/* * The MIT License (MIT) * * Copyright (c) 2019 Nathan Conrad * * Portions: * Copyright (c) 2016 STMicroelectronics * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ /********************************************** * This driver has been tested with the following MCUs: * * * STM32F070RB * * * It also should work with minimal changes for any ST MCU with an "USB A"/"PCD"/"HCD" peripheral. This * covers: * * F04x, F072, F078, 070x6/B 1024 byte buffer * F102, F103 512 byte buffer; no internal D+ pull-up (maybe many more changes?) * F302xB/C, F303xB/C, F373 512 byte buffer; no internal D+ pull-up * F302x6/8, F302xD/E2, F303xD/E 1024 byte buffer; no internal D+ pull-up * L0x2, L0x3 1024 byte buffer * L1 512 byte buffer * L4x2, L4x3 1024 byte buffer * * To use this driver, you must: * - Enable USB clock; Perhaps use __HAL_RCC_USB_CLK_ENABLE(); * - (Optionally configure GPIO HAL to tell it the USB driver is using the USB pins) * - call tusb_init(); * - periodically call tusb_task(); * * Assumptions of the driver: * - You are not using CAN (it must share the packet buffer) * - APB clock is >= 10 MHz * - On some boards, series resistors are required, but not on others. * - On some boards, D+ pull up resistor (1.5kohm) is required, but not on others. * - You don't have long-running interrupts; some USB packets must be quickly responded to. * - You have the ST CMSIS library linked into the project. HAL is not used. * * Current driver limitations (i.e., a list of features for you to add): * - STALL handled, but not tested. * - Does it work? No clue. * - All EP BTABLE buffers are created as max 64 bytes. * - Smaller can be requested, but it has to be an even number. * - No isochronous endpoints * - Endpoint index is the ID of the endpoint * - This means that priority is given to endpoints with lower ID numbers * - Code is mixing up EP IX with EP ID. Everywhere. * - No way to close endpoints; Can a device be reconfigured without a reset? * - Packet buffer memory is copied in the interrupt. * - This is better for performance, but means interrupts are disabled for longer * - DMA may be the best choice, but it could also be pushed to the USBD task. * - No double-buffering * - No DMA * - No provision to control the D+ pull-up using GPIO on devices without an internal pull-up. * - Minimal error handling * - Perhaps error interrupts should be reported to the stack, or cause a device reset? * - Assumes a single USB peripheral; I think that no hardware has multiple so this is fine. * - Add a callback for enabling/disabling the D+ PU on devices without an internal PU. * - F3 models use three separate interrupts. I think we could only use the LP interrupt for * everything? However, the interrupts are configurable so the DisableInt and EnableInt * below functions could be adjusting the wrong interrupts (if they had been reconfigured) * - LPM is not used correctly, or at all? * * USB documentation and Reference implementations * - STM32 Reference manuals * - STM32 USB Hardware Guidelines AN4879 * * - STM32 HAL (much of this driver is based on this) * - libopencm3/lib/stm32/common/st_usbfs_core.c * - Keil USB Device http://www.keil.com/pack/doc/mw/USB/html/group__usbd.html * * - YouTube OpenTechLab 011; https://www.youtube.com/watch?v=4FOkJLp_PUw * * Advantages over HAL driver: * - Tiny (saves RAM, assumes a single USB peripheral) * * Notes: * - The buffer table is allocated as endpoints are opened. The allocation is only * cleared when the device is reset. This may be bad if the USB device needs * to be reconfigured. */ #include "tusb_option.h" #if (TUSB_OPT_DEVICE_ENABLED) && ( \ ((CFG_TUSB_MCU) == OPT_MCU_STM32F0) || \ (((CFG_TUSB_MCU) == OPT_MCU_STM32F1) && ( \ defined(stm32f102x6) || defined(stm32f102xb) || \ defined(stm32f103x6) || defined(stm32f103xb) || \ defined(stm32f103xe) || defined(stm32f103xg) \ )) || \ ((CFG_TUSB_MCU) == OPT_MCU_STM32F3) \ ) // In order to reduce the dependance on HAL, we undefine this. // Some definitions are copied to our private include file. #undef USE_HAL_DRIVER #include "device/dcd.h" #include "portable/st/stm32_fsdev/dcd_stm32_fsdev_pvt_st.h" /***************************************************** * Configuration *****************************************************/ // HW supports max of 8 endpoints, but this can be reduced to save RAM #ifndef MAX_EP_COUNT # define MAX_EP_COUNT 8u #endif // If sharing with CAN, one can set this to be non-zero to give CAN space where it wants it // Both of these MUST be a multiple of 2, and are in byte units. #ifndef DCD_STM32_BTABLE_BASE # define DCD_STM32_BTABLE_BASE 0u #endif #ifndef DCD_STM32_BTABLE_LENGTH # define DCD_STM32_BTABLE_LENGTH (PMA_LENGTH - DCD_STM32_BTABLE_BASE) #endif /*************************************************** * Checks, structs, defines, function definitions, etc. */ #if ((MAX_EP_COUNT) > 8) # error Only 8 endpoints supported on the hardware #endif #if (((DCD_STM32_BTABLE_BASE) + (DCD_STM32_BTABLE_LENGTH))>(PMA_LENGTH)) # error BTABLE does not fit in PMA RAM #endif #if (((DCD_STM32_BTABLE_BASE) % 8) != 0) // per STM32F3 reference manual #error BTABLE must be aligned to 8 bytes #endif // Max size of a USB FS packet is 64... #define MAX_PACKET_SIZE 64 // One of these for every EP IN & OUT, uses a bit of RAM.... typedef struct { uint8_t * buffer; uint16_t total_len; uint16_t queued_len; } xfer_ctl_t; static xfer_ctl_t xfer_status[MAX_EP_COUNT][2]; #define XFER_CTL_BASE(_epnum, _dir) &xfer_status[_epnum][_dir] static TU_ATTR_ALIGNED(4) uint32_t _setup_packet[6]; static uint8_t newDADDR; // Used to set the new device address during the CTR IRQ handler // EP Buffers assigned from end of memory location, to minimize their chance of crashing // into the stack. static uint16_t ep_buf_ptr; static void dcd_handle_bus_reset(void); static void dcd_write_packet_memory(uint16_t dst, const void *__restrict src, size_t wNBytes); static void dcd_read_packet_memory(void *__restrict dst, uint16_t src, size_t wNBytes); static void dcd_transmit_packet(xfer_ctl_t * xfer, uint16_t ep_ix); static uint16_t dcd_ep_ctr_handler(void); void dcd_init (uint8_t rhport) { (void)rhport; /* Clocks should already be enabled */ /* Use __HAL_RCC_USB_CLK_ENABLE(); to enable the clocks before calling this function */ /* The RM mentions to use a special ordering of PDWN and FRES, but this isn't done in HAL. * Here, the RM is followed. */ for(uint32_t i = 0; i<200; i++) // should