RCC_SPI_NSS_PORT(FLASH_SDCARD_SPI)); // enable clock for NSS pin port peripheral for SD card CD signal
|
||||
gpio_set_mode(SPI_NSS_PORT(FLASH_SDCARD_SPI), GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, SPI_NSS_PIN(FLASH_SDCARD_SPI)); // set NSS pin as input to read CD signal
|
||||
gpio_clear(SPI_NSS_PORT(FLASH_SDCARD_SPI), SPI_NSS_PIN(FLASH_SDCARD_SPI)); // pull pin low to avoid false positive when card in not inserted
|
||||
return (0!=gpio_get(SPI_NSS_PORT(FLASH_SDCARD_SPI), SPI_NSS_PIN(FLASH_SDCARD_SPI))); // read CD signal: is card is present the internal 50 kOhm pull-up resistor will override our 1 MOhm pull-down resistor and set the signal high (see section 6.2)
|
||||
}
|
||||
|
||||
/** transmit command token
|
||||
* @param[in] index command index
|
||||
* @param[in] argument command argument
|
||||
*/
|
||||
static void flash_sdcard_send_command(uint8_t index, uint32_t argument)
|
||||
{
|
||||
uint8_t command[5] = { 0x40+(index&0x3f), argument>>24, argument>>16, argument>>8, argument>>0 }; // commands are 5 bytes long, plus 1 bytes of CRC (see section 7.3.1.1)
|
||||
uint8_t crc7 = 0x00; // CRC-7 checksum for command message
|
||||
// send command
|
||||
for (uint8_t i=0; i<LENGTH(command); i++) {
|
||||
spi_send(SPI(FLASH_SDCARD_SPI), command[i]); // send data
|
||||
crc7 = (crc7_table[((crc7<<1)^command[i])])&0x7f; // update checksum
|
||||
}
|
||||
spi_send(SPI(FLASH_SDCARD_SPI), (crc7<<1)+0x01); // send CRC value (see section 7.3.1.1)
|
||||
}
|
||||
|
||||
/** transmit command token and receive response token
|
||||
* @param[in] index command index
|
||||
* @param[in] argument command argument
|
||||
* @param[out] response response data to read (if no error occurred)
|
||||
* @param[in] size size of response to read
|
||||
* @return response token R1 or 0xff if error occurred or card is not present
|
||||
*/
|
||||
static uint8_t flash_sdcard_command_response(uint8_t index, uint32_t argument, uint8_t* response, size_t size)
|
||||
{
|
||||
// send command token
|
||||
gpio_clear(SPI_NSS_PORT(FLASH_SDCARD_SPI), SPI_NSS_PIN(FLASH_SDCARD_SPI)); // set CS low to select slave and start SPI mode (see section 7.2)
|
||||
flash_sdcard_spi_wait(); // wait for N_CS (min. 0, but it works better with 8 clock cycles) before writing command (see section 7.5.1.1)
|
||||
flash_sdcard_send_command(index, argument); // send command token
|
||||
|
||||
// get response token R1
|
||||
uint8_t r1 = 0xff; // response token R1 (see section 7.3.2.1)
|
||||
for (uint8_t i=0; i<8 && r1&0x80; i++) { // wait for N_CR (1 to 8 8 clock cycles) before reading response (see section 7.5.1.1)
|
||||
r1 = flash_sdcard_spi_read(); // get response (see section 7.3.2.1)
|
||||
}
|
||||
if (0x00==(r1&0xfe) && 0!=size && NULL!=response) { // we have to read a response
|
||||
for (size_t i=0; i<size; i++) {
|
||||
response[i] = flash_sdcard_spi_read(); // get byte
|
||||
}
|
||||
}
|
||||
|
||||
// end communication
|
||||
while (SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_BSY); // wait until not busy (= transmission completed)
|
||||
// wait for N_EC (min. 0) before closing communication (see section 7.5.1.1)
|
||||
gpio_set(SPI_NSS_PORT(FLASH_SDCARD_SPI), SPI_NSS_PIN(FLASH_SDCARD_SPI)); // set CS high to unselect card
|
||||
// wait for N_DS (min. 0) before allowing any further communication (see section 7.5.1.1)
|
||||
return r1;
|
||||
}
|
||||
|
||||
/** read a data block
|
||||
* @param[out] data data block to read (if no error occurred)
|
||||
* @param[in] size size of response to read (a multiple of 2)
|
||||
* @return 0 if succeeded, else control token (0xff for other errors)
|
||||
*/
|
||||
static uint8_t flash_sdcard_read_block(uint8_t* data, size_t size)
|
||||
{
|
||||
if (size%2 || 0==size || NULL==data) { // can't (and shouldn't) read odd number of bytes
|
||||
return 0xff;
|
||||
}
|
||||
|
||||
uint8_t token = 0xff; // to save the control block token (see section 7.3.3)
|
||||
for (uint32_t i=0; i<n_ac && token==0xff; i++) { // wait for N_AC before reading data block (see section 7.5.2.1)
|
||||
token = flash_sdcard_spi_read(); // get control token (see section 7.3.3)
|
||||
}
|
||||
if (0==(token&0xf0)) { // data error token received (see section 7.3.3.3)
|
||||
if (0==(token&0x0f)) { // unknown error
|
||||
token = 0xff;
|
||||
}
|
||||
} else if (0xfe==token) { // start block token received (see section 7.3.3.2)
|
||||
// switch to 16-bits SPI data frame so we can use use built-in CRC-16
|
||||
while (!(SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_TXE)); // wait until the end of any transmission
|
||||
while (SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_BSY); // wait until not busy before disabling
|
||||
spi_disable(SPI(FLASH_SDCARD_SPI)); // disable SPI to change format
|
||||
spi_set_dff_16bit(SPI(FLASH_SDCARD_SPI)); // set SPI frame to 16 bits
|
||||
SPI_CRC_PR(FLASH_SDCARD_SPI) = 0x1021; // set CRC-16-CCITT polynomial for data blocks (x^16+x^12+x^5+1) (see section 7.2.3)
|
||||
spi_enable_crc(SPI(FLASH_SDCARD_SPI)); // enable and clear CRC
|
||||
spi_enable(SPI(FLASH_SDCARD_SPI)); // enable SPI back
|
||||
// get block data (ideally use DMA, but switching makes it more complex and this part doesn't take too much time)
|
||||
for (size_t i=0; i<size/2; i++) {
|
||||
uint16_t word = flash_sdcard_spi_read(); // get word
|
||||
data[i*2+0] = (word>>8); // save byte
|
||||
data[i*2+1] = (word>>0); // save byte
|
||||
}
|
||||
flash_sdcard_spi_read(); // read CRC (the CRC after the data block should clear the computed CRC)
|
||||
if (SPI_CRC_RXR(FLASH_SDCARD_SPI)) { // CRC is wrong
|
||||
token = 0xff;
|
||||
} else { // no error occurred
|
||||
token = 0;
|
||||
}
|
||||
// switch back to 8-bit SPI frames
|
||||
while (!(SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_TXE)); // wait until the end of any transmission
|
||||
while (SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_BSY); // wait until not busy before disabling
|
||||
spi_disable(SPI(FLASH_SDCARD_SPI)); // disable SPI to change format
|
||||
spi_disable_crc(SPI(FLASH_SDCARD_SPI)); // disable CRC since we don't use it anymore (and this allows us to clear the CRC next time we use it)
|
||||
spi_set_dff_8bit(SPI(FLASH_SDCARD_SPI)); // set SPI frame to 8 bits
|
||||
spi_enable(SPI(FLASH_SDCARD_SPI)); // enable SPI back
|
||||
} else { // start block token not received
|
||||
token = 0xff;
|
||||
}
|
||||
|
||||
return token;
|
||||
}
|
||||
|
||||
/** write a data block
|
||||
* @param[in] data data block to write
|
||||
* @param[in] size size of response to read (a multiple of 2)
|
||||
* @return data response token (0xff for other errors)
|
||||
*/
|
||||
static uint8_t flash_sdcard_write_block(uint8_t* data, size_t size)
|
||||
{
|
||||
if (size%2 || 0==size || NULL==data) { // can't (and shouldn't) read odd number of bytes
|
||||
return 0xff;
|
||||
}
|
||||
|
||||
spi_send(SPI(FLASH_SDCARD_SPI), 0xfe); // send start block token (see section 7.3.3.2)
|
||||
|
||||
// switch to 16-bits SPI data frame so we can use use built-in CRC-16
|
||||
while (!(SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_TXE)); // wait until the end of any transmission
|
||||
while (SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_BSY); // wait until not busy before disabling
|
||||
spi_disable(SPI(FLASH_SDCARD_SPI)); // disable SPI to change format
|
||||
spi_set_dff_16bit(SPI(FLASH_SDCARD_SPI)); // set SPI frame to 16 bits
|
||||
SPI_CRC_PR(FLASH_SDCARD_SPI) = 0x1021; // set CRC-16-CCITT polynomial for data blocks (x^16+x^12+x^5+1) (see section 7.2.3)
|
||||
spi_enable_crc(SPI(FLASH_SDCARD_SPI)); // enable and clear CRC
