/* This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** STM32F1 example * @file main.c * @author King Kévin * @date 2016 */ /* standard libraries */ #include // standard integer types #include // standard I/O facilities #include // standard utilities #include // standard streams #include // string utilities #include // mathematical utilities /* STM32 (including CM3) libraries */ #include // Cortex M3 utilities #include // vector table definition #include // interrupt utilities #include // general purpose input output library #include // real-time control clock library #include // external interrupt utilities #include // real time clock utilities #include // independent watchdog utilities #include // debug utilities /* own libraries */ #include "global.h" // board definitions #include "usart.h" // USART utilities #include "usb_cdcacm.h" // USB CDC ACM utilities //#include "sensor_pzem.h" // PZEM electricity meter utilities #include "sensor_sdm120.h" // SDM120 electricity meter utilities #include "radio_esp8266.h" // ESP8266 WiFi SoC utilities /** @defgroup main_flags flag set in interrupts to be processed in main task * @{ */ volatile bool rtc_internal_tick_flag = false; /**< flag set when internal RTC ticked */ /** @} */ int _write(int file, char *ptr, int len) { int i; // how much data has been sent static char newline = 0; // what newline has been sent if (file == STDOUT_FILENO || file == STDERR_FILENO) { for (i = 0; i < len; i++) { if (ptr[i] == '\r' || ptr[i] == '\n') { // send CR+LF newline for most carriage return and line feed combination if (newline==0 || (newline==ptr[i])) { // newline has already been detected usart_putchar_nonblocking('\r'); // send newline over USART usart_putchar_nonblocking('\n'); // send newline over USART cdcacm_putchar('\r'); // send newline over USB cdcacm_putchar('\n'); // send newline over USB newline = ptr[i]; // remember the newline } if (ptr[i] == '\n') { // line feed are always considered to end a line (the LF+CR combination is not supported to better support the others) newline = 0; // clear new line } } else { // non-newline character usart_putchar_nonblocking(ptr[i]); // send byte over USART cdcacm_putchar(ptr[i]); // send byte over USB newline = 0; // clear new line } } return i; } return -1; } /** user input command */ static char command[32] = {0}; /** user input command index */ uint8_t command_i = 0; /** process user command * @param[in] str user command string (\0 ended) */ static void process_command(char* str) { // split command const char* delimiter = " "; char* word = strtok(str,delimiter); if (!word) { goto error; } // parse command if (0==strcmp(word,"help")) { printf("available commands:\n"); printf("led [on|off|toggle]\n"); printf("time [HH:MM:SS]\n"); } else if (0==strcmp(word,"led")) { word = strtok(NULL,delimiter); if (!word) { goto error; } else if (0==strcmp(word,"on")) { led_on(); // switch LED on printf("LED switched on\n"); // notify user } else if (0==strcmp(word,"off")) { led_off(); // switch LED off printf("LED switched off\n"); // notify user } else if (0==strcmp(word,"toggle")) { led_toggle(); // toggle LED printf("LED toggled\n"); // notify user } else { goto error; } } else if (0==strcmp(word,"time")) { word = strtok(NULL,delimiter); if (!word) { printf("current time: %02lu:%02lu:%02lu\n", rtc_get_counter_val()/(60*60), (rtc_get_counter_val()%(60*60))/60, (rtc_get_counter_val()%60)); // get and print time from internal RTC } else if (strlen(word)!=8 || word[0]<'0' || word[0]>'2' || word[1]<'0' || word[1]>'9' || word[3]<'0' || word[3]>'5' || word[4]<'0' || word[4]>'9' || word[6]<'0' || word[6]>'5' || word[7]<'0' || word[7]>'9') { // time format is incorrect goto error; } else { rtc_set_counter_val(((word[0]-'0')*10+(word[1]-'0')*1)*(60*60)+((word[3]-'0')*10+(word[4]-'0')*1)*60+((word[6]-'0')*10+(word[7]-'0')*1)); // set time in internal RTC counter printf("time set\n"); } } else { goto error; } return; // command successfully processed error: printf("command not recognized. enter help to list commands\n"); return; } /** send HTTP data * @warning blocking until a response has been received * @param[in] data data to be send * @param[in] length number of bytes to be sent, set to 0 to use the string length * @return if data has been sent */ static bool http_send(uint8_t* data, size_t length) { if (length==0) { radio_esp8266_send(data, strlen((char*)data)); // send string data } else { radio_esp8266_send(data, length); // send raw data } while (!radio_esp8266_activity) { // wait until response has been received __WFI(); // wait until something happens } if (!radio_esp8266_success) { fprintf(stderr,"could not send data\n"); return false; } return true; } /** end HTTP connection * @warning blocking until a response has been received * @return if connection has been closed */ static bool http_end(void) { radio_esp8266_close(); // close connection while (!radio_esp8266_activity) { // wait until response has been received __WFI(); // wait until something happens } return radio_esp8266_success; } /** open HTTP connection and send POST header * @warning blocking until a response has been received * @param[in] host host name or IP of HTTP server to connect to * @param[in] port port number of HTTP server to connect to * @param[in] length number of bytes to POST * @return if HTTP POST succeeded */ static bool http_post_header(char* host, uint16_t port, size_t length) { char http_line[256] = {0}; // generated lines radio_esp8266_tcp_open(host, port); // open connection while (!radio_esp8266_activity) { // wait