/* * The MIT License (MIT) * * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "sam.h" #include "bsp/board_api.h" #include "board.h" // Suppress warning caused by mcu driver #ifdef __GNUC__ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wcast-qual" #endif #include "hal/include/hal_gpio.h" #include "hal/include/hal_init.h" #include "hpl/gclk/hpl_gclk_base.h" #include "hpl_mclk_config.h" #ifdef __GNUC__ #pragma GCC diagnostic pop #endif //--------------------------------------------------------------------+ // MACRO TYPEDEF CONSTANT ENUM DECLARATION //--------------------------------------------------------------------+ /* Referenced GCLKs, should be initialized firstly */ #define _GCLK_INIT_1ST 0xFFFFFFFF /* Not referenced GCLKs, initialized last */ #define _GCLK_INIT_LAST (~_GCLK_INIT_1ST) //--------------------------------------------------------------------+ // Forward USB interrupt events to TinyUSB IRQ Handler //--------------------------------------------------------------------+ void USB_0_Handler(void) { tud_int_handler(0); } void USB_1_Handler(void) { tud_int_handler(0); } void USB_2_Handler(void) { tud_int_handler(0); } void USB_3_Handler(void) { tud_int_handler(0); } //--------------------------------------------------------------------+ // Implementation //--------------------------------------------------------------------+ #if CFG_TUH_ENABLED && CFG_TUH_MAX3421 #define MAX3421_SERCOM TU_XSTRCAT(SERCOM, MAX3421_SERCOM_ID) #define MAX3421_EIC_Handler TU_XSTRCAT3(EIC_, MAX3421_INTR_EIC_ID, _Handler) static void max3421_init(void); #endif void board_init(void) { // Clock init ( follow hpl_init.c ) hri_nvmctrl_set_CTRLA_RWS_bf(NVMCTRL, 0); _osc32kctrl_init_sources(); _oscctrl_init_sources(); _mclk_init(); #if _GCLK_INIT_1ST _gclk_init_generators_by_fref(_GCLK_INIT_1ST); #endif _oscctrl_init_referenced_generators(); _gclk_init_generators_by_fref(_GCLK_INIT_LAST); // Update SystemCoreClock since it is hard coded with asf4 and not correct // Init 1ms tick timer (samd SystemCoreClock may not correct) SystemCoreClock = CONF_CPU_FREQUENCY; SysTick_Config(CONF_CPU_FREQUENCY / 1000); // Led init gpio_set_pin_direction(LED_PIN, GPIO_DIRECTION_OUT); gpio_set_pin_level(LED_PIN, 0); // Button init gpio_set_pin_direction(BUTTON_PIN, GPIO_DIRECTION_IN); gpio_set_pin_pull_mode(BUTTON_PIN, GPIO_PULL_UP); #if CFG_TUSB_OS == OPT_OS_FREERTOS // If freeRTOS is used, IRQ priority is limit by max syscall ( smaller is higher ) NVIC_SetPriority(USB_0_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY); NVIC_SetPriority(USB_1_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY); NVIC_SetPriority(USB_2_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY); NVIC_SetPriority(USB_3_IRQn, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY); #endif /* USB Clock init * The USB module requires a GCLK_USB of 48 MHz ~ 0.25% clock * for low speed and full speed operation. */ hri_gclk_write_PCHCTRL_reg(GCLK, USB_GCLK_ID, GCLK_PCHCTRL_GEN_GCLK1_Val | GCLK_PCHCTRL_CHEN); hri_mclk_set_AHBMASK_USB_bit(MCLK); hri_mclk_set_APBBMASK_USB_bit(MCLK); // USB Pin Init gpio_set_pin_direction(PIN_PA24, GPIO_DIRECTION_OUT); gpio_set_pin_level(PIN_PA24, false); gpio_set_pin_pull_mode(PIN_PA24, GPIO_PULL_OFF); gpio_set_pin_direction(PIN_PA25, GPIO_DIRECTION_OUT); gpio_set_pin_level(PIN_PA25, false); gpio_set_pin_pull_mode(PIN_PA25, GPIO_PULL_OFF); gpio_set_pin_function(PIN_PA24, PINMUX_PA24H_USB_DM); gpio_set_pin_function(PIN_PA25, PINMUX_PA25H_USB_DP); #if CFG_TUH_ENABLED && CFG_TUH_MAX3421 max3421_init(); #endif } void board_init_after_tusb(void) { } //--------------------------------------------------------------------+ // Board porting API //--------------------------------------------------------------------+ void board_led_write(bool state) { gpio_set_pin_level(LED_PIN, state); } uint32_t board_button_read(void) { // button is active low return gpio_get_pin_level(BUTTON_PIN) ? 