|
||||
spi_enable(SPI(FLASH_SDCARD_SPI)); // enable SPI back
|
||||
// send block data (ideally use DMA, but switching makes it more complex and this part doesn't take too much time)
|
||||
for (size_t i=0; i<size/2; i++) {
|
||||
uint16_t word = (data[i*2+0]<<8)+data[i*2+1]; // prepare SPI frame
|
||||
spi_send(SPI(FLASH_SDCARD_SPI), word); // senf data frame
|
||||
}
|
||||
spi_set_next_tx_from_crc(SPI(FLASH_SDCARD_SPI)); // send CRC
|
||||
// switch back to 8-bit SPI frames
|
||||
while (!(SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_TXE)); // wait until the end of any transmission
|
||||
while (SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_BSY); // wait until not busy before disabling
|
||||
spi_disable(SPI(FLASH_SDCARD_SPI)); // disable SPI to change format
|
||||
spi_set_next_tx_from_buffer(SPI(FLASH_SDCARD_SPI)); // don't send CRC
|
||||
spi_disable_crc(SPI(FLASH_SDCARD_SPI)); // disable CRC since we don't use it anymore (and this allows us to clear the CRC next time we use it)
|
||||
spi_set_dff_8bit(SPI(FLASH_SDCARD_SPI)); // set SPI frame to 8 bits
|
||||
spi_enable(SPI(FLASH_SDCARD_SPI)); // enable SPI back
|
||||
|
||||
uint8_t token = 0xff;
|
||||
while (0x01!=(token&0x11)) {
|
||||
token = flash_sdcard_spi_read(); // get data response token (see section 7.3.3.1)
|
||||
}
|
||||
while (0==flash_sdcard_spi_read()); // wait N_EC while the card is busy programming the data
|
||||
|
||||
return token;
|
||||
}
|
||||
/** get card status
|
||||
* @param[out] status SD status (512 bits)
|
||||
* @return response token R2 or 0xffff if error occurred or card is not present
|
||||
*/
|
||||
static uint16_t flash_sdcard_status(uint8_t* status)
|
||||
{
|
||||
// send CMD55 (APP_CMD) to issue following application command (see table 7-4)
|
||||
uint8_t r1 = flash_sdcard_command_response(55, 0, NULL, 0); // (see table 7-3)
|
||||
if ((r1&0xfe)) { // error occurred, not in idle state
|
||||
return false;
|
||||
}
|
||||
|
||||
// send ACMD13 command
|
||||
gpio_clear(SPI_NSS_PORT(FLASH_SDCARD_SPI), SPI_NSS_PIN(FLASH_SDCARD_SPI)); // set CS low to select slave and start SPI mode (see section 7.2)
|
||||
flash_sdcard_spi_wait(); // wait for N_CS (min. 0, but it works better with 8 clock cycles) before writing command (see section 7.5.2.1)
|
||||
flash_sdcard_send_command(13, 0); // send ACMD13 (SD_STATUS) (see table 7-4)
|
||||
|
||||
// get response token R2
|
||||
uint16_t r2 = 0xffff; // response token R2 (see section 7.3.2.3)
|
||||
for (uint8_t i=0; i<8 && r2&0x8000; i++) { // wait for N_CR (1 to 8 8 clock cycles) before reading response (see section 7.5.1.1)
|
||||
r2 = (flash_sdcard_spi_read()<<8); // get first byte of response (see section 7.3.2.1)
|
||||
}
|
||||
if (0==(r2&0x8000)) { // got the first byte
|
||||
r2 += flash_sdcard_spi_read(); // read second byte (see 7.3.2.3)
|
||||
}
|
||||
|
||||
// get data block
|
||||
if (0==r2) { // no error
|
||||
if (flash_sdcard_read_block(status, 64)) { // read 512 bits data block containing SD status
|
||||
r2 |= (1<<11); // set communication error
|
||||
}
|
||||
}
|
||||
|
||||
// end communication
|
||||
while (SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_BSY); // wait until not busy (= transmission completed)
|
||||
// wait for N_EC (min. 0) before closing communication (see section 7.5.1.1)
|
||||
gpio_set(SPI_NSS_PORT(FLASH_SDCARD_SPI), SPI_NSS_PIN(FLASH_SDCARD_SPI)); // set CS high to unselect card
|
||||
// wait for N_DS (min. 0) before allowing any further communication (see section 7.5.1.1)
|
||||
return r2;
|
||||
}
|
||||
|
||||
/** transmit command token, receive response token and data block
|
||||
* @param[in] index command index
|
||||
* @param[in] argument command argument
|
||||
* @param[out] data data block to read (if no error occurred)
|
||||
* @param[in] size size of data to read (a multiple of 2)
|
||||
* @return response token R1 or 0xff if error occurred or card is not present
|
||||
*/
|
||||
static uint8_t flash_sdcard_data_read(uint8_t index, uint32_t argument, uint8_t* data, size_t size)
|
||||
{
|
||||
if (size%2 || 0==size || NULL==data) { // can't (and shouldn't) read odd number of bytes
|
||||
return 0xff;
|
||||
}
|
||||
|
||||
// send command token
|
||||
gpio_clear(SPI_NSS_PORT(FLASH_SDCARD_SPI), SPI_NSS_PIN(FLASH_SDCARD_SPI)); // set CS low to select slave and start SPI mode (see section 7.2)
|
||||
flash_sdcard_spi_wait(); // wait for N_CS (min. 0, but it works better with 8 clock cycles) before writing command (see section 7.5.2.1)
|
||||
flash_sdcard_send_command(index, argument); // send command token
|
||||
|
||||
// get response token R1
|
||||
uint8_t r1 = 0xff; // response token R1 (see section 7.3.2.1)
|
||||
for (uint8_t i=0; i<8 && r1&0x80; i++) { // wait for N_CR (1 to 8 8 clock cycles) before reading response (see section 7.5.1.1)
|
||||
r1 = flash_sdcard_spi_read(); // get response (see section 7.3.2.1)
|
||||
}
|
||||
|
||||
// get data block
|
||||
if (0x00==r1) { // we can read a data block
|
||||
if (flash_sdcard_read_block(data, size)) { // read data block
|
||||
r1 |= (1<<3); // set communication error
|
||||
}
|
||||
}
|
||||
|
||||
// end communication
|
||||
while (SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_BSY); // wait until not busy (= transmission completed)
|
||||
// wait for N_EC (min. 0) before closing communication (see section 7.5.1.1)
|
||||
gpio_set(SPI_NSS_PORT(FLASH_SDCARD_SPI), SPI_NSS_PIN(FLASH_SDCARD_SPI)); // set CS high to unselect card
|
||||
// wait for N_DS (min. 0) before allowing any further communication (see section 7.5.1.1)
|
||||
return r1;
|
||||
}
|
||||
|
||||
/** transmit command token, receive response token and write data block
|
||||
* @param[in] index command index
|
||||
* @param[in] argument command argument
|
||||
* @param[out] data data block to write
|
||||
* @param[in] size size of data to write (a multiple of 2)
|
||||
* @return data response token, or 0xff if error occurred or card is not present
|
||||
* @note at the end of a write operation the SD status should be check to ensure no error occurred during programming
|
||||
*/
|
||||
static uint8_t flash_sdcard_data_write(uint8_t index, uint32_t argument, uint8_t* data, size_t size)
|
||||
{
|
||||
if (size%2 || 0==size || NULL==data) { // can't (and shouldn't) write odd number of bytes
|
||||
return 0xff;
|
||||
}
|
||||
|
||||
// send command token
|
||||
gpio_clear(SPI_NSS_PORT(FLASH_SDCARD_SPI), SPI_NSS_PIN(FLASH_SDCARD_SPI)); // set CS low to select slave and start SPI mode (see section 7.2)
|
||||
flash_sdcard_spi_wait(); // wait for N_CS (min. 0, but it works better with 8 clock cycles) before writing command (see section 7.5.2.1)
|
||||
flash_sdcard_send_command(index, argument); // send command token
|
||||
|
||||
// get response token R1
|
||||
uint8_t r1 = 0xff; // response token R1 (see section 7.3.2.1)
|
||||
for (uint8_t i=0; i<8 && r1&0x80; i++) { // wait for N_CR (1 to 8 8 clock cycles) before reading response (see section 7.5.1.1)
|
||||
r1 = flash_sdcard_spi_read(); // get response (see section 7.3.2.1)
|
||||
}
|
||||
|
||||
// write data block
|
||||
uint8_t drt = 0xff; // data response token (see section 7.3.3.1)
|
||||
if (0x00==r1) { // we have to write the data block
|
||||
drt = flash_sdcard_write_block(data, size); // write data block
|
||||
}
|
||||
|
||||
// end communication
|
||||
while (SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_BSY); // wait until not busy (= transmission completed)
|
||||
// wait for N_EC (min. 0) before closing communication (see section 7.5.1.1)
|
||||
gpio_set(SPI_NSS_PORT(FLASH_SDCARD_SPI), SPI_NSS_PIN(FLASH_SDCARD_SPI)); // set CS high to unselect card