be a few us { asm("NOP"); } // Perform USB peripheral reset USB->CNTR = USB_CNTR_FRES | USB_CNTR_PDWN; for(uint32_t i = 0; i<200; i++) // should be a few us { asm("NOP"); } USB->CNTR &= ~(USB_CNTR_PDWN);// Remove powerdown // Wait startup time, for F042 and F070, this is <= 1 us. for(uint32_t i = 0; i<200; i++) // should be a few us { asm("NOP"); } USB->CNTR = 0; // Enable USB USB->BTABLE = DCD_STM32_BTABLE_BASE; USB->ISTR &= ~(USB_ISTR_ALL_EVENTS); // Clear pending interrupts // Reset endpoints to disabled for(uint i=0; i>1); i++) { pma[PMA_STRIDE*(DCD_STM32_BTABLE_BASE + i)] = 0u; } USB->CNTR |= USB_CNTR_RESETM | USB_CNTR_SOFM | USB_CNTR_CTRM | USB_CNTR_SUSPM | USB_CNTR_WKUPM; dcd_handle_bus_reset(); // And finally enable pull-up, which may trigger the RESET IRQ if the host is connected. // (if this MCU has an internal pullup) #if defined(USB_BCDR_DPPU) USB->BCDR |= USB_BCDR_DPPU; #else // FIXME: callback to the user to ask them to twiddle a GPIO to disable/enable D+??? #endif } // Enable device interrupt void dcd_int_enable (uint8_t rhport) { (void)rhport; #if defined(STM32F0) NVIC_SetPriority(USB_IRQn, 0); NVIC_EnableIRQ(USB_IRQn); #elif defined(STM32F3) NVIC_SetPriority(USB_HP_CAN_TX_IRQn, 0); NVIC_SetPriority(USB_LP_CAN_RX0_IRQn, 0); NVIC_SetPriority(USBWakeUp_IRQn, 0); NVIC_EnableIRQ(USB_HP_CAN_TX_IRQn); NVIC_EnableIRQ(USB_LP_CAN_RX0_IRQn); NVIC_EnableIRQ(USBWakeUp_IRQn); #endif } // Disable device interrupt void dcd_int_disable(uint8_t rhport) { (void)rhport; #if defined(STM32F0) NVIC_DisableIRQ(USB_IRQn); #elif defined(STM32F3) NVIC_DisableIRQ(USB_HP_CAN_TX_IRQn); NVIC_DisableIRQ(USB_LP_CAN_RX0_IRQn); NVIC_DisableIRQ(USBWakeUp_IRQn); #else #error Unknown arch in USB driver #endif } // Receive Set Address request, mcu port must also include status IN response void dcd_set_address(uint8_t rhport, uint8_t dev_addr) { (void)rhport; // We cannot immediatly change it; it must be queued to change after the STATUS packet is sent. // (CTR handler will actually change the address once it sees that the transmission is complete) newDADDR = dev_addr; // Respond with status dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0); } // Receive Set Config request void dcd_set_config (uint8_t rhport, uint8_t config_num) { (void) rhport; (void) config_num; // Nothing to do? Handled by stack. } void dcd_remote_wakeup(uint8_t rhport) { (void) rhport; } // I'm getting a weird warning about missing braces here that I don't // know how to fix. #if defined(__GNUC__) && (__GNUC__ >= 7) # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wmissing-braces" #endif static const tusb_desc_endpoint_t ep0OUT_desc = { .wMaxPacketSize = CFG_TUD_ENDPOINT0_SIZE, .bDescriptorType = TUSB_XFER_CONTROL, .bEndpointAddress = 0x00 }; static const tusb_desc_endpoint_t ep0IN_desc = { .wMaxPacketSize = CFG_TUD_ENDPOINT0_SIZE, .bDescriptorType = TUSB_XFER_CONTROL, .bEndpointAddress = 0x80 }; #pragma GCC diagnostic pop static void dcd_handle_bus_reset(void) { //__IO uint16_t * const epreg = &(EPREG(0)); USB->DADDR = 0u; // disable USB peripheral by clearing the EF flag // Clear all EPREG (or maybe this is automatic? I'm not sure) for(uint i=0; iDADDR = USB_DADDR_EF; // Set enable