/* * The MIT License (MIT) * * Copyright (c) 2018, hathach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" #if CFG_TUSB_MCU == OPT_MCU_SAMG #include "sam.h" #include "device/dcd.h" // TODO should support (SAM3S || SAM4S || SAM4E || SAMG55) //--------------------------------------------------------------------+ // MACRO TYPEDEF CONSTANT ENUM DECLARATION //--------------------------------------------------------------------+ #define EP_COUNT 6 // Transfer descriptor typedef struct { uint8_t* buffer; // tu_fifo_t* ff; // TODO support dcd_edpt_xfer_fifo API uint16_t total_len; volatile uint16_t actual_len; uint16_t epsize; } xfer_desc_t; // Endpoint 0-5, each can only be either OUT or In xfer_desc_t _dcd_xfer[EP_COUNT]; void xfer_epsize_set(xfer_desc_t* xfer, uint16_t epsize) { xfer->epsize = epsize; } void xfer_begin(xfer_desc_t* xfer, uint8_t * buffer, uint16_t total_bytes) { xfer->buffer = buffer; // xfer->ff = NULL; // TODO support dcd_edpt_xfer_fifo API xfer->total_len = total_bytes; xfer->actual_len = 0; } void xfer_end(xfer_desc_t* xfer) { xfer->buffer = NULL; // xfer->ff = NULL; // TODO support dcd_edpt_xfer_fifo API xfer->total_len = 0; xfer->actual_len = 0; } uint16_t xfer_packet_len(xfer_desc_t* xfer) { // also cover zero-length packet return tu_min16(xfer->total_len - xfer->actual_len, xfer->epsize); } void xfer_packet_done(xfer_desc_t* xfer) { uint16_t const xact_len = xfer_packet_len(xfer); xfer->buffer += xact_len; xfer->actual_len += xact_len; } //------------- Transaction helpers -------------// // Write data to EP FIFO, return number of written bytes static void xact_ep_write(uint8_t epnum, uint8_t* buffer, uint16_t xact_len) { for(uint16_t i=0; iUDP_FDR[epnum] = (uint32_t) buffer[i]; } } // Read data from EP FIFO static void xact_ep_read(uint8_t epnum, uint8_t* buffer, uint16_t xact_len) { for(uint16_t i=0; iUDP_FDR[epnum]; } } //! Bitmap for all status bits in CSR that are not affected by a value 1. #define CSR_NO_EFFECT_1_ALL (UDP_CSR_RX_DATA_BK0 | UDP_CSR_RX_DATA_BK1 | UDP_CSR_STALLSENT | UDP_CSR_RXSETUP | UDP_CSR_TXCOMP) // Per Specs: CSR need synchronization each write static inline void csr_write(uint8_t epnum, uint32_t value) { uint32_t const csr = value; UDP->UDP_CSR[epnum] = csr; volatile uint32_t nop_count; for (nop_count = 0; nop_count < 20; nop_count ++) __NOP(); } // Per Specs: CSR need synchronization each write static inline void csr_set(uint8_t epnum, uint32_t mask) { csr_write(epnum, UDP->UDP_CSR[epnum] | CSR_NO_EFFECT_1_ALL | mask); } // Per Specs: CSR need synchronization each write static inline void csr_clear(uint8_t epnum, uint32_t mask) { csr_write(epnum, (UDP->UDP_CSR[epnum] | CSR_NO_EFFECT_1_ALL) & ~mask); } /*------------------------------------------------------------------*/ /* Device API *------------------------------------------------------------------*/ // Set up endpoint 0, clear all other endpoints static void bus_reset(void) { tu_memclr(_dcd_xfer, sizeof(_dcd_xfer)); xfer_epsize_set(&_dcd_xfer[0], CFG_TUD_ENDPOINT0_SIZE); // Enable EP0 control csr_write(0, UDP_CSR_EPEDS_Msk); // Enable interrupt : EP0, Suspend, Resume, Wakeup UDP->UDP_IER = UDP_IER_EP0INT_Msk | UDP_IER_RXSUSP_Msk | UDP_IER_RXRSM_Msk | UDP_IER_WAKEUP_Msk; // Enable transceiver UDP->UDP_TXVC &= ~UDP_TXVC_TXVDIS_Msk; } // Initialize controller to device mode void dcd_init (uint8_t rhport) { tu_memclr(_dcd_xfer, sizeof(_dcd_xfer)); dcd_connect(rhport); } // Enable device interrupt void dcd_int_enable (uint8_t rhport) { (void) rhport; NVIC_EnableIRQ(UDP_IRQn); } // Disable device interrupt void dcd_int_disable (uint8_t rhport) { (void) rhport; NVIC_DisableIRQ(UDP_IRQn); } // Receive Set Address request, mcu port must also include status IN response void dcd_set_address (uint8_t rhport, uint8_t