/* * The MIT License (MIT) * * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" #if TUSB_OPT_HOST_ENABLED #include "tusb.h" #include "host/usbh.h" #include "host/usbh_classdriver.h" #include "hub.h" //--------------------------------------------------------------------+ // USBH Configuration //--------------------------------------------------------------------+ // TODO remove,update #ifndef CFG_TUH_EP_MAX #define CFG_TUH_EP_MAX 9 #endif #ifndef CFG_TUH_TASK_QUEUE_SZ #define CFG_TUH_TASK_QUEUE_SZ 16 #endif // Debug level of USBD #define USBH_DBG_LVL 2 //--------------------------------------------------------------------+ // USBH-HCD common data structure //--------------------------------------------------------------------+ typedef struct { //------------- port -------------// uint8_t rhport; uint8_t hub_addr; uint8_t hub_port; uint8_t speed; //------------- device descriptor -------------// uint16_t vendor_id; uint16_t product_id; uint8_t ep0_packet_size; //------------- configuration descriptor -------------// // uint8_t interface_count; // bNumInterfaces alias //------------- device -------------// struct TU_ATTR_PACKED { uint8_t connected : 1; uint8_t addressed : 1; uint8_t configured : 1; uint8_t suspended : 1; }; volatile uint8_t state; // device state, value from enum tusbh_device_state_t uint8_t itf2drv[16]; // map interface number to driver (0xff is invalid) uint8_t ep2drv[CFG_TUH_EP_MAX][2]; // map endpoint to driver ( 0xff is invalid ) struct TU_ATTR_PACKED { volatile bool busy : 1; volatile bool stalled : 1; volatile bool claimed : 1; // TODO merge ep2drv here, 4-bit should be sufficient }ep_status[CFG_TUH_EP_MAX][2]; // Mutex for claiming endpoint, only needed when using with preempted RTOS #if CFG_TUSB_OS != OPT_OS_NONE osal_mutex_def_t mutexdef; osal_mutex_t mutex; #endif } usbh_device_t; typedef struct { uint8_t rhport; uint8_t hub_addr; uint8_t hub_port; uint8_t speed; } usbh_dev0_t; //--------------------------------------------------------------------+ // MACRO CONSTANT TYPEDEF //--------------------------------------------------------------------+ // Invalid driver ID in itf2drv[] ep2drv[][] mapping enum { DRVID_INVALID = 0xFFu }; enum { ADDR_INVALID = 0xFFu }; #if CFG_TUSB_DEBUG >= 2 #define DRIVER_NAME(_name) .name = _name, #else #define DRIVER_NAME(_name) #endif static usbh_class_driver_t const usbh_class_drivers[] = { #if CFG_TUH_CDC { DRIVER_NAME("CDC") .init = cdch_init, .open = cdch_open, .set_config = cdch_set_config, .xfer_cb = cdch_xfer_cb, .close = cdch_close }, #endif #if CFG_TUH_MSC { DRIVER_NAME("MSC") .init = msch_init, .open = msch_open, .set_config = msch_set_config, .xfer_cb = msch_xfer_cb, .close = msch_close }, #endif #if CFG_TUH_HID { DRIVER_NAME("HID") .init = hidh_init, .open = hidh_open, .set_config = hidh_set_config, .xfer_cb = hidh_xfer_cb, .close = hidh_close }, #endif #if CFG_TUH_HUB { DRIVER_NAME("HUB") .init = hub_init, .open = hub_open, .set_config = hub_set_config, .xfer_cb = hub_xfer_cb, .close = hub_close }, #endif #if CFG_TUH_VENDOR { DRIVER_NAME("VENDOR") .init = cush_init, .open = cush_open_subtask, .xfer_cb = cush_isr, .close = cush_close } #endif }; enum { USBH_CLASS_DRIVER_COUNT = TU_ARRAY_SIZE(usbh_class_drivers) }; enum { RESET_DELAY = 500 }; // 200 USB specs say only 50ms but many devices require much longer enum { CONFIG_NUM = 1 }; // default to use configuration 1 //--------------------------------------------------------------------+ // INTERNAL OBJECT & FUNCTION DECLARATION //--------------------------------------------------------------------+ static bool _usbh_initialized = false; // Device with address = 0 for enumeration static usbh_dev0_t _dev0; // all devices excluding zero-address // hub address start from CFG_TUH_DEVICE_MAX+1 CFG_TUSB_MEM_SECTION usbh_device_t _usbh_devices[CFG_TUH_DEVICE_MAX + CFG_TUH_HUB]; // Event queue // role device/host is used by OS NONE for mutex (disable usb isr) OSAL_QUEUE_DEF(OPT_MODE_HOST, _usbh_qdef, CFG_TUH_TASK_QUEUE_SZ, hcd_event_t); static osal_queue_t _usbh_q; CFG_TUSB_MEM_SECTION CFG_TUSB_MEM_ALIGN static uint8_t _usbh_ctrl_buf[CFG_TUH_ENUMERATION_BUFSIZE]; //------------- Helper Function -------------// TU_ATTR_ALWAYS_INLINE static inline usbh_device_t* get_device(uint8_t dev_addr) { TU_ASSERT(dev_addr, NULL); return &_usbh_devices[dev_addr-1]; } static bool enum_new_device(hcd_event_t* event); static void process_device_unplugged(uint8_t rhport, uint8_t hub_addr, uint8_t hub_port); static bool usbh_edpt_control_open(uint8_t dev_addr, uint8_t max_packet_size); // from usbh_control.c extern bool usbh_control_xfer_cb (uint8_t dev_addr, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes); //--------------------------------------------------------------------+ // PUBLIC API (Parameter Verification is required) //--------------------------------------------------------------------+ bool tuh_mounted(uint8_t dev_addr) { return get_device(dev_addr)->configured; } tusb_speed_t tuh_speed_get (uint8_t const dev_addr) { TU_ASSERT( dev_addr <= CFG_TUH_DEVICE_MAX + CFG_TUH_HUB, TUSB_SPEED_INVALID); return (tusb_speed_t) get_device(dev_addr)->speed; } #if CFG_TUSB_OS == OPT_OS_NONE void osal_task_delay(uint32_t msec) { (void) msec; const uint32_t start = hcd_frame_number(TUH_OPT_RHPORT); while ( ( hcd_frame_number(TUH_OPT_RHPORT) - start ) < msec ) {} } #endif //--------------------------------------------------------------------+ // CLASS-USBD API (don't require to verify parameters) //--------------------------------------------------------------------+ bool tuh_inited(void) { return _usbh_initialized; } bool tuh_init(uint8_t rhport) { // skip if already initialized if (_usbh_initialized) return _usbh_initialized; TU_LOG2("USBH init\r\n"); tu_memclr(_usbh_devices, sizeof(_usbh_devices)); tu_memclr(&_dev0, sizeof(_dev0)); //------------- Enumeration & Reporter Task init -------------// _usbh_q = osal_queue_create( &_usbh_qdef ); TU_ASSERT(_usbh_q != NULL); //------------- Semaphore, Mutex for Control Pipe -------------// for(uint8_t i=0; imutex = osal_mutex_create(&dev->mutexdef); TU_ASSERT(dev->mutex); #endif memset(dev->itf2drv, DRVID_INVALID, sizeof(dev->itf2drv)); // invalid mapping memset(dev->ep2drv , DRVID_INVALID, sizeof(dev->ep2drv )); // invalid mapping } // Class drivers init for (uint8_t drv_id = 0; drv_id < USBH_CLASS_DRIVER_COUNT; drv_id++) { TU_LOG2("%s init\r\n", usbh_class_drivers[drv_id].name); usbh_class_drivers[drv_id].init(); } TU_ASSERT(hcd_init(rhport)); hcd_int_enable(rhport); _usbh_initialized = true; return true; } /* USB Host Driver task * This top level thread manages all host controller event and delegates events to class-specific drivers. * This should be called periodically within the mainloop or rtos thread. * @code int main(void) { application_init(); tusb_init(); while(1) // the mainloop { application_code(); tuh_task(); // tinyusb host task } } @endcode */ void tuh_task(void) { // Skip if stack is not initialized if ( !tusb_inited() ) return; // Loop until there is no more events in the queue while (1) { hcd_event_t event; if ( !osal_queue_receive(_usbh_q, &event) ) return; switch (event.event_id) { case HCD_EVENT_DEVICE_ATTACH: // TODO due to the shared _usbh_ctrl_buf, we must complete enumerating // one device before enumerating another one. TU_LOG2("USBH DEVICE ATTACH\r\n"); enum_new_device(&event); break; case HCD_EVENT_DEVICE_REMOVE: TU_LOG2("USBH DEVICE REMOVED\r\n"); process_device_unplugged(event.rhport, event.connection.hub_addr, event.connection.hub_port); #if CFG_TUH_HUB // TODO remove if ( event.connection.hub_addr != 0) { // done with hub, waiting