until response has been received __WFI(); // wait until something happens } if (!radio_esp8266_success) { fprintf(stderr,"TCP connection failed\n"); return false; } if (!http_send((uint8_t*)"POST /write?db=test HTTP/1.1\r\n", 0)) { // send data return false; } if (snprintf(http_line, LENGTH(http_line), "Content-Length: %u\r\n", length)<0) { // set content length (for measurements) fprintf(stderr,"could not create line\n"); return false; } if (!http_send((uint8_t*)http_line, 0)) { // send data return false; } if (!http_send((uint8_t*)"Host: influx\r\n", 0)) { // send data return false; } if (!http_send((uint8_t*)"\r\n", 0)) { // send data return false; } return true; } /** program entry point * this is the firmware function started by the micro-controller */ void main(void); void main(void) { rcc_clock_setup_in_hse_8mhz_out_72mhz(); // use 8 MHz high speed external clock to generate 72 MHz internal clock #if DEBUG DBGMCU_CR |= DBGMCU_CR_IWDG_STOP; // stop independent watchdog counter when code is halted DBGMCU_CR |= DBGMCU_CR_WWDG_STOP; // stop window watchdog counter when code is halted DBGMCU_CR |= DBGMCU_CR_STANDBY; // allow debug also in standby mode (keep digital part and clock powered) DBGMCU_CR |= DBGMCU_CR_STOP; // allow debug also in stop mode (keep clock powered) DBGMCU_CR |= DBGMCU_CR_SLEEP; // allow debug also in sleep mode (keep clock powered) #endif // setup board board_setup(); // setup USART and USB for user communication usart_setup(); // setup USART (for printing) cdcacm_setup(); // setup USB CDC ACM (for printing) setbuf(stdout, NULL); // set standard out buffer to NULL to immediately print setbuf(stderr, NULL); // set standard error buffer to NULL to immediately print // minimal setup ready printf("welcome to the STM32F1 CuVoodoo example code\n"); // print welcome message // setup RTC printf("setup internal RTC: "); rtc_auto_awake(RCC_LSE, 32768-1); // ensure internal RTC is on, uses the 32.678 kHz LSE, and the prescale is set to our tick speed, else update backup registers accordingly (power off the micro-controller for the change to take effect) rtc_interrupt_enable(RTC_SEC); // enable RTC interrupt on "seconds" nvic_enable_irq(NVIC_RTC_IRQ); // allow the RTC to interrupt printf("OK\n"); uint32_t ticks_time = rtc_get_counter_val(); // get time from internal RTC (since first start/power up) printf("uptime: %02lu:%02lu:%02lu\n", ticks_time/(60*60), (ticks_time%(60*60))/60, (ticks_time%60)); // display time /* // setup PZEM electricity meter printf("setup PZEM-004 electricity meter: "); sensor_pzem_setup(); // setup PZEM electricity meter printf("OK\n"); //sensor_pzem_measurement_request(0xc0a80102, SENSOR_PZEM_ADDRESS); sensor_pzem_measurement_request(0xc0a80101, SENSOR_PZEM_VOLTAGE); */ // setup SDM120 electricity meter printf("setup SDM120 electricity meter: "); sensor_sdm120_setup(); // setup SDM120 electricity meter printf("OK\n"); sensor_sdm120_measurement_request(2,SENSOR_SDM120_VOLTAGE); //sensor_sdm120_configuration_request(1,SENSOR_SDM120_METER_ID); //sensor_sdm120_configuration_request(1,SENSOR_SDM120_BAUD_RATE); //sensor_sdm120_configuration_set(1,SENSOR_SDM120_METER_ID,2); //sensor_sdm120_configuration_set(2,SENSOR_SDM120_BAUD_RATE,2); //setup ESP8266 WiFi SoC printf("setup ESP8266 WiFi SoC: "); radio_esp8266_setup(); printf("OK\n"); #if !(DEBUG) //setup watchdog to reset in case we get stuck (i.e. when an error occurred) #define WATCHDOG_PERIOD 10000 /**< watchdog period in ms */ printf("setup watchdog (%.2fs): ",WATCHDOG_PERIOD/1000.0); iwdg_set_period_ms(WATCHDOG_PERIOD); // set independent watchdog period iwdg_start(); // start independent watchdog printf("OK\n"); #endif // send HTTP POST request printf("making HTTP request: "); char line[256] = {0}; // measurement line to send if (snprintf(line, LENGTH(line), "cpu_load_short,host=server01,region=us-west value=0.64 1434055562000000000")<0) { fprintf(stderr,"could not create line\n"); } else if (!http_post_header("192.168.42.3", 8086, strlen(line))) { // send header fprintf(stderr,"could not sent HTTP POST header\n"); } else if (!http_send((uint8_t*)line, 0)) { // send data fprintf(stderr,"could not send measurement\n"); } else { http_end(); // end HTTP request (don't care about the result) printf("OK\n"); } // main loop printf("command input: ready\n"); bool action = false; // if an action has been performed don't go to sleep button_flag = false; // reset button flag char c = ' '; // to store received character bool char_flag = false; // a new character has been received while (true) { // infinite loop iwdg_reset(); // kick the dog while (usart_received) { // data received over UART action = true; // action has been performed led_toggle(); // toggle LED c = usart_getchar(); // store receive character char_flag = true; // notify character has been received } while (cdcacm_received) { // data received over USB action = true; // action has been performed led_toggle(); // toggle LED c = cdcacm_getchar(); // store receive character char_flag = true; // notify character has been received } while (char_flag) { // user data received char_flag = false; // reset flag action = true; // action has been performed printf("%c",c); // echo receive character if (c=='\r' || c=='\n') { // end of command received if (command_i>0) { // there is a command to process command[command_i] = 0; // end string command_i = 0; // prepare for next command process_command(command); // process user command } } else { // user command input command[command_i] = c; // save command input if (command_i