|
||||
// wait for N_DS (min. 0) before allowing any further communication (see section 7.5.1.1)
|
||||
|
||||
return drt;
|
||||
}
|
||||
|
||||
bool flash_sdcard_setup(void)
|
||||
{
|
||||
// reset values
|
||||
initialized = false;
|
||||
n_ac = 8;
|
||||
sdcard_size = 0;
|
||||
erase_size = 0;
|
||||
|
||||
// check if card is present
|
||||
if (!flash_sdcard_card_detect()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// configure SPI peripheral
|
||||
rcc_periph_clock_enable(RCC_SPI_SCK_PORT(FLASH_SDCARD_SPI)); // enable clock for GPIO peripheral for clock signal
|
||||
gpio_set_mode(SPI_SCK_PORT(FLASH_SDCARD_SPI), GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, SPI_SCK_PIN(FLASH_SDCARD_SPI)); // set SCK as output (clock speed will be negotiated later)
|
||||
rcc_periph_clock_enable(RCC_SPI_MOSI_PORT(FLASH_SDCARD_SPI)); // enable clock for GPIO peripheral for MOSI signal
|
||||
gpio_set_mode(SPI_MOSI_PORT(FLASH_SDCARD_SPI), GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, SPI_MOSI_PIN(FLASH_SDCARD_SPI)); // set MOSI as output
|
||||
rcc_periph_clock_enable(RCC_SPI_MISO_PORT(FLASH_SDCARD_SPI)); // enable clock for GPIO peripheral for MISO signal
|
||||
gpio_set_mode(SPI_MISO_PORT(FLASH_SDCARD_SPI), GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, SPI_MISO_PIN(FLASH_SDCARD_SPI)); // set MISO as input
|
||||
gpio_set(SPI_MISO_PORT(FLASH_SDCARD_SPI), SPI_MISO_PIN(FLASH_SDCARD_SPI)); // pull pin high to detect when the card is not answering (or not present) since responses always start with MSb 0
|
||||
rcc_periph_clock_enable(RCC_SPI_NSS_PORT(FLASH_SDCARD_SPI)); // enable clock for GPIO peripheral for NSS (CS) signal
|
||||
gpio_set_mode(SPI_NSS_PORT(FLASH_SDCARD_SPI), GPIO_MODE_OUTPUT_10_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, SPI_NSS_PIN(FLASH_SDCARD_SPI)); // set NSS (CS) as output
|
||||
rcc_periph_clock_enable(RCC_AFIO); // enable clock for SPI alternate function
|
||||
rcc_periph_clock_enable(RCC_SPI(FLASH_SDCARD_SPI)); // enable clock for SPI peripheral
|
||||
spi_reset(SPI(FLASH_SDCARD_SPI)); // clear SPI values to default
|
||||
spi_init_master(SPI(FLASH_SDCARD_SPI), SPI_CR1_BAUDRATE_FPCLK_DIV_256, SPI_CR1_CPOL_CLK_TO_0_WHEN_IDLE, SPI_CR1_CPHA_CLK_TRANSITION_1, SPI_CR1_DFF_8BIT, SPI_CR1_MSBFIRST); // initialise SPI as master, divide clock by 256 (72E6/256=281 kHz) since maximum SD card clock frequency (fOD, see section 7.8/6.6.6) during initial card-identification mode is 400 kHz (maximum SPI PCLK clock is 72 Mhz, depending on which SPI is used), set clock polarity to idle low (not that important), set clock phase to do bit change on falling edge (from SD card spec, polarity depends on clock phase), use 8 bits frames (as per spec), use MSb first
|
||||
spi_set_full_duplex_mode(SPI(FLASH_SDCARD_SPI)); // ensure we are in full duplex mode
|
||||
spi_enable_software_slave_management(SPI(FLASH_SDCARD_SPI)); // control NSS (CS) manually
|
||||
spi_set_nss_high(SPI(FLASH_SDCARD_SPI)); // set NSS high (internally) so we can output
|
||||
spi_disable_ss_output(SPI(FLASH_SDCARD_SPI)); // disable NSS output since we control CS manually
|
||||
gpio_set(SPI_NSS_PORT(FLASH_SDCARD_SPI), SPI_NSS_PIN(FLASH_SDCARD_SPI)); // set CS high to unselect card
|
||||
// sadly we can't use the interrupts as events to sleep (WFE) since sleep disables also communication (e.g. going to sleep until Rx buffer is not empty prevents transmission)
|
||||
spi_enable(SPI(FLASH_SDCARD_SPI)); // enable SPI
|
||||
|
||||
// start card-identification (see section 7.2.1/4.2)
|
||||
uint8_t r1 = 0;
|
||||
// send CMD0 (GO_IDLE_START) to start the card identification (see section 7.2.1)
|
||||
r1 = flash_sdcard_command_response(0, 0, NULL, 0); // (see table 7-3)
|
||||
if (0x01!=r1) { // error occurred, not in idle state
|
||||
return false;
|
||||
}
|
||||
// send CMD8 (SEND_IF_COND) to inform about voltage (1: 2.7-3.6V, aa: recommended check pattern) (see section 7.2.1)
|
||||
uint8_t r7[4] = {0}; // to store response toke R7 (see section 7.3.2.6)
|
||||
r1 = flash_sdcard_command_response(8, 0x000001aa, r7, sizeof(r7)); // (see table 7-3)
|
||||
if (0x01==r1) { // command supported, in idle state
|
||||
if (!(r7[2]&0x1)) { // 2.7-3.6V not supported (see table 5-1)
|
||||
return false;
|
||||
} else if (0xaa!=r7[3]) { // recommended pattern not returned (see section 4.3.13)
|
||||
return false;
|
||||
}
|
||||
} else if (0x05!=r1) { // illegal command (cards < physical spec v2.0 don't support CMD8) (see section 7.2.1)
|
||||
return false;
|
||||
}
|
||||
// send CMD58 (READ_OCR) to read Operation Conditions Register (see section 7.2.1)
|
||||
uint8_t r3[4] = {0}; // to store response token R3 (see section 7.3.2.4)
|
||||
r1 = flash_sdcard_command_response(58, 0, r3, sizeof(r3)); // (see table 7-3)
|
||||
if (0x01!=r1) { // error occurred, not in idle state
|
||||
return false;
|
||||
} else if (!(r3[1]&0x30)) { // 3.3V not supported (see table 5-1)
|
||||
return false;
|
||||
}
|
||||
do {
|
||||
// send CMD55 (APP_CMD) to issue following application command (see table 7-4)
|
||||
r1 = flash_sdcard_command_response(55, 0, NULL, 0); // (see table 7-3)
|
||||
if (0x01!=r1) { // error occurred, not in idle state
|
||||
return false;
|
||||
}
|
||||
// send ACMD41 (SD_SEND_OP_COND) with Host Capacity Support (0b: SDSC Only Host, 1b: SDHC or SDXC Supported) (see section 7.2.1)
|
||||
r1 = flash_sdcard_command_response(41, 0x40000000, NULL, 0); // (see table 7-4)
|
||||
if (r1&0xfe) { // error occurred
|
||||
return false;
|
||||
}
|
||||
} while (0x00!=r1); // wait until card is ready (see section 7.2.1)
|
||||
// send CMD58 (READ_OCR) to read Card Capacity Status (CCS) (see section 7.2.1)
|
||||
r1 = flash_sdcard_command_response(58, 0, r3, sizeof(r3)); // (see table 7-3)
|
||||
if (r1) { // error occurred
|
||||
return false;
|
||||
}
|
||||
// card power up status bit (bit 31) is set when power up is complete (see table 5-1)
|
||||
if (0x00==(r3[0]&0x80)) {
|
||||
return false;
|
||||
}
|
||||
sdsc = (0==(r3[0]&0x40)); // CCS is bit 30 in OCR (see table 5-1)
|
||||
// now the card identification is complete and we should be in data-transfer mode (see figure 7-1)
|
||||
|
||||
// we can switch clock frequency to fPP (max. 25 MHz) (see section 4.3/6.6.6)
|
||||
while (!(SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_TXE)); // wait until the end of any transmission
|
||||
while (SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_BSY); // wait until not busy before disabling
|
||||
spi_disable(SPI(FLASH_SDCARD_SPI)); // disable SPI to change clock speed
|
||||
spi_set_baudrate_prescaler(SPI(FLASH_SDCARD_SPI), SPI_CR1_BR_FPCLK_DIV_4); // set clock speed to 18 MHz (72/4=18, < 25 MHz)
|
||||
spi_enable(SPI(FLASH_SDCARD_SPI)); // enable SPI back
|
||||
|
||||
// send CMD9 (SEND_CSD) to get Card Specific Data (CSD) and calculate N_AC (see section 7.2.6)
|
||||
uint8_t csd[16] = {0}; // CSD response (see chapter 7.2.6)
|
||||
r1 = flash_sdcard_data_read(9, 0, csd, sizeof(csd)); // (see table 7-3)
|
||||
if (r1) { // error occurred
|
||||
return false;
|
||||
}
|
||||
// check if CSD structure version matches capacity (see section 5.3.1)
|
||||
if ((sdsc && (csd[0]>>6)) || (!sdsc && 0==(csd[0]>>6))) {
|
||||
return false;
|
||||
}
|
||||
// calculate N_AC value (we use our set minimum frequency 16 MHz to calculate time)
|
||||
if (sdsc) { // calculate N_AC using TAAC and NSAC
|
||||
static const float TAAC_UNITS[] = {1E-9, 10E-9, 100E-9, 1E-6, 10E-6, 100E-6, 1E-3, 10E-3}; // (see table 5-5)
|
||||
static const float TAAC_VALUES[] = {10.0, 1.0, 1.2, 1.3, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 7.0, 8.0}; // (see table 5-5)