flag, and leaving the device address as zero. PCD_SET_EP_RX_STATUS(USB, 0, USB_EP_RX_VALID); // And start accepting SETUP on EP0 } // FIXME: Defined to return uint16 so that ASSERT can be used, even though a return value is not needed. static uint16_t dcd_ep_ctr_handler(void) { uint16_t count=0U; uint8_t EPindex; __IO uint16_t wIstr; __IO uint16_t wEPVal = 0U; // stack variables to pass to USBD /* stay in loop while pending interrupts */ while (((wIstr = USB->ISTR) & USB_ISTR_CTR) != 0U) { /* extract highest priority endpoint index */ EPindex = (uint8_t)(wIstr & USB_ISTR_EP_ID); if (EPindex == 0U) { /* Decode and service control endpoint interrupt */ /* DIR bit = origin of the interrupt */ if ((wIstr & USB_ISTR_DIR) == 0U) { /* DIR = 0 => IN int */ /* DIR = 0 implies that (EP_CTR_TX = 1) always */ PCD_CLEAR_TX_EP_CTR(USB, 0); xfer_ctl_t * xfer = XFER_CTL_BASE(EPindex,TUSB_DIR_IN); if((xfer->total_len == xfer->queued_len)) { dcd_event_xfer_complete(0u, (uint8_t)(0x80 + EPindex), xfer->total_len, XFER_RESULT_SUCCESS, true); if((newDADDR != 0) && ( xfer->total_len == 0U)) { // Delayed setting of the DADDR after the 0-len DATA packet acking the request is sent. USB->DADDR &= ~USB_DADDR_ADD; USB->DADDR |= newDADDR; newDADDR = 0; } if(xfer->total_len == 0) // Probably a status message? { PCD_CLEAR_RX_DTOG(USB,EPindex); } } else { dcd_transmit_packet(xfer,EPindex); } } else { /* DIR = 1 & CTR_RX => SETUP or OUT int */ /* DIR = 1 & (CTR_TX | CTR_RX) => 2 int pending */ xfer_ctl_t *xfer = XFER_CTL_BASE(EPindex,TUSB_DIR_OUT); //ep = &hpcd->OUT_ep[0]; wEPVal = PCD_GET_ENDPOINT(USB, EPindex); if ((wEPVal & USB_EP_SETUP) != 0U) // SETUP { // The setup_received function uses memcpy, so this must first copy the setup data into // user memory, to allow for the 32-bit access that memcpy performs. uint8_t userMemBuf[8]; /* Get SETUP Packet*/ count = PCD_GET_EP_RX_CNT(USB, EPindex); //TU_ASSERT_ERR(count == 8); dcd_read_packet_memory(userMemBuf, *PCD_EP_RX_ADDRESS_PTR(USB,EPindex), 8); /* SETUP bit kept frozen while CTR_RX = 1*/ dcd_event_setup_received(0, (uint8_t*)userMemBuf, true); PCD_CLEAR_RX_EP_CTR(USB, EPindex); } else if ((wEPVal & USB_EP_CTR_RX) != 0U) // OUT { PCD_CLEAR_RX_EP_CTR(USB, EPindex); /* Get Control Data OUT Packet */ count = PCD_GET_EP_RX_CNT(USB,EPindex); if (count != 0U) { dcd_read_packet_memory(xfer->buffer, *PCD_EP_RX_ADDRESS_PTR(USB,EPindex), count); xfer->queued_len = (uint16_t)(xfer->queued_len + count); } /* Process Control Data OUT status Packet*/ if(EPindex == 0 && xfer->total_len == 0) { PCD_CLEAR_EP_KIND(USB,0); // Good, so allow non-zero length packets now. } dcd_event_xfer_complete(0, EPindex, xfer->total_len, XFER_RESULT_SUCCESS, true); PCD_SET_EP_RX_CNT(USB, EPindex, CFG_TUD_ENDPOINT0_SIZE); if(EPindex == 0 && xfer->total_len == 0) { PCD_SET_EP_RX_STATUS(USB, EPindex, USB_EP_RX_VALID);// Await next SETUP } } } } else /* Decode and service non control endpoints interrupt */ { /* process related endpoint register */ wEPVal = PCD_GET_ENDPOINT(USB, EPindex); if ((wEPVal & USB_EP_CTR_RX) != 0U) // OUT { /* clear int flag */ PCD_CLEAR_RX_EP_CTR(USB, EPindex); xfer_ctl_t * xfer = XFER_CTL_BASE(EPindex,TUSB_DIR_OUT); //ep = &hpcd->OUT_ep[EPindex]; count = PCD_GET_EP_RX_CNT(USB, EPindex); if (count != 0U) { dcd_read_packet_memory(&(xfer->buffer[xfer->queued_len]), *PCD_EP_RX_ADDRESS_PTR(USB,EPindex), count); } /*multi-packet on the NON control OUT endpoint */ xfer->queued_len = (uint16_t)(xfer->queued_len + count); if ((count < 64) || (xfer->queued_len == xfer->total_len)) { /* RX COMPLETE */ dcd_event_xfer_complete(0, EPindex, xfer->queued_len, XFER_RESULT_SUCCESS, true); // Though the host could still send, we don't know. // Does the bulk pipe need to be reset to valid to allow for a ZLP? } else { uint16_t remaining = (uint16_t)(xfer->total_len - xfer->queued_len); if(remaining >=64) { PCD_SET_EP_RX_CNT(USB, EPindex,64); } else { PCD_SET_EP_RX_CNT(USB, EPindex,remaining); } PCD_SET_EP_RX_STATUS(USB, EPindex, USB_EP_RX_VALID); } } /* if((wEPVal & EP_CTR_RX) */ if ((wEPVal & USB_EP_CTR_TX) != 0U) // IN { /* clear int flag */ PCD_CLEAR_TX_EP_CTR(USB, EPindex); xfer_ctl_t * xfer = XFER_CTL_BASE(EPindex,TUSB_DIR_IN); if (xfer->queued_len != xfer->total_len) // data remaining in transfer? { dcd_transmit_packet(xfer, EPindex); } else { dcd_event_xfer_complete(0, (uint8_t)(0x80 + EPindex), xfer->total_len, XFER_RESULT_SUCCESS, true); } } } } return 0; } void dcd_fs_irqHandler(void) { uint16_t int_status = USB->ISTR; // unused IRQs: (USB_ISTR_PMAOVR | USB_ISTR_ERR | USB_ISTR_WKUP | USB_ISTR_SUSP | USB_ISTR_ESOF | USB_ISTR_L1REQ ) if (int_status & USB_ISTR_CTR) { /* servicing of the endpoint correct transfer interrupt */ /* clear of the CTR flag into the sub */ dcd_ep_ctr_handler(); USB->ISTR &= ~USB_ISTR_CTR; } if(int_status & USB_ISTR_RESET) { // USBRST is start of reset. USB->ISTR &= ~USB_ISTR_RESET; dcd_handle_bus_reset(); dcd_event_bus_signal(0, DCD_EVENT_BUS_RESET, true); } if (int_status & USB_ISTR_WKUP) { USB->CNTR &= ~USB_CNTR_LPMODE; USB->CNTR &= ~USB_CNTR_FSUSP; USB->ISTR &= ~USB_ISTR_WKUP; } if (int_status & USB_ISTR_SUSP) { /* Force low-power mode in the macrocell */ USB->CNTR |= USB_CNTR_FSUSP; USB->CNTR |= USB_CNTR_LPMODE; /* clear of the ISTR bit must be done after setting of CNTR_FSUSP */ USB->ISTR &= ~USB_ISTR_SUSP; } if(int_status & USB_ISTR_SOF) { USB->ISTR &= ~USB_ISTR_SOF; dcd_event_bus_signal(0, DCD_EVENT_SOF, true); } } //--------------------------------------------------------------------+ // Endpoint API //--------------------------------------------------------------------+ // The STM32F0 doesn't seem to like |= or &= to manipulate the EP#R registers, // so I'm using the #define from HAL here, instead. bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc) { (void)rhport; uint8_t const epnum = tu_edpt_number(p_endpoint_desc->bEndpointAddress); uint8_t const dir = tu_edpt_dir(p_endpoint_desc->bEndpointAddress); // Isochronous not supported (yet), and some other driver assumptions. TU_ASSERT(p_endpoint_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS); TU_ASSERT(p_endpoint_desc->wMaxPacketSize.size <= MAX_PACKET_SIZE); TU_ASSERT(epnum < MAX_EP_COUNT); TU_ASSERT((p_endpoint_desc->wMaxPacketSize.size %2) == 0); // __IO uint16_t * const epreg = &(EPREG(epnum)); // Set type switch(p_endpoint_desc->bmAttributes.xfer) { case TUSB_XFER_CONTROL: PCD_SET_EPTYPE(USB, epnum, USB_EP_CONTROL); break; case