dev_addr) { (void) rhport; (void) dev_addr; // Response with zlp status dcd_edpt_xfer(rhport, 0x80, NULL, 0); // DCD can only set address after status for this request is complete. // do it at dcd_edpt0_status_complete() } // Wake up host void dcd_remote_wakeup (uint8_t rhport) { (void) rhport; } void dcd_connect(uint8_t rhport) { (void) rhport; // Enable pull-up, disable transceiver UDP->UDP_TXVC = UDP_TXVC_PUON | UDP_TXVC_TXVDIS_Msk; } void dcd_disconnect(uint8_t rhport) { (void) rhport; // disable both pullup and transceiver UDP->UDP_TXVC = UDP_TXVC_TXVDIS_Msk; } void dcd_sof_enable(uint8_t rhport, bool en) { (void) rhport; (void) en; // TODO implement later } //--------------------------------------------------------------------+ // Endpoint API //--------------------------------------------------------------------+ // Invoked when a control transfer's status stage is complete. // May help DCD to prepare for next control transfer, this API is optional. void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * request) { (void) rhport; if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE && request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD ) { if (request->bRequest == TUSB_REQ_SET_ADDRESS) { uint8_t const dev_addr = (uint8_t) request->wValue; // Enable addressed state UDP->UDP_GLB_STAT |= UDP_GLB_STAT_FADDEN_Msk; // Set new address & Function enable bit UDP->UDP_FADDR = UDP_FADDR_FEN_Msk | UDP_FADDR_FADD(dev_addr); } else if (request->bRequest == TUSB_REQ_SET_CONFIGURATION) { // Configured State UDP->UDP_GLB_STAT |= UDP_GLB_STAT_CONFG_Msk; } } } // Configure endpoint's registers according to descriptor // SAMG doesn't support a same endpoint number with IN and OUT // e.g EP1 OUT & EP1 IN cannot exist together bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * ep_desc) { (void) rhport; uint8_t const epnum = tu_edpt_number(ep_desc->bEndpointAddress); uint8_t const dir = tu_edpt_dir(ep_desc->bEndpointAddress); // TODO Isochronous is not supported yet TU_VERIFY(ep_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS); TU_VERIFY(epnum < EP_COUNT); // Must not already enabled TU_ASSERT((UDP->UDP_CSR[epnum] & UDP_CSR_EPEDS_Msk) == 0); xfer_epsize_set(&_dcd_xfer[epnum], tu_edpt_packet_size(ep_desc)); // Configure type and enable EP csr_write(epnum, UDP_CSR_EPEDS_Msk | UDP_CSR_EPTYPE(ep_desc->bmAttributes.xfer + 4*dir)); // Enable EP Interrupt for IN if (dir == TUSB_DIR_IN) UDP->UDP_IER |= (1 << epnum); return true; } void dcd_edpt_close_all (uint8_t rhport) { (void) rhport; // TODO implement dcd_edpt_close_all() } // Submit a transfer, When complete dcd_event_xfer_complete() is invoked to notify the stack bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes) { (void) rhport; uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); xfer_desc_t* xfer = &_dcd_xfer[epnum]; xfer_begin(xfer, buffer, total_bytes); if (dir == TUSB_DIR_OUT) { // Enable interrupt when starting OUT transfer if (epnum != 0) UDP->UDP_IER |= (1 << epnum); } else { xact_ep_write(epnum, xfer->buffer, xfer_packet_len(xfer)); // TX ready for transfer csr_set(epnum, UDP_CSR_TXPKTRDY_Msk); } return true; } #if 0 // TODO support dcd_edpt_xfer_fifo API bool dcd_edpt_xfer_fifo (uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes) { (void) rhport; return true; } #endif // Stall endpoint void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr) { (void) rhport; // For EP0 USBD will stall both EP0 Out and In with 0x00 and 0x80 // only handle one by skipping 0x80 if ( ep_addr == tu_edpt_addr(0, TUSB_DIR_IN_MASK) ) return; uint8_t const epnum = tu_edpt_number(ep_addr); // Set force stall bit csr_set(epnum, UDP_CSR_FORCESTALL_Msk); } // clear stall, data toggle is also reset to DATA0 void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr) { (void) rhport; uint8_t