for next data on status pipe (void) hub_status_pipe_queue( event.connection.hub_addr ); } #endif break; case HCD_EVENT_XFER_COMPLETE: { uint8_t const ep_addr = event.xfer_complete.ep_addr; uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const ep_dir = tu_edpt_dir(ep_addr); TU_LOG2("on EP %02X with %u bytes\r\n", ep_addr, (unsigned int) event.xfer_complete.len); if (event.dev_addr == 0) { // device 0 only has control endpoint TU_ASSERT(epnum == 0, ); usbh_control_xfer_cb(event.dev_addr, ep_addr, event.xfer_complete.result, event.xfer_complete.len); } else { usbh_device_t* dev = get_device(event.dev_addr); dev->ep_status[epnum][ep_dir].busy = false; dev->ep_status[epnum][ep_dir].claimed = 0; if ( 0 == epnum ) { usbh_control_xfer_cb(event.dev_addr, ep_addr, event.xfer_complete.result, event.xfer_complete.len); }else { uint8_t drv_id = dev->ep2drv[epnum][ep_dir]; TU_ASSERT(drv_id < USBH_CLASS_DRIVER_COUNT, ); TU_LOG2("%s xfer callback\r\n", usbh_class_drivers[drv_id].name); usbh_class_drivers[drv_id].xfer_cb(event.dev_addr, ep_addr, event.xfer_complete.result, event.xfer_complete.len); } } } break; case USBH_EVENT_FUNC_CALL: if ( event.func_call.func ) event.func_call.func(event.func_call.param); break; default: break; } } } //--------------------------------------------------------------------+ // USBH API For Class Driver //--------------------------------------------------------------------+ uint8_t usbh_get_rhport(uint8_t dev_addr) { return (dev_addr == 0) ? _dev0.rhport : get_device(dev_addr)->rhport; } uint8_t* usbh_get_enum_buf(void) { return _usbh_ctrl_buf; } //--------------------------------------------------------------------+ // HCD Event Handler //--------------------------------------------------------------------+ void hcd_devtree_get_info(uint8_t dev_addr, hcd_devtree_info_t* devtree_info) { if (dev_addr) { usbh_device_t const* dev = get_device(dev_addr); devtree_info->rhport = dev->rhport; devtree_info->hub_addr = dev->hub_addr; devtree_info->hub_port = dev->hub_port; devtree_info->speed = dev->speed; }else { devtree_info->rhport = _dev0.rhport; devtree_info->hub_addr = _dev0.hub_addr; devtree_info->hub_port = _dev0.hub_port; devtree_info->speed = _dev0.speed; } } void hcd_event_handler(hcd_event_t const* event, bool in_isr) { switch (event->event_id) { default: osal_queue_send(_usbh_q, event, in_isr); break; } } void hcd_event_xfer_complete(uint8_t dev_addr, uint8_t ep_addr, uint32_t xferred_bytes, xfer_result_t result, bool in_isr) { hcd_event_t event = { .rhport = 0, // TODO correct rhport .event_id = HCD_EVENT_XFER_COMPLETE, .dev_addr = dev_addr, .xfer_complete = { .ep_addr = ep_addr, .result = result, .len = xferred_bytes } }; hcd_event_handler(&event, in_isr); } void hcd_event_device_attach(uint8_t rhport, bool in_isr) { hcd_event_t event = { .rhport = rhport, .event_id = HCD_EVENT_DEVICE_ATTACH }; event.connection.hub_addr = 0; event.connection.hub_port = 0; hcd_event_handler(&event, in_isr); } void hcd_event_device_remove(uint8_t hostid, bool in_isr) { hcd_event_t event = { .rhport = hostid, .event_id = HCD_EVENT_DEVICE_REMOVE }; event.connection.hub_addr = 0; event.connection.hub_port = 0; hcd_event_handler(&event, in_isr); } // a device unplugged on hostid, hub_addr, hub_port // return true if found and unmounted device, false if cannot find void process_device_unplugged(uint8_t rhport, uint8_t hub_addr, uint8_t hub_port) { //------------- find the all devices (star-network) under port that is unplugged -------------// // TODO mark as disconnected in ISR, also handle dev0 for ( uint8_t dev_id = 0; dev_id < TU_ARRAY_SIZE(_usbh_devices); dev_id++ ) { usbh_device_t* dev = &_usbh_devices[dev_id]; uint8_t const dev_addr = dev_id+1; // TODO Hub multiple level if (dev->rhport == rhport && (hub_addr == 0 || dev->hub_addr == hub_addr) && // hub_addr == 0 & hub_port == 0 means roothub (hub_port == 0 || dev->hub_port == hub_port) && dev->state != TUSB_DEVICE_STATE_UNPLUG) { // Invoke callback before close driver if (tuh_umount_cb) tuh_umount_cb(dev_addr); // Close class driver for (uint8_t drv_id = 0; drv_id < USBH_CLASS_DRIVER_COUNT; drv_id++) { TU_LOG2("%s close\r\n", usbh_class_drivers[drv_id].name); usbh_class_drivers[drv_id].close(dev_addr); } memset(dev->itf2drv, DRVID_INVALID, sizeof(dev->itf2drv)); // invalid mapping memset(dev->ep2drv , DRVID_INVALID, sizeof(dev->ep2drv )); // invalid mapping hcd_device_close(rhport, dev_addr); dev->state = TUSB_DEVICE_STATE_UNPLUG; } } } //--------------------------------------------------------------------+ // INTERNAL HELPER //--------------------------------------------------------------------+ static uint8_t get_new_address(bool is_hub) { uint8_t const start = (is_hub ? CFG_TUH_DEVICE_MAX : 0) + 1; uint8_t const count = (is_hub ? CFG_TUH_HUB : CFG_TUH_DEVICE_MAX); for (uint8_t i=0; i < count; i++) { uint8_t const addr = start + i; if (get_device(addr)->state == TUSB_DEVICE_STATE_UNPLUG) return addr; } return ADDR_INVALID; } void usbh_driver_set_config_complete(uint8_t dev_addr, uint8_t itf_num) { usbh_device_t* dev = get_device(dev_addr); for(itf_num++; itf_num < sizeof(dev->itf2drv); itf_num++) { // continue with next valid interface // TODO skip IAD binding interface such as CDCs uint8_t const drv_id = dev->itf2drv[itf_num]; if (drv_id != DRVID_INVALID) { usbh_class_driver_t const * driver = &usbh_class_drivers[drv_id]; TU_LOG2("%s set config: itf = %u\r\n", driver->name, itf_num); driver->set_config(dev_addr, itf_num); break; } } // all interface are configured if (itf_num == sizeof(dev->itf2drv)) { // Invoke callback if available if (tuh_mount_cb) tuh_mount_cb(dev_addr); } } //--------------------------------------------------------------------+ // Enumeration Process // is a lengthy process with a seires of control transfer to configure // newly attached device. Each step is handled by a function in this // section // TODO due to the shared _usbh_ctrl_buf, we must complete enumerating // one device before enumerating another one. //--------------------------------------------------------------------+ static bool enum_request_addr0_device_desc(void); static bool enum_request_set_addr(void); static bool enum_get_addr0_device_desc_complete (uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result); static bool enum_set_address_complete (uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result); static bool enum_get_device_desc_complete (uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result); static bool enum_get_9byte_config_desc_complete (uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result); static bool enum_get_config_desc_complete (uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result); static bool enum_set_config_complete (uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result); static bool parse_configuration_descriptor (uint8_t dev_addr, tusb_desc_configuration_t const* desc_cfg); #if CFG_TUH_HUB static bool enum_hub_clear_reset0_complete(uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result) { (void) dev_addr; (void) request; TU_ASSERT(XFER_RESULT_SUCCESS == result); enum_request_addr0_device_desc(); return true; } static bool enum_hub_clear_reset1_complete(uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result) { (void) dev_addr; (void) request; TU_ASSERT(XFER_RESULT_SUCCESS == result); enum_request_set_addr(); // done with hub, waiting for next data on status pipe (void) hub_status_pipe_queue( _dev0.hub_addr ); return true; } static bool enum_hub_get_status1_complete(uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result) { (void) dev_addr; (void) request; TU_ASSERT(XFER_RESULT_SUCCESS == result); hub_port_status_response_t port_status; memcpy(&port_status, _usbh_ctrl_buf, sizeof(hub_port_status_response_t)); // Acknowledge Port Reset Change if Reset Successful if (port_status.change.reset) { TU_ASSERT( hub_port_clear_feature(_dev0.hub_addr, _dev0.hub_port, HUB_FEATURE_PORT_RESET_CHANGE, enum_hub_clear_reset1_complete) ); } return true; } static bool enum_hub_get_status0_complete(uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result) { (void) dev_addr; (void) request; TU_ASSERT(XFER_RESULT_SUCCESS == result); hub_port_status_response_t port_status; memcpy(&port_status, _usbh_ctrl_buf, sizeof(hub_port_status_response_t)); if ( !port_status.status.connection ) { // device unplugged while delaying, nothing else to do, queue hub status return hub_status_pipe_queue(dev_addr); } _dev0.speed = (port_status.status.high_speed) ? TUSB_SPEED_HIGH : (port_status.status.low_speed ) ? TUSB_SPEED_LOW : TUSB_SPEED_FULL; // Acknowledge Port Reset Change if (port_status.change.reset) { hub_port_clear_feature(_dev0.hub_addr, _dev0.hub_port, HUB_FEATURE_PORT_RESET_CHANGE, enum_hub_clear_reset0_complete); } return true; } #endif static bool enum_request_set_addr(void) { uint8_t const addr0 = 0; tusb_desc_device_t const * desc_device = (tusb_desc_device_t const*) _usbh_ctrl_buf; // Get new address uint8_t const new_addr = get_new_address(desc_device->bDeviceClass == TUSB_CLASS_HUB); TU_ASSERT(new_addr != ADDR_INVALID); TU_LOG2("Set Address = %d\r\n", new_addr); usbh_device_t* new_dev = get_device(new_addr); new_dev->rhport = _dev0.rhport; new_dev->hub_addr = _dev0.hub_addr; new_dev->hub_port = _dev0.hub_port; new_dev->speed = _dev0.speed; new_dev->connected = 1; new_dev->ep0_packet_size = desc_device->bMaxPacketSize0; tusb_control_request_t const new_request = { .bmRequestType_bit = { .recipient = TUSB_REQ_RCPT_DEVICE, .type = TUSB_REQ_TYPE_STANDARD, .direction = TUSB_DIR_OUT }, .bRequest = TUSB_REQ_SET_ADDRESS, .wValue = new_addr, .wIndex = 0, .wLength = 0 }; TU_ASSERT( tuh_control_xfer(addr0, &new_request, NULL, enum_set_address_complete) ); return true; } static bool enum_new_device(hcd_event_t* event) { _dev0.rhport = event->rhport; // TODO refractor integrate to device_pool _dev0.hub_addr = event->connection.hub_addr; _dev0.hub_port = event->connection.hub_port; //------------- connected/disconnected directly with roothub -------------// if (_dev0.hub_addr == 0) { // wait until device is stable TODO non blocking osal_task_delay(RESET_DELAY); // device unplugged while delaying if ( !hcd_port_connect_status(_dev0.rhport) ) return true; _dev0.speed = hcd_port_speed_get(_dev0.rhport ); enum_request_addr0_device_desc(); } #if CFG_TUH_HUB //------------- connected/disconnected via hub -------------// else { // wait until device is stable osal_task_delay(RESET_DELAY); TU_ASSERT( hub_port_get_status(_dev0.hub_addr, _dev0.hub_port, _usbh_ctrl_buf, enum_hub_get_status0_complete) ); } #endif // CFG_TUH_HUB return true; } static bool enum_request_addr0_device_desc(void) { // TODO probably doesn't need to open/close each enumeration uint8_t const addr0 = 0; TU_ASSERT( usbh_edpt_control_open(addr0, 8) ); //------------- Get first 8 bytes of device descriptor to get Control Endpoint Size -------------// TU_LOG2("Get 8 byte of Device Descriptor\r\n"); tusb_control_request_t const request = { .bmRequestType_bit = { .recipient = TUSB_REQ_RCPT_DEVICE, .type = TUSB_REQ_TYPE_STANDARD, .direction = TUSB_DIR_IN }, .bRequest = TUSB_REQ_GET_DESCRIPTOR, .wValue = TUSB_DESC_DEVICE << 8, .wIndex = 0, .wLength = 8 }; TU_ASSERT( tuh_control_xfer(addr0, &request, _usbh_ctrl_buf, enum_get_addr0_device_desc_complete) ); return true; } // After Get Device Descriptor of Address 0 static bool enum_get_addr0_device_desc_complete(uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result) { (void) request; TU_ASSERT(0 == dev_addr); if (XFER_RESULT_SUCCESS != result) { #if CFG_TUH_HUB // TODO remove, waiting for next data on status pipe if (_dev0.hub_addr != 0) hub_status_pipe_queue(_dev0.hub_addr); #endif return false; } tusb_desc_device_t const * desc_device = (tusb_desc_device_t const*) _usbh_ctrl_buf; TU_ASSERT( tu_desc_type(desc_device) == TUSB_DESC_DEVICE ); // Reset device again before Set Address TU_LOG2("Port reset \r\n"); if (_dev0.hub_addr == 0) { // connected directly to roothub hcd_port_reset( _dev0.rhport ); // reset port after 8 byte descriptor osal_task_delay(RESET_DELAY); enum_request_set_addr(); } #if CFG_TUH_HUB else { // after RESET_DELAY the hub_port_reset() already complete TU_ASSERT( hub_port_reset(_dev0.hub_addr, _dev0.hub_port, NULL) ); osal_task_delay(RESET_DELAY); tuh_task(); // FIXME temporarily to clean up port_reset control transfer TU_ASSERT( hub_port_get_status(_dev0.hub_addr, _dev0.hub_port, _usbh_ctrl_buf, enum_hub_get_status1_complete) ); } #endif return true; } // After SET_ADDRESS is complete static bool enum_set_address_complete(uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result) { TU_ASSERT(0 == dev_addr); TU_ASSERT(XFER_RESULT_SUCCESS == result); uint8_t const new_addr = (uint8_t const) request->wValue; usbh_device_t* new_dev = get_device(new_addr); new_dev->addressed = 1; // TODO close device 0, may not be needed hcd_device_close(_dev0.rhport, 0); // open control pipe for new address TU_ASSERT( usbh_edpt_control_open(new_addr, new_dev->ep0_packet_size) ); // Get full device descriptor TU_LOG2("Get Device Descriptor\r\n"); tusb_control_request_t const new_request = { .bmRequestType_bit = { .recipient = TUSB_REQ_RCPT_DEVICE, .type = TUSB_REQ_TYPE_STANDARD, .direction = TUSB_DIR_IN }, .bRequest = TUSB_REQ_GET_DESCRIPTOR, .wValue = TUSB_DESC_DEVICE << 8, .wIndex = 0, .wLength = sizeof(tusb_desc_device_t) }; TU_ASSERT(tuh_control_xfer(new_addr, &new_request, _usbh_ctrl_buf, enum_get_device_desc_complete)); return true; } static bool enum_get_device_desc_complete(uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result) { (void) request; TU_ASSERT(XFER_RESULT_SUCCESS == result); tusb_desc_device_t const * desc_device = (tusb_desc_device_t const*) _usbh_ctrl_buf; usbh_device_t* dev = get_device(dev_addr); dev->vendor_id = desc_device->idVendor; dev->product_id = desc_device->idProduct; // if (tuh_attach_cb) tuh_attach_cb((tusb_desc_device_t*) _usbh_ctrl_buf); TU_LOG2("Get 9 bytes of Configuration Descriptor\r\n"); tusb_control_request_t const new_request = { .bmRequestType_bit = { .recipient = TUSB_REQ_RCPT_DEVICE, .type = TUSB_REQ_TYPE_STANDARD, .direction = TUSB_DIR_IN }, .bRequest = TUSB_REQ_GET_DESCRIPTOR, .wValue = (TUSB_DESC_CONFIGURATION << 8) | (CONFIG_NUM - 1), .wIndex = 0, .wLength = 9 }; TU_ASSERT( tuh_control_xfer(dev_addr, &new_request, _usbh_ctrl_buf, enum_get_9byte_config_desc_complete) ); return true; } static bool enum_get_9byte_config_desc_complete(uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result) { (void) request; TU_ASSERT(XFER_RESULT_SUCCESS == result); // TODO not enough buffer to hold configuration descriptor tusb_desc_configuration_t const * desc_config = (tusb_desc_configuration_t const*) _usbh_ctrl_buf; uint16_t total_len; // Use offsetof to avoid pointer to the odd/misaligned address memcpy(&total_len, (uint8_t*) desc_config + offsetof(tusb_desc_configuration_t, wTotalLength), 2); TU_ASSERT(total_len <= CFG_TUH_ENUMERATION_BUFSIZE); // Get full configuration descriptor TU_LOG2("Get Configuration Descriptor\r\n"); tusb_control_request_t const new_request = { .bmRequestType_bit = { .recipient = TUSB_REQ_RCPT_DEVICE, .type = TUSB_REQ_TYPE_STANDARD, .direction = TUSB_DIR_IN }, .bRequest = TUSB_REQ_GET_DESCRIPTOR, .wValue = (TUSB_DESC_CONFIGURATION << 8) | (CONFIG_NUM - 1), .wIndex = 0, .wLength = total_len }; TU_ASSERT( tuh_control_xfer(dev_addr, &new_request, _usbh_ctrl_buf, enum_get_config_desc_complete) ); return true; } static bool enum_get_config_desc_complete(uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result) { (void) request; TU_ASSERT(XFER_RESULT_SUCCESS == result); // Parse configuration & set up drivers // Driver open aren't allowed to make any usb transfer yet TU_ASSERT( parse_configuration_descriptor(dev_addr, (tusb_desc_configuration_t*) _usbh_ctrl_buf) ); TU_LOG2("Set Configuration = %d\r\n", CONFIG_NUM); tusb_control_request_t const new_request = { .bmRequestType_bit = { .recipient = TUSB_REQ_RCPT_DEVICE, .type = TUSB_REQ_TYPE_STANDARD, .direction = TUSB_DIR_OUT }, .bRequest = TUSB_REQ_SET_CONFIGURATION, .wValue = CONFIG_NUM, .wIndex = 0, .wLength = 0 }; TU_ASSERT( tuh_control_xfer(dev_addr, &new_request, NULL, enum_set_config_complete) ); return true; } static bool enum_set_config_complete(uint8_t dev_addr, tusb_control_request_t const * request, xfer_result_t result) { (void) request; TU_ASSERT(XFER_RESULT_SUCCESS == result); TU_LOG2("Device configured\r\n"); usbh_device_t* dev = get_device(dev_addr); dev->configured = 1; dev->state = TUSB_DEVICE_STATE_CONFIGURED; // Start the Set Configuration process for interfaces (itf = DRVID_INVALID) // Since driver can perform control transfer within its set_config, this is done asynchronously. // The process continue with next interface when class driver complete its sequence with usbh_driver_set_config_complete() // TODO use separated API instead of using DRVID_INVALID usbh_driver_set_config_complete(dev_addr, DRVID_INVALID); return true; } static bool parse_configuration_descriptor(uint8_t dev_addr, tusb_desc_configuration_t const* desc_cfg) { usbh_device_t* dev = get_device(dev_addr); uint8_t const* desc_end = ((uint8_t const*) desc_cfg) + tu_le16toh(desc_cfg->wTotalLength); uint8_t const* p_desc = tu_desc_next(desc_cfg); // parse each interfaces while( p_desc < desc_end ) { // TODO Do we need to use IAD tusb_desc_interface_assoc_t const * desc_iad = NULL; // Class will always starts with Interface Association (if any) and then Interface descriptor if ( TUSB_DESC_INTERFACE_ASSOCIATION == tu_desc_type(p_desc) ) { desc_iad = (tusb_desc_interface_assoc_t const *) p_desc; p_desc = tu_desc_next(p_desc); } TU_ASSERT( TUSB_DESC_INTERFACE == tu_desc_type(p_desc) ); tusb_desc_interface_t const* desc_itf = (tusb_desc_interface_t const*) p_desc; // Interface number must not be used already TU_ASSERT( dev->itf2drv[desc_itf->bInterfaceNumber] == DRVID_INVALID ); uint16_t const drv_len = tu_desc_get_interface_total_len(desc_itf, desc_iad ? desc_iad->bInterfaceCount : 1, desc_end-p_desc); TU_ASSERT(drv_len); if (desc_itf->bInterfaceClass == TUSB_CLASS_HUB && dev->hub_addr != 0) { // TODO Attach hub to Hub is not currently supported // skip this interface TU_LOG(USBH_DBG_LVL, "Only 1 level of HUB is supported\r\n"); } else { // Find driver for this interface uint8_t drv_id; for (drv_id = 0; drv_id < USBH_CLASS_DRIVER_COUNT; drv_id++) { usbh_class_driver_t const * driver = &usbh_class_drivers[drv_id]; if ( driver->open(dev->rhport, dev_addr, desc_itf, drv_len) ) { // open successfully TU_LOG2(" Opened successfully\r\n"); // bind interface to found driver dev->itf2drv[desc_itf->bInterfaceNumber] = drv_id; // If using IAD, bind all interfaces to the same driver if (desc_iad) { // IAD's first interface number and class should match with opened interface TU_ASSERT(desc_iad->bFirstInterface == desc_itf->bInterfaceNumber && desc_iad->bFunctionClass == desc_itf->bInterfaceClass); for(uint8_t i=1; ibInterfaceCount; i++) { dev->itf2drv[desc_itf->bInterfaceNumber+i] = drv_id; } } // bind all endpoints to found driver