TUSB_XFER_ISOCHRONOUS: PCD_SET_EPTYPE(USB, epnum, USB_EP_ISOCHRONOUS); break; case TUSB_XFER_BULK: PCD_SET_EPTYPE(USB, epnum, USB_EP_BULK); break; case TUSB_XFER_INTERRUPT: PCD_SET_EPTYPE(USB, epnum, USB_EP_INTERRUPT); break; default: TU_ASSERT(false); } PCD_SET_EP_ADDRESS(USB, epnum, epnum); PCD_CLEAR_EP_KIND(USB,0); // Be normal, for now, instead of only accepting zero-byte packets if(dir == TUSB_DIR_IN) { *PCD_EP_TX_ADDRESS_PTR(USB, epnum) = ep_buf_ptr; PCD_SET_EP_RX_CNT(USB, epnum, p_endpoint_desc->wMaxPacketSize.size); PCD_CLEAR_TX_DTOG(USB, epnum); PCD_SET_EP_TX_STATUS(USB,epnum,USB_EP_TX_NAK); } else { *PCD_EP_RX_ADDRESS_PTR(USB, epnum) = ep_buf_ptr; PCD_SET_EP_RX_CNT(USB, epnum, p_endpoint_desc->wMaxPacketSize.size); PCD_CLEAR_RX_DTOG(USB, epnum); PCD_SET_EP_RX_STATUS(USB, epnum, USB_EP_RX_NAK); } ep_buf_ptr = (uint16_t)(ep_buf_ptr + p_endpoint_desc->wMaxPacketSize.size); // increment buffer pointer return true; } // Currently, single-buffered, and only 64 bytes at a time (max) static void dcd_transmit_packet(xfer_ctl_t * xfer, uint16_t ep_ix) { uint16_t len = (uint16_t)(xfer->total_len - xfer->queued_len); if(len > 64u) // max packet size for FS transfer { len = 64u; } dcd_write_packet_memory(*PCD_EP_TX_ADDRESS_PTR(USB,ep_ix), &(xfer->buffer[xfer->queued_len]), len); xfer->queued_len = (uint16_t)(xfer->queued_len + len); PCD_SET_EP_TX_CNT(USB,ep_ix,len); PCD_SET_EP_TX_STATUS(USB, ep_ix, USB_EP_TX_VALID); } bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes) { (void) rhport; uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); xfer_ctl_t * xfer = XFER_CTL_BASE(epnum,dir); xfer->buffer = buffer; xfer->total_len = total_bytes; xfer->queued_len = 0; if ( dir == TUSB_DIR_OUT ) { // A setup token can occur immediately after an OUT STATUS packet so make sure we have a valid // buffer for the control endpoint. if (epnum == 0 && buffer == NULL) { xfer->buffer = (uint8_t*)_setup_packet; PCD_SET_EP_KIND(USB,0); // Expect a zero-byte INPUT } if(total_bytes > 64) { PCD_SET_EP_RX_CNT(USB,epnum,64); } else { PCD_SET_EP_RX_CNT(USB,epnum,total_bytes); } PCD_SET_EP_RX_STATUS(USB, epnum, USB_EP_RX_VALID); } else // IN { dcd_transmit_packet(xfer,epnum); } return true; } void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr) { (void)rhport; if (ep_addr == 0) { // CTRL EP0 (OUT for setup) PCD_SET_EP_TX_STATUS(USB,ep_addr, USB_EP_TX_STALL); } if (ep_addr & 0x80) { // IN ep_addr &= 0x7F; PCD_SET_EP_TX_STATUS(USB,ep_addr, USB_EP_TX_STALL); } else { // OUT PCD_SET_EP_RX_STATUS(USB,ep_addr, USB_EP_RX_STALL); } } void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr) { (void)rhport; if (ep_addr == 0) { PCD_SET_EP_TX_STATUS(USB,ep_addr, USB_EP_TX_NAK); } if (ep_addr & 0x80) { // IN ep_addr &= 0x7F; PCD_SET_EP_TX_STATUS(USB,ep_addr, USB_EP_TX_NAK); /* Reset to DATA0 if clearing stall condition. */ PCD_CLEAR_TX_DTOG(USB,ep_addr); } else { // OUT /* Reset to DATA0 if clearing stall condition. */ PCD_CLEAR_RX_DTOG(USB,ep_addr); PCD_SET_EP_RX_STATUS(USB,ep_addr, USB_EP_RX_VALID); } } // Packet buffer access can only be 8- or 16-bit. /** * @brief Copy a buffer from user memory area to packet memory area (PMA). * This uses byte-access for user