|
||||
double taac = TAAC_VALUES[(csd[1]>>2)&0xf]*TAAC_UNITS[csd[1]&0x7]; // time in ns
|
||||
n_ac=100*((taac*16E6)+(csd[2]*100))/8; // (see section 7.5.4)
|
||||
} else { // value is fixed to 100 ms
|
||||
n_ac=100E-3*16E6/8;
|
||||
}
|
||||
// calculate card size
|
||||
if (sdsc) { // see section 5.3.2
|
||||
uint16_t c_size = (((uint16_t)csd[6]&0x03)<<10)+((uint16_t)csd[7]<<2)+(csd[8]>>6);
|
||||
uint8_t c_size_mutl = ((csd[9]&0x03)<<1)+((csd[10]&0x80)>>7);
|
||||
uint8_t read_bl_len = (csd[5]&0x0f);
|
||||
sdcard_size = ((c_size+1)*(1UL<<(c_size_mutl+2)))*(1UL<<read_bl_len);
|
||||
} else { // see section 5.3.3
|
||||
uint32_t c_size = ((uint32_t)(csd[7]&0x3f)<<16)+((uint16_t)csd[8]<<8)+csd[9];
|
||||
sdcard_size = (c_size+1)*(512<<10);
|
||||
}
|
||||
// calculate erase size
|
||||
if (sdsc) { // see section 5.3.2
|
||||
erase_size = (((csd[10]&0x3f)<<1)+((csd[11]&0x80)>>7)+1)<<(((csd[12]&0x03)<<2)+(csd[13]>>6));
|
||||
} else {
|
||||
uint8_t status[64] = {0}; // SD status (see section 4.10.2)
|
||||
uint16_t r2 = flash_sdcard_status(status); // get status (see table 7-4)
|
||||
if (r2) { // error occurred
|
||||
return false;
|
||||
}
|
||||
erase_size = (8192UL<<(status[10]>>4)); // calculate erase size (see table 4-44, section 4.10.2.4)
|
||||
}
|
||||
|
||||
// ensure block length is 512 bytes for SDSC (should be per default) to we match SDHC/SDXC block size
|
||||
if (sdsc) {
|
||||
r1 = flash_sdcard_command_response(16, 512, NULL, 0); // set block size using CMD16 (SET_BLOCKLEN) (see table 7-3)
|
||||
if (r1) { // error occurred
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
// try to switch to high speed mode (see section 7.2.14/4.3.10)
|
||||
if (csd[4]&0x40) { // ensure CMD6 is supported by checking if command class 10 is set
|
||||
uint32_t n_ac_back = n_ac; // backup N_AC
|
||||
n_ac = 100E-3*16E6/8; // temporarily set timeout to 100 ms (see section 4.3.10.1)
|
||||
// query access mode (group function 1) to check if high speed is supported (fPP=50MHz at 3.3V, we can be faster)
|
||||
uint8_t fnc[64] = {0}; // function status response (see table 4-12)
|
||||
r1 = flash_sdcard_data_read(6, 0x00fffff1, fnc, sizeof(fnc)); // check high speed function using CMD6 (SWITCH_FUNC) to check (mode 0) access mode (function group 1) (see table 7-3/4-30)
|
||||
if (r1) { // error occurred
|
||||
return false;
|
||||
}
|
||||
if (0x1==(fnc[16]&0x0f)) { // we can to access mode function 1 (see table 4-12)
|
||||
r1 = flash_sdcard_data_read(6, 0x80fffff1, fnc, sizeof(fnc)); // switch to high speed function using CMD6 (SWITCH_FUNC) to switch (mode 1) access mode (function group 1) (see table 7-3/4-30)
|
||||
if (r1) { // error occurred
|
||||
return false;
|
||||
}
|
||||
if (0x1!=(fnc[16]&0x0f)) { // could not switch to high speed
|
||||
return false;
|
||||
}
|
||||
// we can switch clock frequency to fPP (max. 50 MHz) (see section 6.6.7)
|
||||
while (!(SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_TXE)); // wait until the end of any transmission
|
||||
while (SPI_SR(SPI(FLASH_SDCARD_SPI))&SPI_SR_BSY); // wait until not busy before disabling
|
||||
spi_disable(SPI(FLASH_SDCARD_SPI)); // disable SPI to change clock speed
|
||||
spi_set_baudrate_prescaler(SPI(FLASH_SDCARD_SPI), SPI_CR1_BR_FPCLK_DIV_2); // set clock speed to 36 MHz (72/2=36 < 50 MHz)
|
||||
spi_enable(SPI(FLASH_SDCARD_SPI)); // enable SPI back
|
||||
n_ac_back /= 2; // since we go twice faster the N_AC timeout has to be halved
|
||||
}
|
||||
n_ac = n_ac_back; // restore N_AC
|
||||
}
|
||||
|
||||
initialized = true;
|
||||
|
||||
return initialized;
|
||||
}
|
||||
|
||||
uint64_t flash_sdcard_size(void)
|
||||
{
|
||||
return sdcard_size;
|
||||
}
|
||||
|
||||
uint32_t flash_sdcard_erase_size(void)
|
||||
{
|
||||
return erase_size;
|
||||
}
|
||||
|
||||
bool flash_sdcard_read_data(uint32_t block, uint8_t* data)
|
||||
{
|
||||
if (NULL==data) {
|
||||
return false;
|
||||
}
|
||||
if (sdsc) { // the address for standard capacity cards must be provided in bytes
|
||||
if (block>UINT32_MAX/512) { // check for integer overflow
|
||||
return false;
|
||||
} else {
|
||||
block *= 512; // calculate byte address from block address
|
||||
}
|
||||
}
|
||||
return (0==flash_sdcard_data_read(17, block, data, 512)); // read single data block using CMD17 (READ_SINGLE_BLOCK) (see table 7-3)
|
||||
}
|
||||
|
||||
bool flash_sdcard_write_data(uint32_t block, uint8_t* data)
|
||||
{
|
||||
if (NULL==data) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (sdsc) { // the address for standard capacity cards must be provided in bytes
|
||||
if (block>UINT32_MAX/512) { // check for integer overflow
|
||||
return false;
|
||||
} else {
|
||||
block *= 512; // calculate byte address from block address
|
||||
}
|
||||
}
|
||||
|
||||
uint8_t drt = flash_sdcard_data_write(24, block, data, 512); // write single data block using CMD24 (WRITE_SINGLE_BLOCK) (see table 7-3)
|
||||
if (0x05!=(drt&0x1f)) { // write block failed
|
||||
return false;
|
||||
}
|
||||
|
||||
// get status to check if programming succeeded
|
||||
uint8_t r2[1] = {0}; // to store response token R2 (see section 7.3.2.3)
|
||||
uint8_t r1 = flash_sdcard_command_response(13, 0, r2, sizeof(r2)); // get SD status using CMD13 (SEND_STATUS) (see table 7-3)
|
||||
if (0x00!=r1) { // error occurred
|
||||
return false;
|
||||
} else if (r2[0]) { // programming error
|
||||
return false;
|
||||
}
|
||||
|
||||
return true; // programming succeeded
|
||||
}
|
|
@ -1,47 +0,0 @@
|
|||
/* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
/** library to communicate with an SD card flash memory using the SPI mode (API)
|
||||
* @file flash_sdcard.h
|
||||
* @author King Kévin <kingkevin@cuvoodoo.info>
|
||||
* @date 2017
|
||||
* @note peripherals used: SPI @ref flash_sdcard_spi
|
||||
* @warning all calls are blocking
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
/** setup communication with SD card
|
||||
* @return if card has been initialized correctly
|
||||
*/
|
||||
bool flash_sdcard_setup(void);
|
||||
/** get size of SD card flash memory
|
||||
* @return size of SD card flash memory (in bytes)
|
||||
*/
|
||||
uint64_t flash_sdcard_size(void);
|
||||
/** get size of a erase block
|
||||
* @return size of a erase block (in bytes)
|
||||
*/
|
||||
uint32_t flash_sdcard_erase_size(void);
|
||||
/** read data on flash of SD card
|
||||
* @param[in] block address of data to read (in block in 512 bytes unit)
|
||||
* @param[out] data data block to read (with a size of 512 bytes)
|
||||
* @return if read succeeded
|
||||
*/
|
||||
bool flash_sdcard_read_data(uint32_t block, uint8_t* data);
|
||||
/** write data on flash of SD card
|
||||
* @param[in] block address of data to write (in block in 512 bytes unit)
|
||||
* @param[in] data data block to write (with a size of 512 bytes)
|
||||
* @return if write succeeded
|
||||
*/
|
||||
bool flash_sdcard_write_data(uint32_t block, uint8_t* data);
|
735
lib/i2c_master.c
735
lib/i2c_master.c
|
@ -1,735 +0,0 @@
|
|||
/* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
/** library to communicate using I²C as master (code)
|
||||
* @file
|
||||
* @author King Kévin <kingkevin@cuvoodoo.info>
|
||||
* @date 2017-2020
|
||||
* @note peripherals used: I2C
|
||||
*/
|
||||
|
||||
/* standard libraries */
|
||||
#include <stdint.h> // standard integer types
|
||||
#include <stdlib.h> // general utilities
|
||||
|
||||
/* STM32 (including CM3) libraries */
|
||||
#include <libopencm3/cm3/systick.h> // SysTick library
|
||||
#include <libopencm3/cm3/assert.h> // assert utilities
|