tu_edpt_bind_driver(dev->ep2drv, desc_itf, drv_len, drv_id); break; // exit driver find loop } } if( drv_id >= USBH_CLASS_DRIVER_COUNT ) { TU_LOG(USBH_DBG_LVL, "Interface %u: class = %u subclass = %u protocol = %u is not supported\r\n", desc_itf->bInterfaceNumber, desc_itf->bInterfaceClass, desc_itf->bInterfaceSubClass, desc_itf->bInterfaceProtocol); } } // next Interface or IAD descriptor p_desc += drv_len; } return true; } //--------------------------------------------------------------------+ // Endpoint API //--------------------------------------------------------------------+ // TODO has some duplication code with device, refactor later bool usbh_edpt_claim(uint8_t dev_addr, uint8_t ep_addr) { uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); usbh_device_t* dev = get_device(dev_addr); #if CFG_TUSB_OS != OPT_OS_NONE // pre-check to help reducing mutex lock TU_VERIFY((dev->ep_status[epnum][dir].busy == 0) && (dev->ep_status[epnum][dir].claimed == 0)); osal_mutex_lock(dev->mutex, OSAL_TIMEOUT_WAIT_FOREVER); #endif // can only claim the endpoint if it is not busy and not claimed yet. bool const ret = (dev->ep_status[epnum][dir].busy == 0) && (dev->ep_status[epnum][dir].claimed == 0); if (ret) { dev->ep_status[epnum][dir].claimed = 1; } #if CFG_TUSB_OS != OPT_OS_NONE osal_mutex_unlock(dev->mutex); #endif return ret; } // TODO has some duplication code with device, refactor later bool usbh_edpt_release(uint8_t dev_addr, uint8_t ep_addr) { uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); usbh_device_t* dev = get_device(dev_addr); #if CFG_TUSB_OS != OPT_OS_NONE osal_mutex_lock(dev->mutex, OSAL_TIMEOUT_WAIT_FOREVER); #endif // can only release the endpoint if it is claimed and not busy bool const ret = (dev->ep_status[epnum][dir].busy == 0) && (dev->ep_status[epnum][dir].claimed == 1); if (ret) { dev->ep_status[epnum][dir].claimed = 0; } #if CFG_TUSB_OS != OPT_OS_NONE osal_mutex_unlock(dev->mutex); #endif return ret; } // TODO has some duplication code with device, refactor later bool usbh_edpt_xfer(uint8_t dev_addr, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes) { uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); usbh_device_t* dev = get_device(dev_addr); TU_LOG2(" Queue EP %02X with %u bytes ... ", ep_addr, total_bytes); // Attempt to transfer on a busy endpoint, sound like an race condition ! TU_ASSERT(dev->ep_status[epnum][dir].busy == 0); // Set busy first since the actual transfer can be complete before hcd_edpt_xfer() // could return and USBH task can preempt and clear the busy dev->ep_status[epnum][dir].busy = true; if ( hcd_edpt_xfer(dev->rhport, dev_addr, ep_addr, buffer, total_bytes) ) { TU_LOG2("OK\r\n"); return true; }else { // HCD error, mark endpoint as ready to allow next transfer dev->ep_status[epnum][dir].busy = false; dev->ep_status[epnum][dir].claimed = 0; TU_LOG2("failed\r\n"); TU_BREAKPOINT(); return false; } } static bool usbh_edpt_control_open(uint8_t dev_addr, uint8_t max_packet_size) { TU_LOG2("Open EP0 with Size = %u (addr = %u)\r\n", max_packet_size, dev_addr); tusb_desc_endpoint_t ep0_desc = { .bLength = sizeof(tusb_desc_endpoint_t), .bDescriptorType = TUSB_DESC_ENDPOINT, .bEndpointAddress = 0, .bmAttributes = { .xfer = TUSB_XFER_CONTROL }, .wMaxPacketSize = { .size = max_packet_size }, .bInterval = 0 }; return hcd_edpt_open(usbh_get_rhport(dev_addr), dev_addr, &ep0_desc); } bool usbh_edpt_open(uint8_t rhport, uint8_t dev_addr, tusb_desc_endpoint_t const * desc_ep) { usbh_device_t* dev = get_device(dev_addr); TU_ASSERT(tu_edpt_validate(desc_ep, (tusb_speed_t) dev->speed)); return hcd_edpt_open(rhport, dev_addr, desc_ep); } bool usbh_edpt_busy(uint8_t dev_addr, uint8_t ep_addr) { uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); usbh_device_t* dev = get_device(dev_addr); return dev->ep_status[epnum][dir].busy; } #endif