/* * usbtmc.c * * Created on: Sep 9, 2019 * Author: nconrad */ /* * The MIT License (MIT) * * Copyright (c) 2019 Nathan Conrad * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ // Synchronization is needed in some spots. // These functions should NOT be called from interrupts. /* The library is designed that its functions can be called by any user task, with need for * additional locking. In the case of "no OS", this task is never preempted other than by * interrupts, and the USBTMC code isn't called by interrupts, so all is OK. In the case * of an OS, this class driver uses the OSAL to perform locking. The code uses a single lock * and does not call outside of this class with a lock held, so deadlocks won't happen. * * This module's application-facing functions are not reentrant. The application must * only call them from a single thread (or implement its own locking). */ //Limitations: // "vendor-specific" commands are not handled. // Dealing with "termchar" must be handled by the application layer, // though additional error checking is does in this module. // talkOnly and listenOnly are NOT supported. They're no permitted // in USB488, anyway. /* Supported: * * Notification pulse * Trigger * Read status byte (both by interrupt endpoint and control message) * */ // TODO: // USBTMC 3.2.2 error conditions not strictly followed // No local lock-out, REN, or GTL. // Cannot handle clear. // Clear message available status byte at the correct time? (488 4.3.1.3) // Abort bulk in/out // No CLEAR_FEATURE/HALT no EP (yet) #include "tusb_option.h" #if (TUSB_OPT_DEVICE_ENABLED && CFG_TUD_USBTMC) #include #include "usbtmc.h" #include "usbtmc_device.h" #include "device/dcd.h" #include "device/usbd.h" #ifdef xDEBUG #include "uart_util.h" static char logMsg[150]; #endif // FIXME: I shouldn't need to include _pvt headers. #include "device/usbd_pvt.h" static uint8_t termChar; static uint8_t termCharRequested = false; typedef enum { STATE_IDLE, STATE_RCV, STATE_TX_REQUESTED, STATE_TX_INITIATED, STATE_TX_SHORTED, STATE_CLEARING, STATE_ABORTING_BULK_IN, STATE_ABORTING_BULK_IN_SHORTED, // aborting, and short packet has been queued for transmission STATE_ABORTING_BULK_IN_ABORTED, // aborting, and short packet has been transmitted STATE_ABORTING_BULK_OUT, STATE_NUM_STATES } usbtmcd_state_enum; typedef struct { volatile usbtmcd_state_enum state; uint8_t itf_id; uint8_t ep_bulk_in; uint8_t ep_bulk_out; uint8_t ep_int_in; // IN buffer is only used for first packet, not the remainder // in order to deal with prepending header uint8_t ep_bulk_in_buf[USBTMCD_MAX_PACKET_SIZE]; // OUT buffer receives one packet at a time uint8_t ep_bulk_out_buf[USBTMCD_MAX_PACKET_SIZE]; uint32_t transfer_size_remaining; // also used for requested length for bulk IN. uint32_t transfer_size_sent; // To keep track of data bytes that have been queued in FIFO (not header bytes) uint8_t lastBulkOutTag; // used