||||
#include <libopencm3/stm32/rcc.h> // real-time control clock library
|
||||
#include <libopencm3/stm32/gpio.h> // general purpose input output library
|
||||
#include <libopencm3/stm32/i2c.h> // I²C library
|
||||
|
||||
/* own libraries */
|
||||
#include "global.h" // global utilities
|
||||
#include "i2c_master.h" // I²C header and definitions
|
||||
|
||||
/** get RCC for I²C based on I²C identifier
|
||||
* @param[in] i2c I²C base address
|
||||
* @return RCC address for I²C peripheral
|
||||
*/
|
||||
static uint32_t RCC_I2C(uint32_t i2c)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
switch (i2c) {
|
||||
case I2C1:
|
||||
return RCC_I2C1;
|
||||
break;
|
||||
case I2C2:
|
||||
return RCC_I2C2;
|
||||
break;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/** get RCC for GPIO port for SCL pin based on I²C identifier
|
||||
* @param[in] i2c I²C base address
|
||||
* @return RCC GPIO address
|
||||
*/
|
||||
static uint32_t RCC_GPIO_PORT_SCL(uint32_t i2c)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
switch (i2c) {
|
||||
case I2C1:
|
||||
case I2C2:
|
||||
return RCC_GPIOB;
|
||||
break;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/** get RCC for GPIO port for SDA pin based on I²C identifier
|
||||
* @param[in] i2c I²C base address
|
||||
* @return RCC GPIO address
|
||||
*/
|
||||
static uint32_t RCC_GPIO_PORT_SDA(uint32_t i2c)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
switch (i2c) {
|
||||
case I2C1:
|
||||
case I2C2:
|
||||
return RCC_GPIOB;
|
||||
break;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/** get GPIO port for SCL pin based on I²C identifier
|
||||
* @param[in] i2c I²C base address
|
||||
* @return GPIO address
|
||||
*/
|
||||
static uint32_t GPIO_PORT_SCL(uint32_t i2c)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
switch (i2c) {
|
||||
case I2C1:
|
||||
if (AFIO_MAPR & AFIO_MAPR_I2C1_REMAP) {
|
||||
return GPIO_BANK_I2C1_RE_SCL;
|
||||
} else {
|
||||
return GPIO_BANK_I2C1_SCL;
|
||||
}
|
||||
break;
|
||||
case I2C2:
|
||||
return GPIO_BANK_I2C2_SCL;
|
||||
break;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/** get GPIO port for SDA pin based on I²C identifier
|
||||
* @param[in] i2c I²C base address
|
||||
* @return GPIO address
|
||||
*/
|
||||
static uint32_t GPIO_PORT_SDA(uint32_t i2c)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
switch (i2c) {
|
||||
case I2C1:
|
||||
if (AFIO_MAPR & AFIO_MAPR_I2C1_REMAP) {
|
||||
return GPIO_BANK_I2C1_RE_SDA;
|
||||
} else {
|
||||
return GPIO_BANK_I2C1_SDA;
|
||||
}
|
||||
break;
|
||||
case I2C2:
|
||||
return GPIO_BANK_I2C2_SDA;
|
||||
break;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/** get GPIO pin for SCL pin based on I²C identifier
|
||||
* @param[in] i2c I²C base address
|
||||
* @return GPIO address
|
||||
*/
|
||||
static uint32_t GPIO_PIN_SCL(uint32_t i2c)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
switch (i2c) {
|
||||
case I2C1:
|
||||
if (AFIO_MAPR & AFIO_MAPR_I2C1_REMAP) {
|
||||
return GPIO_I2C1_RE_SCL;
|
||||
} else {
|
||||
return GPIO_I2C1_SCL;
|
||||
}
|
||||
break;
|
||||
case I2C2:
|
||||
return GPIO_I2C2_SCL;
|
||||
break;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/** get GPIO pin for SDA pin based on I²C identifier
|
||||
* @param[in] i2c I²C base address
|
||||
* @return GPIO address
|
||||
*/
|
||||
static uint32_t GPIO_PIN_SDA(uint32_t i2c)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
switch (i2c) {
|
||||
case I2C1:
|
||||
if (AFIO_MAPR & AFIO_MAPR_I2C1_REMAP) {
|
||||
return GPIO_I2C1_RE_SDA;
|
||||
} else {
|
||||
return GPIO_I2C1_SDA;
|
||||
}
|
||||
break;
|
||||
case I2C2:
|
||||
return GPIO_I2C2_SDA;
|
||||
break;
|
||||
default:
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
void i2c_master_setup(uint32_t i2c, uint16_t frequency)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
// configure I²C peripheral
|
||||
rcc_periph_clock_enable(RCC_GPIO_PORT_SCL(i2c)); // enable clock for I²C I/O peripheral
|
||||
gpio_set(GPIO_PORT_SCL(i2c), GPIO_PIN_SCL(i2c)); // already put signal high to avoid small pulse
|
||||
gpio_set_mode(GPIO_PORT_SCL(i2c), GPIO_MODE_OUTPUT_10_MHZ, GPIO_CNF_OUTPUT_ALTFN_OPENDRAIN, GPIO_PIN_SCL(i2c)); // setup I²C I/O pins
|
||||
rcc_periph_clock_enable(RCC_GPIO_PORT_SDA(i2c)); // enable clock for I²C I/O peripheral
|
||||
gpio_set(GPIO_PORT_SDA(i2c), GPIO_PIN_SDA(i2c)); // already put signal high to avoid small pulse
|
||||
gpio_set_mode(GPIO_PORT_SDA(i2c), GPIO_MODE_OUTPUT_10_MHZ, GPIO_CNF_OUTPUT_ALTFN_OPENDRAIN, GPIO_PIN_SDA(i2c)); // setup I²C I/O pins
|
||||
rcc_periph_clock_enable(RCC_AFIO); // enable clock for alternate function
|
||||
rcc_periph_clock_enable(RCC_I2C(i2c)); // enable clock for I²C peripheral
|
||||
i2c_reset(i2c); // reset peripheral domain
|
||||
i2c_peripheral_disable(i2c); // I²C needs to be disable to be configured
|
||||
I2C_CR1(i2c) |= I2C_CR1_SWRST; // reset peripheral
|
||||
I2C_CR1(i2c) &= ~I2C_CR1_SWRST; // clear peripheral reset
|
||||
if (0==frequency) { // don't allow null frequency
|
||||
frequency = 1;
|
||||
} else if (frequency > 400) { // limit frequency to 400 kHz
|
||||
frequency = 400;
|
||||
}
|
||||
i2c_set_clock_frequency(i2c, rcc_apb1_frequency / 1000000); // configure the peripheral clock to the APB1 freq (where it is connected to)
|
||||
if (frequency>100) { // use fast mode for frequencies over 100 kHz
|
||||
i2c_set_fast_mode(i2c); // set fast mode (Fm)
|
||||
i2c_set_ccr(i2c, rcc_apb1_frequency / (frequency * 1000 * 2)); // set Thigh/Tlow to generate frequency (fast duty not used)
|
||||
i2c_set_trise(i2c, (300 / (1000 / (rcc_apb1_frequency / 1000000))) + 1); // max rise time for Fm mode (< 400) kHz is 300 ns
|
||||
} else { // use fast mode for frequencies below 100 kHz
|
||||
i2c_set_standard_mode(i2c); // set standard mode (Sm)
|
||||
i2c_set_ccr(i2c, rcc_apb1_frequency / (frequency * 1000 * 2)); // set Thigh/Tlow to generate frequency of 100 kHz
|
||||
i2c_set_trise(i2c, (1000 / (1000 / (rcc_apb1_frequency / 1000000))) + 1); // max rise time for Sm mode (< 100 kHz) is 1000 ns (~1 MHz)
|
||||
}
|
||||
i2c_peripheral_enable(i2c); // enable I²C after configuration completed
|
||||
}
|
||||
|
||||
void i2c_master_release(uint32_t i2c)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
i2c_reset(i2c); // reset I²C peripheral configuration
|
||||
i2c_peripheral_disable(i2c); // disable I²C peripheral
|
||||
rcc_periph_clock_disable(RCC_I2C(i2c)); // disable clock for I²C peripheral
|
||||
gpio_set_mode(GPIO_PORT_SCL(i2c), GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, GPIO_PIN_SCL(i2c)); // put I²C I/O pins back to floating
|
||||
gpio_set_mode(GPIO_PORT_SDA(i2c), GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, GPIO_PIN_SDA(i2c)); // put I²C I/O pins back to floating
|
||||
}
|
||||
|
||||
bool i2c_master_check_signals(uint32_t i2c)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
// enable GPIOs to read SDA and SCL
|
||||
rcc_periph_clock_enable(RCC_GPIO_PORT_SDA(i2c)); // enable clock for I²C I/O peripheral
|
||||
rcc_periph_clock_enable(RCC_GPIO_PORT_SCL(i2c)); // enable clock for I²C I/O peripheral
|
||||
|
||||
// pull SDA and SDC low to check if there are pull-up resistors
|
||||
uint32_t sda_crl = GPIO_CRL(GPIO_PORT_SDA(i2c)); // backup port configuration
|
||||
uint32_t sda_crh = GPIO_CRH(GPIO_PORT_SDA(i2c)); // backup port configuration
|
||||
uint32_t sda_bsrr = GPIO_BSRR(GPIO_PORT_SDA(i2c)); // backup port configuration
|
||||
uint32_t scl_crl = GPIO_CRL(GPIO_PORT_SCL(i2c)); // backup port configuration
|
||||
uint32_t scl_crh = GPIO_CRH(GPIO_PORT_SCL(i2c)); // backup port configuration
|
||||
