/* * The MIT License (MIT) * * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" #if (TUSB_OPT_DEVICE_ENABLED && CFG_TUD_MIDI) //--------------------------------------------------------------------+ // INCLUDE //--------------------------------------------------------------------+ #include "midi_device.h" #include "class/audio/audio.h" #include "device/usbd_pvt.h" //--------------------------------------------------------------------+ // MACRO CONSTANT TYPEDEF //--------------------------------------------------------------------+ typedef struct { uint8_t itf_num; uint8_t ep_in; uint8_t ep_out; // FIFO tu_fifo_t rx_ff; tu_fifo_t tx_ff; uint8_t rx_ff_buf[CFG_TUD_MIDI_RX_BUFSIZE]; uint8_t tx_ff_buf[CFG_TUD_MIDI_TX_BUFSIZE]; #if CFG_FIFO_MUTEX osal_mutex_def_t rx_ff_mutex; osal_mutex_def_t tx_ff_mutex; #endif // We need to pack messages into words before queueing their transmission so buffer across write // calls. uint8_t message_buffer[4]; uint8_t message_buffer_length; uint8_t message_target_length; // Endpoint Transfer buffer CFG_TUSB_MEM_ALIGN uint8_t epout_buf[CFG_TUD_MIDI_EPSIZE]; CFG_TUSB_MEM_ALIGN uint8_t epin_buf[CFG_TUD_MIDI_EPSIZE]; } midid_interface_t; #define ITF_MEM_RESET_SIZE offsetof(midid_interface_t, rx_ff) //--------------------------------------------------------------------+ // INTERNAL OBJECT & FUNCTION DECLARATION //--------------------------------------------------------------------+ CFG_TUSB_ATTR_USBRAM midid_interface_t _midid_itf[CFG_TUD_MIDI]; bool tud_midi_n_connected(uint8_t itf) { midid_interface_t* midi = &_midid_itf[itf]; return midi->itf_num != 0; } //--------------------------------------------------------------------+ // READ API //--------------------------------------------------------------------+ uint32_t tud_midi_n_available(uint8_t itf, uint8_t jack_id) { return tu_fifo_count(&_midid_itf[itf].rx_ff); } char tud_midi_n_read_char(uint8_t itf, uint8_t jack_id) { char ch; return tu_fifo_read(&_midid_itf[itf].rx_ff, &ch) ? ch : (-1); } uint32_t tud_midi_n_read(uint8_t itf, uint8_t jack_id, void* buffer, uint32_t bufsize) { return tu_fifo_read_n(&_midid_itf[itf].rx_ff, buffer, bufsize); } void tud_midi_n_read_flush (uint8_t itf, uint8_t jack_id) { tu_fifo_clear(&_midid_itf[itf].rx_ff); } void midi_rx_done_cb(midid_interface_t* midi, uint8_t const* buffer, uint32_t bufsize) { if (bufsize % 4 != 0) { return; } for(uint32_t i=0; i> 4; uint8_t code_index = header & 0x0f; // We always copy over the first byte. uint8_t count = 1; // Ignore subsequent bytes based on the code. if (code_index != 0x5 && code_index != 0xf) { count = 2; if (code_index != 0x2 && code_index != 0x6 && code_index != 0xc && code_index != 0xd) { count = 3; } } tu_fifo_write_n(&midi->rx_ff, &buffer[i + 1], count); } } //--------------------------------------------------------------------+ // WRITE API //--------------------------------------------------------------------+ static bool maybe_transmit(midid_interface_t* midi, uint8_t itf_index) { TU_VERIFY( !dcd_edpt_busy(TUD_OPT_RHPORT, midi->ep_in) ); // skip if previous transfer not complete uint16_t count = tu_fifo_read_n(&midi->tx_ff, midi->epin_buf, CFG_TUD_MIDI_EPSIZE); if (count > 0) { TU_VERIFY( tud_midi_n_connected(itf_index) ); // fifo is empty if not connected TU_ASSERT( dcd_edpt_xfer(TUD_OPT_RHPORT, midi->ep_in, midi->epin_buf, count) ); } return true; } uint32_t tud_midi_n_write(uint8_t itf, uint8_t jack_id, uint8_t const* buffer, uint32_t bufsize) { midid_interface_t* midi = &_midid_itf[itf]; if (midi->itf_num == 0) { return 0; } uint32_t i = 0; while (i < bufsize) { uint8_t data = buffer[i]; if (midi->message_buffer_length == 0) { uint8_t msg = data >> 4; midi->message_buffer[1] = data; midi->message_buffer_length = 2; // Check to see if we're still in a SysEx transmit. if (midi->message_buffer[0] == 0x4) { if (data == 0xf7) { midi->message_buffer[0] = 0x5; } else { midi->message_buffer_length = 4; } } else if ((msg >= 0x8 && msg <= 0xB) || msg == 0xE) { midi->message_buffer[0] = jack_id << 4 | msg; midi->message_target_length = 4; } else if (msg == 0xf) { if (data == 0xf0) { midi->message_buffer[0] = 0x4; midi->message_target_length = 4; } else if (data == 0xf1 || data == 0xf3) { midi->message_buffer[0] = 