for aborts (mostly) uint8_t lastBulkInTag; // used for aborts (mostly) uint8_t const * devInBuffer; } usbtmc_interface_state_t; static usbtmc_interface_state_t usbtmc_state = { .state = STATE_IDLE, .itf_id = 0xFF, .ep_bulk_in = 0, .ep_bulk_out = 0, .ep_int_in = 0 }; // We need all headers to fit in a single packet in this implementation. TU_VERIFY_STATIC(USBTMCD_MAX_PACKET_SIZE >= 32u,"USBTMC dev EP packet size too small"); TU_VERIFY_STATIC( (sizeof(usbtmc_state.ep_bulk_in_buf) % USBTMCD_MAX_PACKET_SIZE) == 0, "packet buffer must be a multiple of the packet size"); static bool handle_devMsgOutStart(uint8_t rhport, void *data, size_t len); static bool handle_devMsgOut(uint8_t rhport, void *data, size_t len, size_t packetLen); osal_mutex_def_t usbtmcLockBuffer; static osal_mutex_t usbtmcLock; // Our own private lock, mostly for the state variable. #define criticalEnter() do {osal_mutex_lock(usbtmcLock,OSAL_TIMEOUT_WAIT_FOREVER); } while (0) #define criticalLeave() do {osal_mutex_unlock(usbtmcLock); } while (0) // called from app // We keep a reference to the buffer, so it MUST not change until the app is // notified that the transfer is complete. // length of data is specified in the hdr. // We can't just send the whole thing at once because we need to concatanate the // header with the data. bool usbtmcd_transmit_dev_msg_data( uint8_t rhport, const void * data, size_t len, bool usingTermChar) { const unsigned int txBufLen = sizeof(usbtmc_state.ep_bulk_in_buf); #ifndef NDEBUG TU_ASSERT(len > 0u); TU_ASSERT(len <= usbtmc_state.transfer_size_remaining); if(usingTermChar) { TU_ASSERT(usbtmcd_app_capabilities.bmDevCapabilities.canEndBulkInOnTermChar); TU_ASSERT(termCharRequested); TU_ASSERT(((uint8_t*)data)[len-1] == termChar); } #endif TU_VERIFY(usbtmc_state.state == STATE_TX_REQUESTED); usbtmc_msg_dev_dep_msg_in_header_t *hdr = (usbtmc_msg_dev_dep_msg_in_header_t*)usbtmc_state.ep_bulk_in_buf; memset(hdr, 0x00, sizeof(*hdr)); hdr->header.MsgID = USBTMC_MSGID_DEV_DEP_MSG_IN; hdr->header.bTag = usbtmc_state.lastBulkInTag; hdr->header.bTagInverse = (uint8_t)~(usbtmc_state.lastBulkInTag); hdr->TransferSize = len; hdr->bmTransferAttributes.EOM = 1u; hdr->bmTransferAttributes.UsingTermChar = usingTermChar; // Copy in the header size_t packetLen = sizeof(*hdr); // If it fits in a single trasnmission: if((packetLen + hdr->TransferSize) <= txBufLen) { memcpy((uint8_t*)(usbtmc_state.ep_bulk_in_buf) + packetLen, data, hdr->TransferSize); packetLen = (uint16_t)(packetLen + hdr->TransferSize); usbtmc_state.transfer_size_remaining = 0; usbtmc_state.transfer_size_sent = len; usbtmc_state.devInBuffer = NULL; } else /* partial packet */ { memcpy((uint8_t*)(usbtmc_state.ep_bulk_in_buf) + packetLen, data, txBufLen - packetLen); usbtmc_state.devInBuffer = (uint8_t*)data + (txBufLen - packetLen); usbtmc_state.transfer_size_remaining = len - (txBufLen - packetLen); usbtmc_state.transfer_size_sent = txBufLen - packetLen; packetLen = txBufLen; } criticalEnter(); { TU_VERIFY(usbtmc_state.state == STATE_TX_REQUESTED); // We used packetlen as a max, not the buffer size, so this is OK here, no need for modulus usbtmc_state.state = (packetLen >= txBufLen) ? STATE_TX_INITIATED : STATE_TX_SHORTED; } criticalLeave(); TU_VERIFY( usbd_edpt_xfer(rhport, usbtmc_state.ep_bulk_in, usbtmc_state.ep_bulk_in_buf, (uint16_t)packetLen)); return true; } void usbtmcd_init(void) { #ifndef NDEBUG # if USBTMC_CFG_ENABLE_488 if(usbtmcd_app_capabilities.bmIntfcCapabilities488.supportsTrigger) TU_ASSERT(&usbtmcd_app_msg_trigger != NULL,); // Per USB488 spec: table 8 TU_ASSERT(!usbtmcd_app_capabilities.bmIntfcCapabilities.listenOnly,); TU_ASSERT(!usbtmcd_app_capabilities.bmIntfcCapabilities.talkOnly,); # endif if(usbtmcd_app_capabilities.bmIntfcCapabilities.supportsIndicatorPulse) TU_ASSERT(&usbtmcd_app_indicator_pluse != NULL,); #endif usbtmcLock = osal_mutex_create(&usbtmcLockBuffer); } bool usbtmcd_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t *p_length) { (void)rhport; uint8_t const * p_desc; uint8_t found_endpoints = 0; usbtmcd_reset(rhport); // Perhaps there are other application specific class drivers, so don't assert here. if( itf_desc->bInterfaceClass != TUD_USBTMC_APP_CLASS) return false; if( itf_desc->bInterfaceSubClass != TUD_USBTMC_APP_SUBCLASS) return false; // Only 2 or 3 endpoints are allowed for USBTMC. TU_ASSERT((itf_desc->bNumEndpoints == 2) || (itf_desc->bNumEndpoints ==3)); // Interface (*p_length) = 0u; p_desc = (uint8_t const *) itf_desc; usbtmc_state.itf_id = itf_desc->bInterfaceNumber; while (found_endpoints < itf_desc->bNumEndpoints) { if ( TUSB_DESC_ENDPOINT == p_desc[DESC_OFFSET_TYPE]) { tusb_desc_endpoint_t const *ep_desc = (tusb_desc_endpoint_t const *)p_desc; switch(ep_desc->bmAttributes.xfer) { case TUSB_XFER_BULK: TU_ASSERT(ep_desc->wMaxPacketSize.size == USBTMCD_MAX_PACKET_SIZE); if (tu_edpt_dir(ep_desc->bEndpointAddress) == TUSB_DIR_IN) { usbtmc_state.ep_bulk_in = ep_desc->bEndpointAddress; } else { usbtmc_state.ep_bulk_out = ep_desc->bEndpointAddress; } break; case TUSB_XFER_INTERRUPT: #ifndef NDEBUG TU_ASSERT(tu_edpt_dir(ep_desc->bEndpointAddress) == TUSB_DIR_IN); TU_ASSERT(usbtmc_state.ep_int_in == 0); #endif usbtmc_state.ep_int_in = ep_desc->bEndpointAddress; break; default: TU_ASSERT(false); } TU_VERIFY( dcd_edpt_open(rhport, ep_desc)); found_endpoints++; } (*p_length) = (uint8_t)((*p_length) + p_desc[DESC_OFFSET_LEN]); p_desc = tu_desc_next(p_desc); } // bulk endpoints are required, but interrupt IN is optional #ifndef NDEBUG TU_ASSERT(usbtmc_state.ep_bulk_in != 0); TU_ASSERT(usbtmc_state.ep_bulk_out != 0); if (itf_desc->bNumEndpoints == 2) { TU_ASSERT(usbtmc_state.ep_int_in == 0); } else if (itf_desc->bNumEndpoints == 3) { TU_ASSERT(usbtmc_state.ep_int_in != 0); } if(usbtmcd_app_capabilities.bmIntfcCapabilities488.is488_2 || usbtmcd_app_capabilities.bmDevCapabilities488.SR1) { TU_ASSERT(usbtmc_state.ep_int_in != 0); } #endif TU_VERIFY( usbd_edpt_xfer(rhport, usbtmc_state.ep_bulk_out, usbtmc_state.ep_bulk_out_buf, 64)); return true; } void usbtmcd_reset(uint8_t rhport) { // FIXME: Do endpoints need to be closed here? usbtmc_state.state = STATE_IDLE; usbtmc_state.itf_id = 0xFF; usbtmc_state.ep_bulk_in = 0; usbtmc_state.ep_bulk_out = 0; usbtmc_state.ep_int_in = 0; usbtmc_state.lastBulkInTag = 0; usbtmc_state.lastBulkOutTag = 0; (void)rhport; } static bool handle_devMsgOutStart(uint8_t rhport, void *data, size_t len) { (void)rhport; TU_VERIFY(usbtmc_state.state == STATE_IDLE); // must be a header, should have been confirmed before calling here. usbtmc_msg_request_dev_dep_out *msg = (usbtmc_msg_request_dev_dep_out*)data; usbtmc_state.transfer_size_remaining = msg->TransferSize; TU_VERIFY(usbtmcd_app_msgBulkOut_start(rhport,msg)); TU_VERIFY(handle_devMsgOut(rhport, (uint8_t*)data + sizeof(*msg), len - sizeof(*msg), len)); return true; } static bool handle_devMsgOut(uint8_t rhport, void *data, size_t len, size_t packetLen) { (void)rhport; bool shortPacket = (packetLen < USBTMCD_MAX_PACKET_SIZE); // Packet is to be considered complete when we get enough data or at a short packet. bool atEnd = false; if(len >= usbtmc_state.transfer_size_remaining || shortPacket) atEnd = true; if(len > usbtmc_state.transfer_size_remaining) len = usbtmc_state.transfer_size_remaining; usbtmcd_app_msg_data(rhport,data, len, atEnd); usbtmc_state.transfer_size_remaining -= len; usbtmc_state.transfer_size_sent += len; if(atEnd) { usbtmc_state.state = STATE_IDLE; } else { usbtmc_state.state = STATE_RCV; } return true; } static bool handle_devMsgIn(uint8_t rhport, void *data, size_t len) { TU_VERIFY(len == sizeof(usbtmc_msg_request_dev_dep_in)); usbtmc_msg_request_dev_dep_in *msg = (usbtmc_msg_request_dev_dep_in*)data; criticalEnter(); { TU_VERIFY(usbtmc_state.state == STATE_IDLE); usbtmc_state.state = STATE_TX_REQUESTED; usbtmc_state.lastBulkInTag = msg->header.bTag; usbtmc_state.transfer_size_remaining = msg->TransferSize; usbtmc_state.transfer_size_sent = 0u; } criticalLeave(); termCharRequested = msg->bmTransferAttributes.TermCharEnabled; termChar = msg->TermChar; if(termCharRequested) TU_VERIFY(usbtmcd_app_capabilities.bmDevCapabilities.canEndBulkInOnTermChar); TU_VERIFY(usbtmcd_app_msgBulkIn_request(rhport, msg)); return true; } bool usbtmcd_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes) { TU_VERIFY(result == XFER_RESULT_SUCCESS); if(usbtmc_state.state == STATE_CLEARING) { return true; /* I think we can ignore everything here */ } if(ep_addr == usbtmc_state.ep_bulk_out) { usbtmc_msg_generic_t *msg = NULL; switch(usbtmc_state.state) { case STATE_IDLE: TU_VERIFY(xferred_bytes >= sizeof(usbtmc_msg_generic_t)); msg = (usbtmc_msg_generic_t*)(usbtmc_state.ep_bulk_out_buf); uint8_t