uint32_t scl_bsrr = GPIO_BSRR(GPIO_PORT_SCL(i2c)); // backup port configuration
|
||||
gpio_set_mode(GPIO_PORT_SDA(i2c), GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, GPIO_PIN_SDA(i2c)); // configure signal as pull down
|
||||
gpio_set_mode(GPIO_PORT_SCL(i2c), GPIO_MODE_INPUT, GPIO_CNF_INPUT_PULL_UPDOWN, GPIO_PIN_SCL(i2c)); // configure signal as pull down
|
||||
gpio_clear(GPIO_PORT_SDA(i2c), GPIO_PIN_SDA(i2c)); // pull down
|
||||
gpio_clear(GPIO_PORT_SCL(i2c), GPIO_PIN_SCL(i2c)); // pull down
|
||||
bool to_return = (0 != gpio_get(GPIO_PORT_SCL(i2c), GPIO_PIN_SCL(i2c)) && 0 != gpio_get(GPIO_PORT_SDA(i2c), GPIO_PIN_SDA(i2c))); // check if the signals are still pulled high by external stronger pull-up resistors
|
||||
GPIO_CRL(GPIO_PORT_SDA(i2c)) = sda_crl; // restore port configuration
|
||||
GPIO_CRH(GPIO_PORT_SDA(i2c)) = sda_crh; // restore port configuration
|
||||
GPIO_BSRR(GPIO_PORT_SDA(i2c)) = sda_bsrr; // restore port configuration
|
||||
GPIO_CRL(GPIO_PORT_SCL(i2c)) = scl_crl; // restore port configuration
|
||||
GPIO_CRH(GPIO_PORT_SCL(i2c)) = scl_crh; // restore port configuration
|
||||
GPIO_BSRR(GPIO_PORT_SCL(i2c)) = scl_bsrr; // restore port configuration
|
||||
|
||||
return to_return;
|
||||
}
|
||||
|
||||
bool i2c_master_reset(uint32_t i2c)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
bool to_return = true;
|
||||
// follow procedure described in STM32F10xxC/D/E Errata sheet, Section 2.14.7
|
||||
i2c_peripheral_disable(i2c); // disable I²C peripheral
|
||||
gpio_set_mode(GPIO_PORT_SCL(i2c), GPIO_MODE_OUTPUT_10_MHZ, GPIO_CNF_OUTPUT_OPENDRAIN, GPIO_PIN_SCL(i2c)); // put I²C I/O pins to general output
|
||||
gpio_set(GPIO_PORT_SCL(i2c), GPIO_PIN_SCL(i2c)); // set high
|
||||
to_return &= !gpio_get(GPIO_PORT_SCL(i2c), GPIO_PIN_SCL(i2c)); // ensure it is high
|
||||
gpio_set_mode(GPIO_PORT_SDA(i2c), GPIO_MODE_OUTPUT_10_MHZ, GPIO_CNF_OUTPUT_OPENDRAIN, GPIO_PIN_SDA(i2c)); // put I²C I/O pins to general output
|
||||
gpio_set(GPIO_PORT_SDA(i2c), GPIO_PIN_SDA(i2c)); // set high
|
||||
to_return &= !gpio_get(GPIO_PORT_SDA(i2c), GPIO_PIN_SDA(i2c)); // ensure it is high
|
||||
gpio_clear(GPIO_PORT_SDA(i2c), GPIO_PIN_SDA(i2c)); // set low (try first transition)
|
||||
to_return &= gpio_get(GPIO_PORT_SDA(i2c), GPIO_PIN_SDA(i2c)); // ensure it is low
|
||||
gpio_clear(GPIO_PORT_SCL(i2c), GPIO_PIN_SCL(i2c)); // set low (try first transition)
|
||||
to_return &= gpio_get(GPIO_PORT_SCL(i2c), GPIO_PIN_SCL(i2c)); // ensure it is low
|
||||
gpio_set(GPIO_PORT_SCL(i2c), GPIO_PIN_SCL(i2c)); // set high (try second transition)
|
||||
to_return &= !gpio_get(GPIO_PORT_SCL(i2c), GPIO_PIN_SCL(i2c)); // ensure it is high
|
||||
gpio_set(GPIO_PORT_SDA(i2c), GPIO_PIN_SDA(i2c)); // set high (try second transition)
|
||||
to_return &= !gpio_get(GPIO_PORT_SDA(i2c), GPIO_PIN_SDA(i2c)); // ensure it is high
|
||||
gpio_set_mode(GPIO_PORT_SCL(i2c), GPIO_MODE_OUTPUT_10_MHZ, GPIO_CNF_OUTPUT_ALTFN_OPENDRAIN, GPIO_PIN_SCL(i2c)); // set I²C I/O pins back
|
||||
gpio_set_mode(GPIO_PORT_SDA(i2c), GPIO_MODE_OUTPUT_10_MHZ, GPIO_CNF_OUTPUT_ALTFN_OPENDRAIN, GPIO_PIN_SDA(i2c)); // set I²C I/O pins back
|
||||
I2C_CR1(i2c) |= I2C_CR1_SWRST; // reset device
|
||||
I2C_CR1(i2c) &= ~I2C_CR1_SWRST; // reset device
|
||||
i2c_peripheral_enable(i2c); // re-enable device
|
||||
|
||||
return to_return;
|
||||
}
|
||||
|
||||
enum i2c_master_rc i2c_master_start(uint32_t i2c)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
bool retry = true; // retry after reset if first try failed
|
||||
enum i2c_master_rc to_return; // return code
|
||||
uint16_t sr1; // read register once, since reading/writing other registers or other events clears some flags
|
||||
try:
|
||||
to_return = I2C_MASTER_RC_NONE; // return code
|
||||
// send (re-)start condition
|
||||
if (I2C_CR1(i2c) & (I2C_CR1_START | I2C_CR1_STOP)) { // ensure start or stop operations are not in progress
|
||||
return I2C_MASTER_RC_START_STOP_IN_PROGESS;
|
||||
}
|
||||
// prepare timer in case the peripheral hangs on sending stop condition (see errata 2.14.4 Wrong behavior of I²C peripheral in master mode after a misplaced Stop)
|
||||
systick_counter_disable(); // disable SysTick to reconfigure it
|
||||
systick_set_frequency(500, rcc_ahb_frequency); // set timer to 2 ms (that should be long enough to send a start condition)
|
||||
systick_clear(); // reset SysTick (set to 0)
|
||||
systick_interrupt_disable(); // disable interrupt to prevent ISR to read the flag
|
||||
systick_get_countflag(); // reset flag (set when counter is going for 1 to 0)
|
||||
i2c_send_start(i2c); // send start condition to start transaction
|
||||
bool timeout = false; // remember if the timeout has been reached
|
||||
systick_counter_enable(); // start timer
|
||||
while ((I2C_CR1(i2c) & I2C_CR1_START) && !((sr1 = I2C_SR1(i2c)) & (I2C_SR1_BERR | I2C_SR1_ARLO)) && !timeout) { // wait until start condition has been accepted and cleared
|
||||
timeout |= systick_get_countflag(); // verify if timeout has been reached
|
||||
}
|
||||
sr1 = I2C_SR1(i2c); // be sure to get the current value
|
||||
if (sr1 & (I2C_SR1_BERR | I2C_SR1_ARLO)) {
|
||||
to_return = I2C_MASTER_RC_BUS_ERROR;
|
||||
}
|
||||
while (!((sr1 = I2C_SR1(i2c)) & (I2C_SR1_SB | I2C_SR1_BERR | I2C_SR1_ARLO)) && !timeout && I2C_MASTER_RC_NONE == to_return) { // wait until start condition is transmitted
|
||||
timeout |= systick_get_countflag(); // verify if timeout has been reached
|
||||
}
|
||||
sr1 = I2C_SR1(i2c); // be sure to get the current value
|
||||
if (sr1 & (I2C_SR1_BERR|I2C_SR1_ARLO)) {
|
||||
to_return = I2C_MASTER_RC_BUS_ERROR;
|
||||
} else if (!(sr1 & I2C_SR1_SB)) { // the start bit has not been set although we the peripheral is not busy anymore
|
||||
to_return = I2C_MASTER_RC_BUS_ERROR;
|
||||
} else if (!(sr1 & I2C_SR2_MSL)) { // verify if in master mode
|
||||
to_return = I2C_MASTER_RC_NOT_MASTER;
|
||||
} else if (timeout) { // timeout has been reached, i.e. the peripheral hangs
|
||||
to_return = I2C_MASTER_RC_NOT_MASTER;
|
||||
}
|
||||
|
||||
if (I2C_MASTER_RC_NOT_MASTER == to_return && retry) { // error happened
|
||||
retry = false; // don't retry a second time
|
||||
I2C_CR1(i2c) |= I2C_CR1_SWRST; // assert peripheral reset
|
||||
I2C_CR1(i2c) &= ~I2C_CR1_SWRST; // release peripheral reset
|
||||
goto try;
|
||||
}
|
||||
systick_counter_disable(); // we don't need to timer anymore
|
||||
return to_return;
|
||||
}
|
||||
|
||||
/** wait until stop is sent and bus is released
|
||||
* @param[in] i2c I²C base address
|
||||
* @return I²C return code
|
||||
*/
|
||||
static enum i2c_master_rc i2c_master_wait_stop(uint32_t i2c)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
enum i2c_master_rc to_return = I2C_MASTER_RC_NONE; // return code
|
||||
// prepare timer in case the peripheral hangs on sending stop condition (see errata 2.14.4 Wrong behavior of I²C peripheral in master mode after a misplaced Stop)
|
||||
systick_counter_disable(); // disable SysTick to reconfigure it
|
||||
systick_set_frequency(500, rcc_ahb_frequency); // set timer to 2 ms (that should be long enough to send a stop condition)
|
||||
systick_clear(); // reset SysTick (set to 0)
|
||||
systick_interrupt_disable(); // disable interrupt to prevent ISR to read the flag
|
||||
systick_get_countflag(); // reset flag (set when counter is going for 1 to 0)
|
||||
bool timeout = false; // remember if the timeout has been reached
|
||||
systick_counter_enable(); // start timer
|
||||
while ((I2C_CR1(i2c) & I2C_CR1_STOP) && !(I2C_SR1(i2c) & (I2C_SR1_BERR | I2C_SR1_ARLO)) && !timeout) { // wait until stop condition is accepted and cleared
|
||||