memory (so support non-aligned buffers) * and 16-bit access for packet memory. * @param dst, byte address in PMA; must be 16-bit aligned * @param src pointer to user memory area. * @param wPMABufAddr address into PMA. * @param wNBytes no. of bytes to be copied. * @retval None */ static void dcd_write_packet_memory(uint16_t dst, const void *__restrict src, size_t wNBytes) { uint32_t n = ((uint32_t)((uint32_t)wNBytes + 1U)) >> 1U; uint32_t i; uint16_t temp1, temp2; const uint8_t * srcVal; #ifdef DEBUG if(((dst%2) != 0) || (dst < DCD_STM32_BTABLE_BASE) || dst >= (DCD_STM32_BTABLE_BASE + DCD_STM32_BTABLE_LENGTH)) while(1) TU_BREAKPOINT(); #endif // The GCC optimizer will combine access to 32-bit sizes if we let it. Force // it volatile so that it won't do that. __IO uint16_t *pdwVal; srcVal = src; pdwVal = &pma[PMA_STRIDE*(dst>>1)]; for (i = n; i != 0; i--) { temp1 = (uint16_t) *srcVal; srcVal++; temp2 = temp1 | ((uint16_t)((uint16_t) ((*srcVal) << 8U))) ; *pdwVal = temp2; pdwVal += PMA_STRIDE; srcVal++; } } /** * @brief Copy a buffer from user memory area to packet memory area (PMA). * Uses byte-access of system memory and 16-bit access of packet memory * @param wNBytes no. of bytes to be copied. * @retval None */ static void dcd_read_packet_memory(void *__restrict dst, uint16_t src, size_t wNBytes) { uint32_t n = (uint32_t)wNBytes >> 1U; uint32_t i; // The GCC optimizer will combine access to 32-bit sizes if we let it. Force // it volatile so that it won't do that. __IO const uint16_t *pdwVal; uint32_t temp; #ifdef DEBUG if((src%2) != 0 || (src < DCD_STM32_BTABLE_BASE) || src >= (DCD_STM32_BTABLE_BASE + DCD_STM32_BTABLE_LENGTH)) while(1) TU_BREAKPOINT(); #endif pdwVal = &pma[PMA_STRIDE*(src>>1)]; uint8_t *dstVal = (uint8_t*)dst; for (i = n; i != 0U; i--) { temp = *pdwVal; pdwVal += PMA_STRIDE; *dstVal++ = ((temp >> 0) & 0xFF); *dstVal++ = ((temp >> 8) & 0xFF); } if (wNBytes % 2) { temp = *pdwVal; pdwVal += PMA_STRIDE; *dstVal++ = ((temp >> 0) & 0xFF); } } // Interrupt handlers #if (CFG_TUSB_MCU) == (OPT_MCU_STM32F0) void USB_IRQHandler(void) { dcd_fs_irqHandler(); } #elif (CFG_TUSB_MCU) == (OPT_MCU_STM32F1) void USB_HP_IRQHandler(void) { dcd_fs_irqHandler(); } void USB_LP_IRQHandler(void) { dcd_fs_irqHandler(); } void USBWakeUp_IRQHandler(void) { dcd_fs_irqHandler(); } #elif (CFG_TUSB_MCU) == (OPT_MCU_STM32F3) // USB defaults to using interrupts 19, 20, and 42 (based on SYSCFG_CFGR1.USB_IT_RMP) // FIXME: Do all three need to be handled, or just the LP one? // USB high-priority interrupt (Channel 19): Triggered only by a correct // transfer event for isochronous and double-buffer bulk transfer to reach // the highest possible transfer rate. void USB_HP_CAN_TX_IRQHandler(void) { dcd_fs_irqHandler(); } // USB low-priority interrupt (Channel 20): Triggered by all USB events // (Correct transfer, USB reset, etc.). The firmware has to check the // interrupt source before serving the interrupt. void USB_LP_CAN_RX0_IRQHandler(void) { dcd_fs_irqHandler(); } // USB wakeup interrupt (Channel 42): Triggered by the wakeup event from the USB // Suspend mode. void USBWakeUp_IRQHandler(void) { dcd_fs_irqHandler(); } #else #error Which IRQ handler do you need? #endif #endif