invInvTag = (uint8_t)~(msg->header.bTagInverse); TU_VERIFY(msg->header.bTag == invInvTag); TU_VERIFY(msg->header.bTag != 0x00); switch(msg->header.MsgID) { case USBTMC_MSGID_DEV_DEP_MSG_OUT: usbtmc_state.transfer_size_sent = 0u; TU_VERIFY(handle_devMsgOutStart(rhport, msg, xferred_bytes)); usbtmc_state.lastBulkOutTag = msg->header.bTag; break; case USBTMC_MSGID_DEV_DEP_MSG_IN: TU_VERIFY(handle_devMsgIn(rhport, msg, xferred_bytes)); break; #ifdef USBTMC_CFG_ENABLE_488 case USBTMC_MSGID_USB488_TRIGGER: // Spec says we halt the EP if we didn't declare we support it. TU_VERIFY(usbtmcd_app_capabilities.bmIntfcCapabilities488.supportsTrigger); TU_VERIFY(usbtmcd_app_msg_trigger(rhport, msg)); break; #endif case USBTMC_MSGID_VENDOR_SPECIFIC_MSG_OUT: case USBTMC_MSGID_VENDOR_SPECIFIC_IN: default: TU_VERIFY(false); return false; } TU_VERIFY(usbd_edpt_xfer(rhport, usbtmc_state.ep_bulk_out, usbtmc_state.ep_bulk_out_buf, USBTMCD_MAX_PACKET_SIZE)); return true; case STATE_RCV: TU_VERIFY(handle_devMsgOut(rhport, usbtmc_state.ep_bulk_out_buf, xferred_bytes, xferred_bytes)); TU_VERIFY(usbd_edpt_xfer(rhport, usbtmc_state.ep_bulk_out, usbtmc_state.ep_bulk_out_buf, USBTMCD_MAX_PACKET_SIZE)); return true; case STATE_ABORTING_BULK_OUT: TU_VERIFY(false); return false; // Should be stalled by now... case STATE_TX_REQUESTED: case STATE_TX_INITIATED: case STATE_ABORTING_BULK_IN: case STATE_ABORTING_BULK_IN_SHORTED: case STATE_ABORTING_BULK_IN_ABORTED: default: TU_VERIFY(false); } } else if(ep_addr == usbtmc_state.ep_bulk_in) { switch(usbtmc_state.state) { case STATE_TX_SHORTED: usbtmc_state.state = STATE_IDLE; TU_VERIFY(usbtmcd_app_msgBulkIn_complete(rhport)); break; case STATE_TX_INITIATED: if(usbtmc_state.transfer_size_remaining >=sizeof(usbtmc_state.ep_bulk_in_buf)) { // FIXME! This removes const below! TU_VERIFY( usbd_edpt_xfer(rhport, usbtmc_state.ep_bulk_in, (void*)usbtmc_state.devInBuffer,sizeof(usbtmc_state.ep_bulk_in_buf))); usbtmc_state.devInBuffer += sizeof(usbtmc_state.ep_bulk_in_buf); usbtmc_state.transfer_size_remaining -= sizeof(usbtmc_state.ep_bulk_in_buf); usbtmc_state.transfer_size_sent += sizeof(usbtmc_state.ep_bulk_in_buf); } else // last packet { size_t packetLen = usbtmc_state.transfer_size_remaining; memcpy(usbtmc_state.ep_bulk_in_buf, usbtmc_state.devInBuffer, usbtmc_state.transfer_size_remaining); usbtmc_state.transfer_size_sent += sizeof(usbtmc_state.transfer_size_remaining); usbtmc_state.transfer_size_remaining = 0; usbtmc_state.devInBuffer = NULL; TU_VERIFY( usbd_edpt_xfer(rhport, usbtmc_state.ep_bulk_in, usbtmc_state.ep_bulk_in_buf,(uint16_t)packetLen)); if(((packetLen % USBTMCD_MAX_PACKET_SIZE) != 0) || (packetLen == 0 )) { usbtmc_state.state = STATE_TX_SHORTED; } } return true; case STATE_ABORTING_BULK_IN: // need to send short packet (ZLP?) TU_VERIFY( usbd_edpt_xfer(rhport, usbtmc_state.ep_bulk_in, usbtmc_state.ep_bulk_in_buf,(uint16_t)0u)); usbtmc_state.state = STATE_ABORTING_BULK_IN_SHORTED; return true; case STATE_ABORTING_BULK_IN_SHORTED: /* Done. :)*/ usbtmc_state.state = STATE_ABORTING_BULK_IN_ABORTED; return true; default: TU_ASSERT(false); return false; } } else if (ep_addr == usbtmc_state.ep_int_in) { // Good? return true; } return false; } bool usbtmcd_control_request(uint8_t rhport, tusb_control_request_t const * request) { uint8_t tmcStatusCode = USBTMC_STATUS_FAILED; #if (USBTMC_CFG_ENABLE_488) uint8_t bTag; #endif if((request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD) && (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_ENDPOINT) && (request->bRequest == TUSB_REQ_CLEAR_FEATURE) && (request->wValue == TUSB_REQ_FEATURE_EDPT_HALT)) { if((request->wIndex) == usbtmc_state.ep_bulk_out) { usmtmcd_app_bulkOut_clearFeature(rhport); } else if ((request->wIndex) == usbtmc_state.ep_bulk_in) { usmtmcd_app_bulkIn_clearFeature(rhport); } return false; // We want USBD core to handle sending the status response, and clear the stall condition } // We only handle class requests, IN direction. // (for now) if(request->bmRequestType_bit.type != TUSB_REQ_TYPE_CLASS) { return false; } // Verification that we own the interface is unneeded since it's been routed to us specifically. switch(request->bRequest) { // USBTMC required requests case USBTMC_bREQUEST_INITIATE_ABORT_BULK_OUT: { usbtmc_initiate_abort_rsp_t rsp = { .bTag = usbtmc_state.lastBulkOutTag, }; TU_VERIFY(request->bmRequestType == 0xA2); // in,class,interface TU_VERIFY(request->wLength == sizeof(rsp)); TU_VERIFY(request->wIndex == usbtmc_state.ep_bulk_out); // wValue is the requested bTag to abort if(usbtmc_state.state != STATE_RCV) { rsp.USBTMC_status = USBTMC_STATUS_FAILED; } else if(usbtmc_state.lastBulkOutTag == (request->wValue & 0xf7u)) { rsp.USBTMC_status = USBTMC_STATUS_TRANSFER_NOT_IN_PROGRESS; } else { rsp.USBTMC_status = USBTMC_STATUS_SUCCESS; // Check if we've queued a short packet usbtmc_state.state = STATE_ABORTING_BULK_OUT; TU_VERIFY(usbtmcd_app_initiate_abort_bulk_out(rhport, &(rsp.USBTMC_status))); usbd_edpt_stall(rhport, usbtmc_state.ep_bulk_out); } TU_VERIFY(tud_control_xfer(rhport, request, (void*)&rsp,sizeof(rsp))); return true; } case USBTMC_bREQUEST_CHECK_ABORT_BULK_OUT_STATUS: { usbtmc_check_abort_bulk_rsp_t rsp = { .USBTMC_status = USBTMC_STATUS_SUCCESS, .NBYTES_RXD_TXD = usbtmc_state.transfer_size_sent }; TU_VERIFY(request->bmRequestType == 0xA2); // in,class,EP TU_VERIFY(request->wLength == sizeof(rsp)); TU_VERIFY(request->wIndex == usbtmc_state.ep_bulk_out); TU_VERIFY(usbtmcd_app_check_abort_bulk_out(rhport, &rsp)); TU_VERIFY(usbd_edpt_xfer(rhport, 0u, (void*)&rsp,sizeof(rsp))); return true; } case USBTMC_bREQUEST_INITIATE_ABORT_BULK_IN: { usbtmc_initiate_abort_rsp_t rsp = { .bTag = usbtmc_state.lastBulkInTag, }; TU_VERIFY(request->bmRequestType == 0xA2); // in,class,interface TU_VERIFY(request->wLength == sizeof(rsp)); TU_VERIFY(request->wIndex == usbtmc_state.ep_bulk_in); // wValue is the requested bTag to abort if((usbtmc_state.state == STATE_TX_REQUESTED || usbtmc_state.state == STATE_TX_INITIATED) && usbtmc_state.lastBulkInTag == (request->wValue & 0xf7u)) { rsp.USBTMC_status = USBTMC_STATUS_SUCCESS; usbtmc_state.transfer_size_remaining = 0; // Check if we've queued a short packet usbtmc_state.state = ((usbtmc_state.transfer_size_sent % USBTMCD_MAX_PACKET_SIZE) == 0) ? STATE_ABORTING_BULK_IN : STATE_ABORTING_BULK_IN_SHORTED; if(usbtmc_state.transfer_size_sent == 0) { // Send short packet, nothing is in the buffer yet TU_VERIFY( usbd_edpt_xfer(rhport, usbtmc_state.ep_bulk_in, usbtmc_state.ep_bulk_in_buf,(uint16_t)0u)); usbtmc_state.state = STATE_ABORTING_BULK_IN_SHORTED; } TU_VERIFY(usbtmcd_app_initiate_abort_bulk_in(rhport, &(rsp.USBTMC_status))); } else if((usbtmc_state.state == STATE_TX_REQUESTED || usbtmc_state.state == STATE_TX_INITIATED)) { // FIXME: Unsure how to check if the OUT endpoint fifo is non-empty.... rsp.USBTMC_status = USBTMC_STATUS_TRANSFER_NOT_IN_PROGRESS; } else { rsp.USBTMC_status = USBTMC_STATUS_FAILED; } TU_VERIFY(tud_control_xfer(rhport, request, (void*)&rsp,sizeof(rsp))); return true; } case USBTMC_bREQUEST_CHECK_ABORT_BULK_IN_STATUS: { TU_VERIFY(request->bmRequestType == 0xA2); // in,class,EP TU_VERIFY(request->wLength == 8u); usbtmc_check_abort_bulk_rsp_t rsp = { .USBTMC_status = USBTMC_STATUS_FAILED, .bmAbortBulkIn = { .BulkInFifoBytes = (usbtmc_state.state != STATE_ABORTING_BULK_IN_ABORTED) }, .NBYTES_RXD_TXD = usbtmc_state.transfer_size_sent, }; TU_VERIFY(usbtmcd_app_check_abort_bulk_in(rhport, &rsp)); switch(usbtmc_state.state) { case STATE_ABORTING_BULK_IN_ABORTED: rsp.USBTMC_status = USBTMC_STATUS_SUCCESS; usbtmc_state.state = STATE_IDLE; break; case STATE_ABORTING_BULK_IN: case STATE_ABORTING_BULK_OUT: rsp.USBTMC_status = USBTMC_STATUS_PENDING; break; default: break; } TU_VERIFY(tud_control_xfer(rhport, request, (void*)&rsp,sizeof(rsp))); return true; } case USBTMC_bREQUEST_INITIATE_CLEAR: { TU_VERIFY(request->bmRequestType == 0xA1); // in,class,interface TU_VERIFY(request->wLength == sizeof(tmcStatusCode)); // After receiving an INITIATE_CLEAR request, the device must Halt the Bulk-OUT endpoint, queue the // control endpoint response shown in Table 31, and clear all input buffers and output buffers. usbd_edpt_stall(rhport, usbtmc_state.ep_bulk_out); usbtmc_state.transfer_size_remaining = 0; usbtmc_state.state = STATE_CLEARING; TU_VERIFY(usbtmcd_app_initiate_clear(rhport, &tmcStatusCode)); TU_VERIFY(tud_control_xfer(rhport, request, (void*)&tmcStatusCode,sizeof(tmcStatusCode))); return true; } case USBTMC_bREQUEST_CHECK_CLEAR_STATUS: { TU_VERIFY(request->bmRequestType == 0xA1); // in,class,interface usbtmc_get_clear_status_rsp_t clearStatusRsp = {0}; TU_VERIFY(request->wLength == sizeof(clearStatusRsp)); if(usbd_edpt_busy(rhport, usbtmc_state.ep_bulk_in)) { // Stuff stuck in TX buffer? clearStatusRsp.bmClear.BulkInFifoBytes = 1; clearStatusRsp.USBTMC_status = USBTMC_STATUS_PENDING; } else { // Let app check if it's clear TU_VERIFY(usbtmcd_app_check_clear(rhport, &clearStatusRsp)); } if(clearStatusRsp.USBTMC_status == USBTMC_STATUS_SUCCESS) usbtmc_state.state = STATE_IDLE; TU_VERIFY(tud_control_xfer(rhport, request, (void*)&clearStatusRsp,sizeof(clearStatusRsp))); return true; } case USBTMC_bREQUEST_GET_CAPABILITIES: { TU_VERIFY(request->bmRequestType == 0xA1); // in,class,interface TU_VERIFY(request->wLength == sizeof(usbtmcd_app_capabilities)); TU_VERIFY(tud_control_xfer(rhport, request, (void*)&usbtmcd_app_capabilities, sizeof(usbtmcd_app_capabilities))); return true; } // USBTMC Optional Requests case USBTMC_bREQUEST_INDICATOR_PULSE: // Optional { TU_VERIFY(request->bmRequestType == 0xA1); // in,class,interface TU_VERIFY(request->wLength == sizeof(tmcStatusCode)); TU_VERIFY(usbtmcd_app_capabilities.bmIntfcCapabilities.supportsIndicatorPulse); TU_VERIFY(usbtmcd_app_indicator_pluse(rhport, request, &tmcStatusCode)); TU_VERIFY(tud_control_xfer(rhport, request, (void*)&tmcStatusCode, sizeof(tmcStatusCode))); return true; } #if (USBTMC_CFG_ENABLE_488) // USB488 required requests case USB488_bREQUEST_READ_STATUS_BYTE: { usbtmc_read_stb_rsp_488_t rsp; TU_VERIFY(request->bmRequestType == 0xA1); // in,class,interface TU_VERIFY(request->wLength == sizeof(rsp)); // in,class,interface bTag = request->wValue & 0x7F; TU_VERIFY(request->bmRequestType == 0xA1); TU_VERIFY((request->wValue & (~0x7F)) == 0u); // Other bits are required to be zero TU_VERIFY(bTag >= 0x02 && bTag <= 127); TU_VERIFY(request->wIndex == usbtmc_state.itf_id); TU_VERIFY(request->wLength == 0x0003); rsp.bTag = (uint8_t)bTag; if(usbtmc_state.ep_int_in != 0) { rsp.USBTMC_status = USBTMC_STATUS_SUCCESS; rsp.statusByte = 0x00; // Use interrupt endpoint, instead. usbtmc_read_stb_interrupt_488_t intMsg = { .bNotify1 = { .one = 1, .bTag = bTag & 0x7Fu, }, .StatusByte = usbtmcd_app_get_stb(rhport, &(rsp.USBTMC_status)) }; usbd_edpt_xfer(rhport, usbtmc_state.ep_int_in, (void*)&intMsg,sizeof(intMsg)); } else { rsp.statusByte = usbtmcd_app_get_stb(rhport, &(rsp.USBTMC_status)); } TU_VERIFY(tud_control_xfer(rhport, request, (void*)&rsp, sizeof(rsp))); return true; } // USB488 optional requests case USB488_bREQUEST_REN_CONTROL: case USB488_bREQUEST_GO_TO_LOCAL: case USB488_bREQUEST_LOCAL_LOCKOUT: { TU_VERIFY(request->bmRequestType == 0xA1); // in,class,interface TU_VERIFY(false); return false; } #endif default: TU_VERIFY(false); return false; } TU_VERIFY(false); } bool usbtmcd_control_complete(uint8_t rhport, tusb_control_request_t const * request) { (void)rhport; //------------- Class Specific Request -------------// TU_VERIFY (request->bmRequestType_bit.type == TUSB_REQ_TYPE_CLASS); return true; } #endif /* CFG_TUD_TSMC */