timeout |= systick_get_countflag(); // verify if timeout has been reached
|
||||
}
|
||||
if (I2C_SR1(i2c) & (I2C_SR1_BERR | I2C_SR1_ARLO)) {
|
||||
to_return = I2C_MASTER_RC_BUS_ERROR;
|
||||
}
|
||||
while ((I2C_SR2(i2c) & I2C_SR2_MSL) && !(I2C_SR1(i2c) & (I2C_SR1_BERR | I2C_SR1_ARLO)) && !timeout) { // wait until bus released (non master mode)
|
||||
timeout |= systick_get_countflag(); // verify if timeout has been reached
|
||||
}
|
||||
if (I2C_SR1(i2c) & (I2C_SR1_BERR | I2C_SR1_ARLO)) {
|
||||
to_return = I2C_MASTER_RC_BUS_ERROR;
|
||||
}
|
||||
while ((I2C_SR2(i2c) & I2C_SR2_BUSY) && !(I2C_SR1(i2c) & (I2C_SR1_BERR)) && !timeout) { // wait until peripheral is not busy anymore
|
||||
timeout |= systick_get_countflag(); // verify if timeout has been reached
|
||||
}
|
||||
if (I2C_SR1(i2c) & (I2C_SR1_BERR | I2C_SR1_ARLO)) {
|
||||
to_return = I2C_MASTER_RC_BUS_ERROR;
|
||||
}
|
||||
while ((0 == gpio_get(GPIO_PORT_SCL(i2c), GPIO_PIN_SCL(i2c)) || 0 == gpio_get(GPIO_PORT_SDA(i2c), GPIO_PIN_SDA(i2c))) && !timeout) { // wait until lines are really high again
|
||||
timeout |= systick_get_countflag(); // verify if timeout has been reached
|
||||
}
|
||||
|
||||
if (timeout) { // I2C_CR1_STOP could also be used to detect a timeout, but I'm not sure when
|
||||
if (I2C_MASTER_RC_NONE == to_return) {
|
||||
to_return = I2C_MASTER_RC_TIMEOUT; // indicate timeout only when no more specific error has occurred
|
||||
}
|
||||
I2C_CR1(i2c) |= I2C_CR1_SWRST; // assert peripheral reset
|
||||
I2C_CR1(i2c) &= ~I2C_CR1_SWRST; // release peripheral reset
|
||||
}
|
||||
systick_counter_disable(); // we don't need to timer anymore
|
||||
return to_return;
|
||||
}
|
||||
|
||||
enum i2c_master_rc i2c_master_stop(uint32_t i2c)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
// sanity check
|
||||
if (!(I2C_SR2(i2c) & I2C_SR2_BUSY)) { // release is not busy
|
||||
return I2C_MASTER_RC_NONE; // bus has probably already been released
|
||||
}
|
||||
if (I2C_CR1(i2c) & (I2C_CR1_START | I2C_CR1_STOP)) { // ensure start or stop operations are not in progress
|
||||
return I2C_MASTER_RC_START_STOP_IN_PROGESS;
|
||||
}
|
||||
|
||||
if (!((I2C_SR2(i2c) & I2C_SR2_TRA))) { // if we are in receiver mode
|
||||
i2c_disable_ack(i2c); // disable ACK to be able to close the communication
|
||||
}
|
||||
|
||||
i2c_send_stop(i2c); // send stop to release bus
|
||||
return i2c_master_wait_stop(i2c);
|
||||
}
|
||||
|
||||
enum i2c_master_rc i2c_master_select_slave(uint32_t i2c, uint16_t slave, bool address_10bit, bool write)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
enum i2c_master_rc rc = I2C_MASTER_RC_NONE; // to store I²C return codes
|
||||
uint16_t sr1, sr2; // read register once, since reading/writing other registers or other events clears some flags
|
||||
|
||||
if (!((sr1 = I2C_SR1(i2c)) & I2C_SR1_SB)) { // start condition has not been sent
|
||||
rc = i2c_master_start(i2c); // send start condition
|
||||
if (I2C_MASTER_RC_NONE != rc) {
|
||||
return rc;
|
||||
}
|
||||
}
|
||||
if (!((sr2 = I2C_SR2(i2c)) & I2C_SR2_MSL)) { // I²C device is not in master mode
|
||||
return I2C_MASTER_RC_NOT_MASTER;
|
||||
}
|
||||
|
||||
// select slave
|
||||
I2C_SR1(i2c) &= ~(I2C_SR1_AF); // clear acknowledgement failure
|
||||
if (!address_10bit) { // 7-bit address
|
||||
i2c_send_7bit_address(i2c, slave, write ? I2C_WRITE : I2C_READ); // select slave, with read/write flag
|
||||
while (!((sr1 = I2C_SR1(i2c)) & (I2C_SR1_ADDR | I2C_SR1_AF | I2C_SR1_BERR | I2C_SR1_ARLO))); // wait until address is transmitted
|
||||
if (sr1 & (I2C_SR1_BERR | I2C_SR1_ARLO)) {
|
||||
return I2C_MASTER_RC_BUS_ERROR;
|
||||
}
|
||||
if (sr1 & I2C_SR1_AF) { // address has not been acknowledged
|
||||
return I2C_MASTER_RC_NAK;
|
||||
}
|
||||
} else { // 10-bit address
|
||||
// send first part of address
|
||||
I2C_DR(i2c) = 11110000 | (((slave >> 8 ) & 0x3) << 1); // send first header (11110xx0, where xx are 2 MSb of slave address)
|
||||
while (!((sr1 = I2C_SR1(i2c)) & (I2C_SR1_ADD10 | I2C_SR1_AF | I2C_SR1_BERR | I2C_SR1_ARLO))); // wait until first part of address is transmitted
|
||||
if (sr1 & (I2C_SR1_BERR | I2C_SR1_ARLO)) {
|
||||
return I2C_MASTER_RC_BUS_ERROR;
|
||||
}
|
||||
if (sr1 & I2C_SR1_AF) { // address has not been acknowledged
|
||||
return I2C_MASTER_RC_NAK;
|
||||
}
|
||||
// send second part of address
|
||||
I2C_SR1(i2c) &= ~(I2C_SR1_AF); // clear acknowledgement failure
|
||||
I2C_DR(i2c) = (slave & 0xff); // send remaining of address
|
||||
while (!((sr1 = I2C_SR1(i2c)) & (I2C_SR1_ADDR | I2C_SR1_AF | I2C_SR1_BERR | I2C_SR1_ARLO))); // wait until remaining part of address is transmitted
|
||||
if (sr1 & (I2C_SR1_BERR | I2C_SR1_ARLO)) {
|
||||
return I2C_MASTER_RC_BUS_ERROR;
|
||||
}
|
||||
if (sr1 & I2C_SR1_AF) { // address has not been acknowledged
|
||||
return I2C_MASTER_RC_NAK;
|
||||
}
|
||||
// go into receive mode if necessary
|
||||
if (!write) {
|
||||
rc = i2c_master_start(i2c); // send start condition
|
||||
if (I2C_MASTER_RC_NONE != rc) {
|
||||
return rc;
|
||||
}
|
||||
// send first part of address with receive flag
|
||||
I2C_SR1(i2c) &= ~(I2C_SR1_AF); // clear acknowledgement failure
|
||||
I2C_DR(i2c) = 11110001 | (((slave >> 8) & 0x3) << 1); // send header (11110xx1, where xx are 2 MSb of slave address)
|
||||
while (!((sr1 = I2C_SR1(i2c)) & (I2C_SR1_ADDR | I2C_SR1_AF | I2C_SR1_BERR | I2C_SR1_ARLO))); // wait until remaining part of address is transmitted
|
||||
if (sr1 & (I2C_SR1_BERR | I2C_SR1_ARLO)) {
|
||||
return I2C_MASTER_RC_BUS_ERROR;
|
||||
}
|
||||
if (sr1 & I2C_SR1_AF) { // address has not been acknowledged
|
||||
return I2C_MASTER_RC_NAK;
|
||||
}
|
||||
}
|
||||
}
|
||||
// do not check I2C_SR2_TRA to verify if we really are in transmit or receive mode since reading SR2 also clears ADDR and starting the read/write transaction
|
||||
return I2C_MASTER_RC_NONE;
|
||||
}
|
||||
|
||||
enum i2c_master_rc i2c_master_read(uint32_t i2c, uint8_t* data, size_t data_size)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
// sanity check
|
||||
if (NULL == data || 0 == data_size) { // no data to read
|
||||
return I2C_MASTER_RC_NONE;
|
||||
}
|
||||
|
||||
// I²C start condition check
|
||||
uint16_t sr1 = I2C_SR1(i2c); // read once
|
||||
if (!(sr1 & I2C_SR1_ADDR)) { // no slave have been selected
|
||||
return I2C_MASTER_RC_NOT_READY;
|
||||
}
|
||||
if (sr1 & I2C_SR1_AF) { // check if the previous transaction went well
|
||||
return I2C_MASTER_RC_NOT_READY;
|
||||
}
|
||||
|
||||
// prepare (N)ACK (EV6_3 in RM0008)
|
||||
if (1 == data_size) {
|
||||
i2c_disable_ack(i2c); // NACK after first byte
|
||||
} else {
|
||||
i2c_enable_ack(i2c); // NAK after next byte
|
||||
}
|
||||
uint16_t sr2 = I2C_SR2(i2c); // reading SR2 will also also clear ADDR in SR1 and start the transaction
|
||||
if (!(sr2 & I2C_SR2_MSL)) { // I²C device is not master
|
||||
return I2C_MASTER_RC_NOT_MASTER;
|
||||
}
|
||||
if ((sr2 & I2C_SR2_TRA)) { // I²C device not in receiver mode
|
||||
return I2C_MASTER_RC_NOT_RECEIVE;
|
||||
}
|
||||
|
||||
// read data
|
||||
for (size_t i = 0; i < data_size; i++) { // read bytes
|
||||
// set (N)ACK (EV6_3, EV6_1)
|
||||
if (1 == data_size - i) { // prepare to sent NACK for last byte
|
||||
i2c_send_stop(i2c); // already indicate we will send a stop (required to not send an ACK, and this must happen before the byte is transferred, see errata)
|
||||
i2c_nack_current(i2c); // (N)ACK current byte
|
||||
i2c_disable_ack(i2c); // NACK received to stop slave transmission
|
||||
} else if (2 == data_size - i) { // prepare to sent NACK for second last byte
|
||||
i2c_nack_next(i2c); // NACK next byte
|
||||