const epnum = tu_edpt_number(ep_addr); // clear stall csr_clear(epnum, UDP_CSR_FORCESTALL_Msk); // must also reset EP to clear data toggle UDP->UDP_RST_EP |= (1 << epnum); UDP->UDP_RST_EP &= ~(1 << epnum); } //--------------------------------------------------------------------+ // ISR //--------------------------------------------------------------------+ void dcd_int_handler(uint8_t rhport) { uint32_t const intr_mask = UDP->UDP_IMR; uint32_t const intr_status = UDP->UDP_ISR & intr_mask; // clear interrupt UDP->UDP_ICR = intr_status; // Bus reset if (intr_status & UDP_ISR_ENDBUSRES_Msk) { bus_reset(); dcd_event_bus_reset(rhport, TUSB_SPEED_FULL, true); } // SOF // if (intr_status & UDP_ISR_SOFINT_Msk) dcd_event_bus_signal(rhport, DCD_EVENT_SOF, true); // Suspend if (intr_status & UDP_ISR_RXSUSP_Msk) dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true); // Resume if (intr_status & UDP_ISR_RXRSM_Msk) dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true); // Wakeup if (intr_status & UDP_ISR_WAKEUP_Msk) dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true); //------------- Endpoints -------------// if ( intr_status & TU_BIT(0) ) { // setup packet if ( UDP->UDP_CSR[0] & UDP_CSR_RXSETUP ) { // get setup from FIFO uint8_t setup[8]; for(uint8_t i=0; iUDP_FDR[0]; } // notify usbd dcd_event_setup_received(rhport, setup, true); // Set EP direction bit according to DATA stage // MUST only be set before RXSETUP is clear per specs if ( tu_edpt_dir(setup[0]) ) { csr_set(0, UDP_CSR_DIR_Msk); } else { csr_clear(0, UDP_CSR_DIR_Msk); } // Clear Setup, stall and other on-going transfer bits csr_clear(0, UDP_CSR_RXSETUP_Msk | UDP_CSR_TXPKTRDY_Msk | UDP_CSR_TXCOMP_Msk | UDP_CSR_RX_DATA_BK0 | UDP_CSR_RX_DATA_BK1 | UDP_CSR_STALLSENT_Msk | UDP_CSR_FORCESTALL_Msk); } } for(uint8_t epnum = 0; epnum < EP_COUNT; epnum++) { if ( intr_status & TU_BIT(epnum) ) { xfer_desc_t* xfer = &_dcd_xfer[epnum]; //------------- Endpoint IN -------------// if (UDP->UDP_CSR[epnum] & UDP_CSR_TXCOMP_Msk) { xfer_packet_done(xfer); uint16_t const xact_len = xfer_packet_len(xfer); if (xact_len) { // write to EP fifo #if 0 // TODO support dcd_edpt_xfer_fifo if (xfer->ff) { tu_fifo_read_n_const_addr_full_words(xfer->ff, (void *) &UDP->UDP_FDR[epnum], xact_len); } else #endif { xact_ep_write(epnum, xfer->buffer, xact_len); } // TX ready for transfer csr_set(epnum, UDP_CSR_TXPKTRDY_Msk); }else { // xfer is complete dcd_event_xfer_complete(rhport, epnum | TUSB_DIR_IN_MASK, xfer->actual_len, XFER_RESULT_SUCCESS, true); // Required since control OUT can happen right after before stack handle this event xfer_end(xfer); } // Clear TX Complete bit csr_clear(epnum, UDP_CSR_TXCOMP_Msk); } //------------- Endpoint OUT -------------// // Ping-Pong is a MUST for Bulk/Iso // NOTE: When both Bank0 and Bank1 are both set, there is no way to know which one comes first uint32_t const banks_complete = UDP->UDP_CSR[epnum] & (UDP_CSR_RX_DATA_BK0_Msk | UDP_CSR_RX_DATA_BK1_Msk); if (banks_complete) { uint16_t const xact_len = (uint16_t) ((UDP->UDP_CSR[epnum] & UDP_CSR_RXBYTECNT_Msk) >> UDP_CSR_RXBYTECNT_Pos); // Read from EP fifo #if 0 // TODO support dcd_edpt_xfer_fifo API if (xfer->ff) { tu_fifo_write_n_const_addr_full_words(xfer->ff, (const void *) &UDP->UDP_FDR[epnum], xact_len); } else #endif { xact_ep_read(epnum, xfer->buffer, xact_len); } xfer_packet_done(xfer); if ( 0 == xfer_packet_len(xfer) ) { // Disable OUT EP interrupt when transfer is complete if (epnum != 0) UDP->UDP_IDR |= (1 << epnum); dcd_event_xfer_complete(rhport, epnum, xfer->actual_len, XFER_RESULT_SUCCESS, true); xfer_end(xfer); } // Clear DATA Bank0/1 bit csr_clear(epnum, banks_complete); } // Stall sent to host if (UDP->UDP_CSR[epnum] & UDP_CSR_STALLSENT_Msk) { csr_clear(epnum, UDP_CSR_STALLSENT_Msk); } } } } #endif