0x2; midi->message_target_length = 3; } else if (data == 0xf2) { midi->message_buffer[0] = 0x3; midi->message_target_length = 4; } else { midi->message_buffer[0] = 0x5; midi->message_target_length = 2; } } else { // Pack individual bytes if we don't support packing them into words. midi->message_buffer[0] = jack_id << 4 | 0xf; midi->message_buffer[2] = 0; midi->message_buffer[3] = 0; midi->message_buffer_length = 2; midi->message_target_length = 2; } } else { midi->message_buffer[midi->message_buffer_length] = data; midi->message_buffer_length += 1; // See if this byte ends a SysEx. if (midi->message_buffer[0] == 0x4 && data == 0xf7) { midi->message_buffer[0] = 0x4 + (midi->message_buffer_length - 1); midi->message_target_length = midi->message_buffer_length; } } if (midi->message_buffer_length == midi->message_target_length) { uint16_t written = tu_fifo_write_n(&midi->tx_ff, midi->message_buffer, 4); if (written < 4) { TU_ASSERT( written == 0 ); break; } midi->message_buffer_length = 0; } i++; } maybe_transmit(midi, itf); return i; } //--------------------------------------------------------------------+ // USBD Driver API //--------------------------------------------------------------------+ void midid_init(void) { tu_memclr(_midid_itf, sizeof(_midid_itf)); for(uint8_t i=0; irx_ff, midi->rx_ff_buf, CFG_TUD_MIDI_RX_BUFSIZE, 1, true); tu_fifo_config(&midi->tx_ff, midi->tx_ff_buf, CFG_TUD_MIDI_TX_BUFSIZE, 1, true); #if CFG_FIFO_MUTEX tu_fifo_config_mutex(&midi->rx_ff, osal_mutex_create(&midi->rx_ff_mutex)); tu_fifo_config_mutex(&midi->tx_ff, osal_mutex_create(&midi->tx_ff_mutex)); #endif } } void midid_reset(uint8_t rhport) { (void) rhport; for(uint8_t i=0; irx_ff); tu_fifo_clear(&midi->tx_ff); } } bool midid_open(uint8_t rhport, tusb_desc_interface_t const * p_interface_desc, uint16_t *p_length) { // For now handle the audio control interface as well. if ( AUDIO_SUBCLASS_AUDIO_CONTROL == p_interface_desc->bInterfaceSubClass) { uint8_t const * p_desc = tu_desc_next ( (uint8_t const *) p_interface_desc ); (*p_length) = sizeof(tusb_desc_interface_t); // Skip over the class specific descriptor. (*p_length) += p_desc[DESC_OFFSET_LEN]; p_desc = tu_desc_next(p_desc); return true; } if ( AUDIO_SUBCLASS_MIDI_STREAMING != p_interface_desc->bInterfaceSubClass || p_interface_desc->bInterfaceProtocol != AUDIO_PROTOCOL_V1 ) { return false; } // Find available interface midid_interface_t * p_midi = NULL; for(uint8_t i=0; iitf_num = p_interface_desc->bInterfaceNumber; uint8_t const * p_desc = tu_desc_next( (uint8_t const *) p_interface_desc ); (*p_length) = sizeof(tusb_desc_interface_t); uint8_t found_endpoints = 0; while (found_endpoints < p_interface_desc->bNumEndpoints) { if ( TUSB_DESC_ENDPOINT == p_desc[DESC_OFFSET_TYPE]) { TU_ASSERT( dcd_edpt_open(rhport, (tusb_desc_endpoint_t const *) p_desc), false); uint8_t ep_addr = ((tusb_desc_endpoint_t const *) p_desc)->bEndpointAddress; if (tu_edpt_dir(ep_addr) == TUSB_DIR_IN) { p_midi->ep_in = ep_addr; } else { p_midi->ep_out = ep_addr; } (*p_length) += p_desc[DESC_OFFSET_LEN]; p_desc = tu_desc_next(p_desc); found_endpoints += 1; } (*p_length) += p_desc[DESC_OFFSET_LEN]; p_desc = tu_desc_next(p_desc); } // Prepare for incoming data TU_ASSERT( dcd_edpt_xfer(rhport, p_midi->ep_out, p_midi->epout_buf, CFG_TUD_MIDI_EPSIZE), false); return true; } bool midid_control_request_complete(uint8_t rhport, tusb_control_request_t const * p_request) { return false; } bool midid_control_request(uint8_t rhport, tusb_control_request_t const * p_request) { //------------- Class Specific Request -------------// if (p_request->bmRequestType_bit.type != TUSB_REQ_TYPE_CLASS) return false; return false; } bool midid_xfer_cb(uint8_t rhport, uint8_t edpt_addr, xfer_result_t result, uint32_t xferred_bytes) { // TODO Support multiple interfaces uint8_t const itf = 0; midid_interface_t* p_midi = &_midid_itf[itf]; // receive new data if ( edpt_addr == p_midi->ep_out ) { midi_rx_done_cb(p_midi, p_midi->epout_buf, xferred_bytes); // prepare for next TU_ASSERT( dcd_edpt_xfer(rhport, p_midi->ep_out, p_midi->epout_buf, CFG_TUD_MIDI_EPSIZE), false ); } else if ( edpt_addr == p_midi->ep_in ) { maybe_transmit(p_midi, itf); } // nothing to do with in and notif endpoint return TUSB_ERROR_NONE; } #endif