i2c_disable_ack(i2c); // NACK received to stop slave transmission
|
||||
} else {
|
||||
i2c_enable_ack(i2c); // ACK received byte to continue slave transmission
|
||||
}
|
||||
while (!((sr1 = I2C_SR1(i2c)) & (I2C_SR1_RxNE | I2C_SR1_BERR | I2C_SR1_ARLO))); // wait until byte has been received
|
||||
if (sr1 & (I2C_SR1_BERR|I2C_SR1_ARLO)) {
|
||||
return I2C_MASTER_RC_BUS_ERROR;
|
||||
}
|
||||
data[i] = i2c_get_data(i2c); // read received byte
|
||||
}
|
||||
|
||||
return i2c_master_wait_stop(i2c);
|
||||
}
|
||||
|
||||
enum i2c_master_rc i2c_master_write(uint32_t i2c, const uint8_t* data, size_t data_size)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
// sanity check
|
||||
if (NULL == data || 0 == data_size) { // no data to write
|
||||
return I2C_MASTER_RC_NONE;
|
||||
}
|
||||
|
||||
// I²C start condition check
|
||||
uint16_t sr1 = I2C_SR1(i2c); // read once
|
||||
if (!(sr1 & I2C_SR1_ADDR)) { // no slave have been selected
|
||||
return I2C_MASTER_RC_NOT_READY;
|
||||
}
|
||||
if (sr1 & I2C_SR1_AF) { // check if the previous transaction went well
|
||||
return I2C_MASTER_RC_NOT_READY;
|
||||
}
|
||||
|
||||
// master check
|
||||
uint16_t sr2 = I2C_SR2(i2c); // reading SR2 will also also clear ADDR in SR1 and start the transaction
|
||||
if (!(sr2 & I2C_SR2_MSL)) { // I²C device is not master
|
||||
return I2C_MASTER_RC_NOT_MASTER;
|
||||
}
|
||||
if (!(sr2 & I2C_SR2_TRA)) { // I²C device not in transmitter mode
|
||||
return I2C_MASTER_RC_NOT_TRANSMIT;
|
||||
}
|
||||
|
||||
// write data
|
||||
for (size_t i = 0; i < data_size; i++) { // write bytes
|
||||
I2C_SR1(i2c) &= ~(I2C_SR1_AF); // clear acknowledgement failure
|
||||
i2c_send_data(i2c, data[i]); // send byte to be written in memory
|
||||
while (!(I2C_SR1(i2c) & (I2C_SR1_TxE | I2C_SR1_AF)) && !(I2C_SR1(i2c) & (I2C_SR1_BERR | I2C_SR1_ARLO))); // wait until byte has been transmitted
|
||||
if (I2C_SR1(i2c) & (I2C_SR1_BERR | I2C_SR1_ARLO)) {
|
||||
return I2C_MASTER_RC_BUS_ERROR;
|
||||
}
|
||||
if (I2C_SR1(i2c) & I2C_SR1_AF) { // data has not been acknowledged
|
||||
return I2C_MASTER_RC_NAK;
|
||||
}
|
||||
}
|
||||
|
||||
return I2C_MASTER_RC_NONE;
|
||||
}
|
||||
|
||||
enum i2c_master_rc i2c_master_slave_read(uint32_t i2c, uint16_t slave, bool address_10bit, uint8_t* data, size_t data_size)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
enum i2c_master_rc rc = I2C_MASTER_RC_NONE; // to store I²C return codes
|
||||
rc = i2c_master_start(i2c); // send (re-)start condition
|
||||
if (I2C_MASTER_RC_NONE != rc) {
|
||||
return rc;
|
||||
}
|
||||
rc = i2c_master_select_slave(i2c, slave, address_10bit, false); // select slave to read
|
||||
if (I2C_MASTER_RC_NONE != rc) {
|
||||
goto error;
|
||||
}
|
||||
if (NULL != data && data_size > 0) { // only read data if needed
|
||||
rc = i2c_master_read(i2c, data, data_size); // read data (includes stop)
|
||||
if (I2C_MASTER_RC_NONE != rc) {
|
||||
goto error;
|
||||
}
|
||||
} else {
|
||||
i2c_master_stop(i2c); // sent stop condition
|
||||
}
|
||||
|
||||
rc = I2C_MASTER_RC_NONE; // all went well
|
||||
error:
|
||||
if (I2C_MASTER_RC_NONE != rc) {
|
||||
i2c_master_stop(i2c); // sent stop condition
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
enum i2c_master_rc i2c_master_slave_write(uint32_t i2c, uint16_t slave, bool address_10bit, const uint8_t* data, size_t data_size)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
enum i2c_master_rc rc = I2C_MASTER_RC_NONE; // to store I²C return codes
|
||||
rc = i2c_master_start(i2c); // send (re-)start condition
|
||||
if (I2C_MASTER_RC_NONE != rc) {
|
||||
return rc;
|
||||
}
|
||||
rc = i2c_master_select_slave(i2c, slave, address_10bit, true); // select slave to write
|
||||
if (I2C_MASTER_RC_NONE != rc) {
|
||||
goto error;
|
||||
}
|
||||
if (NULL != data && data_size > 0) { // write data only is some is available
|
||||
rc = i2c_master_write(i2c, data, data_size); // write data
|
||||
if (I2C_MASTER_RC_NONE != rc) {
|
||||
goto error;
|
||||
}
|
||||
}
|
||||
|
||||
rc = I2C_MASTER_RC_NONE; // all went well
|
||||
error:
|
||||
i2c_master_stop(i2c); // sent stop condition
|
||||
return rc;
|
||||
}
|
||||
|
||||
enum i2c_master_rc i2c_master_address_read(uint32_t i2c, uint16_t slave, bool address_10bit, const uint8_t* address, size_t address_size, uint8_t* data, size_t data_size)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
|
||||
enum i2c_master_rc rc = I2C_MASTER_RC_NONE; // to store I²C return codes
|
||||
rc = i2c_master_start(i2c); // send (re-)start condition
|
||||
if (I2C_MASTER_RC_NONE != rc) {
|
||||
return rc;
|
||||
}
|
||||
rc = i2c_master_select_slave(i2c, slave, address_10bit, true); // select slave to write
|
||||
if (I2C_MASTER_RC_NONE != rc) {
|
||||
goto error;
|
||||
}
|
||||
|
||||
// write address
|
||||
if (NULL != address && address_size > 0) {
|
||||
rc = i2c_master_write(i2c, address, address_size); // send memory address
|
||||
if (I2C_MASTER_RC_NONE != rc) {
|
||||
goto error;
|
||||
}
|
||||
}
|
||||
// read data
|
||||
if (NULL != data && data_size > 0) {
|
||||
rc = i2c_master_start(i2c); // send re-start condition
|
||||
if (I2C_MASTER_RC_NONE != rc) {
|
||||
return rc;
|
||||
}
|
||||
rc = i2c_master_select_slave(i2c, slave, address_10bit, false); // select slave to read
|
||||
if (I2C_MASTER_RC_NONE != rc) {
|
||||
goto error;
|
||||
}
|
||||
rc = i2c_master_read(i2c, data, data_size); // read memory (includes stop)
|
||||
if (I2C_MASTER_RC_NONE != rc) {
|
||||
goto error;
|
||||
}
|
||||
} else {
|
||||
i2c_master_stop(i2c); // sent stop condition
|
||||
}
|
||||
|
||||
rc = I2C_MASTER_RC_NONE;
|
||||
error:
|
||||
if (I2C_MASTER_RC_NONE != rc) { // only send stop on error
|
||||
i2c_master_stop(i2c); // sent stop condition
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
enum i2c_master_rc i2c_master_address_write(uint32_t i2c, uint16_t slave, bool address_10bit, const uint8_t* address, size_t address_size, const uint8_t* data, size_t data_size)
|
||||
{
|
||||
cm3_assert(I2C1 == i2c || I2C2 == i2c);
|
||||
if (SIZE_MAX - address_size < data_size) { // prevent integer overflow
|
||||
return I2C_MASTER_RC_OTHER;
|
||||
}
|
||||
if (address_size + data_size > 10 * 1024) { // we won't enough RAM
|
||||
return I2C_MASTER_RC_OTHER;
|
||||
}
|
||||
if (address_size > 0 && NULL == address) {
|
||||
return I2C_MASTER_RC_OTHER;
|
||||
}
|
||||
if (data_size > 0 && NULL == data) {
|
||||
return I2C_MASTER_RC_OTHER;
|
||||
}
|
||||
|
||||
uint8_t buffer[address_size + data_size];
|
||||
enum i2c_master_rc rc = I2C_MASTER_RC_NONE; // to store I²C return codes
|
||||
rc = i2c_master_start(i2c); // send (re-)start condition
|
||||
if (I2C_MASTER_RC_NONE != rc) {
|
||||
return rc;
|
||||
}
|
||||
rc = i2c_master_select_slave(i2c, slave, address_10bit, true); // select slave to write
|
||||
if (I2C_MASTER_RC_NONE != rc) {
|
||||
goto error;
|
||||
}
|
||||
|
||||
// we can't send the address then the data size short address will cause a stop (because of how crappy the STM32F10x I²C peripheral is)
|
||||
if (address) {
|
||||
for (size_t i = 0; i < address_size; i++) {
|
||||
buffer[i] = address[i];
|
||||
}
|
||||
}
|
||||
if (data) {
|
||||
for (size_t i = 0; i < data_size; i++) {
|
||||
buffer[address_size + i] = data[i];
|
||||
}
|
||||
}
|
||||
rc = i2c_master_write(i2c, buffer, address_size + data_size); // send memory address
|
||||
if (I2C_MASTER_RC_NONE != rc) {
|
||||
goto error;
|
||||
}
|
||||
|
||||
error:
|
||||
rc = i2c_master_stop(i2c); // sent stop condition
|
||||
return rc;
|
||||
}
|
139
lib/i2c_master.h
139
lib/i2c_master.h
|
@ -1,139 +0,0 @@
|
|||
/* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||