0 : 1; } size_t board_get_unique_id(uint8_t id[], size_t max_len) { (void) max_len; uint32_t did_addr[4] = {0x008061FC, 0x00806010, 0x00806014, 0x00806018}; for (int i = 0; i < 4; i++) { uint32_t did = *((uint32_t const*) did_addr[i]); did = TU_BSWAP32(did); // swap endian to match samd51 uf2 bootloader memcpy(id + i * 4, &did, 4); } return 16; } int board_uart_read(uint8_t* buf, int len) { (void) buf; (void) len; return 0; } int board_uart_write(void const* buf, int len) { (void) buf; (void) len; return 0; } #if CFG_TUSB_OS == OPT_OS_NONE volatile uint32_t system_ticks = 0; void SysTick_Handler(void) { system_ticks++; } uint32_t board_millis(void) { return system_ticks; } #endif //--------------------------------------------------------------------+ // API: SPI transfer with MAX3421E, must be implemented by application //--------------------------------------------------------------------+ #if CFG_TUH_ENABLED && CFG_TUH_MAX3421 static void max3421_init(void) { //------------- SPI Init -------------// // MAX3421E max SPI clock is 26MHz however SAMD can only work reliably at 12 Mhz uint32_t const baudrate = 12000000u; struct { volatile uint32_t* mck_apb; uint32_t mask; uint8_t gclk_id_core; uint8_t gclk_id_slow; } const sercom_clock[] = { { &MCLK->APBAMASK.reg, MCLK_APBAMASK_SERCOM0, SERCOM0_GCLK_ID_CORE, SERCOM0_GCLK_ID_SLOW }, { &MCLK->APBAMASK.reg, MCLK_APBAMASK_SERCOM1, SERCOM1_GCLK_ID_CORE, SERCOM1_GCLK_ID_SLOW }, { &MCLK->APBBMASK.reg, MCLK_APBBMASK_SERCOM2, SERCOM2_GCLK_ID_CORE, SERCOM2_GCLK_ID_SLOW }, { &MCLK->APBBMASK.reg, MCLK_APBBMASK_SERCOM3, SERCOM3_GCLK_ID_CORE, SERCOM3_GCLK_ID_SLOW }, { &MCLK->APBDMASK.reg, MCLK_APBDMASK_SERCOM4, SERCOM4_GCLK_ID_CORE, SERCOM4_GCLK_ID_SLOW }, { &MCLK->APBDMASK.reg, MCLK_APBDMASK_SERCOM5, SERCOM5_GCLK_ID_CORE, SERCOM5_GCLK_ID_SLOW }, #ifdef SERCOM6_GCLK_ID_CORE { &MCLK->APBDMASK.reg, MCLK_APBDMASK_SERCOM6, SERCOM6_GCLK_ID_CORE, SERCOM6_GCLK_ID_SLOW }, #endif #ifdef SERCOM7_GCLK_ID_CORE { &MCLK->APBDMASK.reg, MCLK_APBDMASK_SERCOM7, SERCOM7_GCLK_ID_CORE, SERCOM7_GCLK_ID_SLOW }, #endif }; Sercom* sercom = MAX3421_SERCOM; // Enable the APB clock for SERCOM *sercom_clock[MAX3421_SERCOM_ID].mck_apb |= sercom_clock[MAX3421_SERCOM_ID].mask; // Configure GCLK for SERCOM GCLK->PCHCTRL[sercom_clock[MAX3421_SERCOM_ID].gclk_id_core].reg = GCLK_PCHCTRL_GEN_GCLK0_Val | (1 << GCLK_PCHCTRL_CHEN_Pos); GCLK->PCHCTRL[sercom_clock[MAX3421_SERCOM_ID].gclk_id_slow].reg = GCLK_PCHCTRL_GEN_GCLK3_Val | (1 << GCLK_PCHCTRL_CHEN_Pos); // Disable the SPI module sercom->SPI.CTRLA.bit.ENABLE = 0; // Reset the SPI module sercom->SPI.CTRLA.bit.SWRST = 1; while (sercom->SPI.SYNCBUSY.bit.SWRST); // Set up SPI in master mode, MSB first, SPI mode 0 sercom->SPI.CTRLA.reg = SERCOM_SPI_CTRLA_DOPO(MAX3421_TX_PAD) | SERCOM_SPI_CTRLA_DIPO(MAX3421_RX_PAD) | SERCOM_SPI_CTRLA_MODE(3); sercom->SPI.CTRLB.reg = SERCOM_SPI_CTRLB_CHSIZE(0) | SERCOM_SPI_CTRLB_RXEN; while (sercom->SPI.SYNCBUSY.bit.CTRLB == 1); // Set the baud rate uint8_t baud_reg = (uint8_t) (SystemCoreClock / (2 * baudrate)); if (baud_reg) { baud_reg--; } sercom->SPI.BAUD.reg = baud_reg; // Configure PA12 as MOSI (PAD0), PA13 as SCK (PAD1), PA14 as MISO (PAD2), function C (sercom) gpio_set_pin_direction(MAX3421_SCK_PIN, GPIO_DIRECTION_OUT); gpio_set_pin_pull_mode(MAX3421_SCK_PIN, GPIO_PULL_OFF); gpio_set_pin_function(MAX3421_SCK_PIN, MAX3421_SERCOM_FUNCTION); gpio_set_pin_direction(MAX3421_MOSI_PIN, GPIO_DIRECTION_OUT); gpio_set_pin_pull_mode(MAX3421_MOSI_PIN, GPIO_PULL_OFF); gpio_set_pin_function(MAX3421_MOSI_PIN, MAX3421_SERCOM_FUNCTION); gpio_set_pin_direction(MAX3421_MISO_PIN, GPIO_DIRECTION_IN); gpio_set_pin_pull_mode(MAX3421_MISO_PIN, GPIO_PULL_OFF); gpio_set_pin_function(MAX3421_MISO_PIN, MAX3421_SERCOM_FUNCTION); // CS pin gpio_set_pin_direction(MAX3421_CS_PIN, GPIO_DIRECTION_OUT); gpio_set_pin_level(MAX3421_CS_PIN, 1); // Enable the SPI module sercom->SPI.CTRLA.bit.ENABLE = 1; while (sercom->SPI.SYNCBUSY.bit.ENABLE) {} //------------- External Interrupt -------------// // Enable the APB clock for EIC (External Interrupt Controller) MCLK->APBAMASK.reg |= MCLK_APBAMASK_EIC; // Configure GCLK for EIC GCLK->PCHCTRL[EIC_GCLK_ID].reg = GCLK_PCHCTRL_GEN_GCLK0_Val | (1 << GCLK_PCHCTRL_CHEN_Pos); // Configure PA20 as an input with function A (external interrupt) gpio_set_pin_direction(MAX3421_INTR_PIN, GPIO_DIRECTION_IN); gpio_set_pin_pull_mode(MAX3421_INTR_PIN, GPIO_PULL_UP); gpio_set_pin_function(MAX3421_INTR_PIN, 0); // Disable EIC EIC->CTRLA.bit.ENABLE = 0; while (EIC->SYNCBUSY.bit.ENABLE); // Configure EIC to trigger on falling edge volatile uint32_t* eic_config; uint8_t sense_shift; if (MAX3421_INTR_EIC_ID < 8) { eic_config = &EIC->CONFIG[0].reg; sense_shift = MAX3421_INTR_EIC_ID * 4; } else { eic_config = &EIC->CONFIG[1].reg; sense_shift = (MAX3421_INTR_EIC_ID - 8) * 4; } *eic_config &= ~(7 << sense_shift); *eic_config |= 2 << sense_shift; #if CFG_TUSB_OS == OPT_OS_FREERTOS // If freeRTOS is used, IRQ priority is limit by max syscall ( smaller is higher ) NVIC_SetPriority(EIC_0_IRQn + MAX3421_INTR_EIC_ID, configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY); #endif // Enable External Interrupt EIC->INTENSET.reg = EIC_INTENSET_EXTINT(1 << MAX3421_INTR_EIC_ID); // Enable EIC EIC->CTRLA.bit.ENABLE = 1; while (EIC->SYNCBUSY.bit.ENABLE); } void MAX3421_EIC_Handler(void) { // Clear the interrupt flag EIC->INTFLAG.reg = EIC_INTFLAG_EXTINT(1 << MAX3421_INTR_EIC_ID); // Call the TinyUSB interrupt handler tuh_int_handler(1, true); } // API to enable/disable MAX3421 INTR pin interrupt void tuh_max3421_int_api(uint8_t rhport, bool enabled) { (void) rhport; const IRQn_Type irq = EIC_0_IRQn + MAX3421_INTR_EIC_ID; if (enabled) { NVIC_EnableIRQ(irq); } else { NVIC_DisableIRQ(irq); } } // API to control MAX3421 SPI CS void tuh_max3421_spi_cs_api(uint8_t rhport, bool active) { (void) rhport; gpio_set_pin_level(MAX3421_CS_PIN, active ? 0 : 1); } // API to transfer data with MAX3421 SPI // Either tx_buf or rx_buf can be NULL, which means transfer is write or read only bool tuh_max3421_spi_xfer_api(uint8_t rhport, uint8_t const* tx_buf, uint8_t* rx_buf, size_t xfer_bytes) { (void) rhport; Sercom* sercom = MAX3421_SERCOM; for (size_t count = 0; count < xfer_bytes; count++) { // Wait for the transmit buffer to be empty while (!sercom->SPI.INTFLAG.bit.DRE); // Write data to be transmitted uint8_t data = 0x00; if (tx_buf) { data = tx_buf[count]; } sercom->SPI.DATA.reg = (uint32_t) data; // Wait for the receive buffer to be filled while (!sercom->SPI.INTFLAG.bit.RXC); // Read received data data = (uint8_t) sercom->SPI.DATA.reg; if (rx_buf) { rx_buf[count] = data; } } // wait for bus idle and clear flags while (!(sercom->SPI.INTFLAG.reg & (SERCOM_SPI_INTFLAG_TXC | SERCOM_SPI_INTFLAG_DRE))); sercom->SPI.INTFLAG.reg = SERCOM_SPI_INTFLAG_TXC | SERCOM_SPI_INTFLAG_DRE; return true; } #endif