/* * The MIT License (MIT) * * Copyright (c) 2021 Koji KITAYAMA * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" #if (CFG_TUD_ENABLED && CFG_TUD_VIDEO && CFG_TUD_VIDEO_STREAMING) #include "device/usbd.h" #include "device/usbd_pvt.h" #include "video_device.h" //--------------------------------------------------------------------+ // MACRO CONSTANT TYPEDEF //--------------------------------------------------------------------+ typedef struct { tusb_desc_interface_t std; tusb_desc_cs_video_ctl_itf_hdr_t ctl; } tusb_desc_vc_itf_t; typedef struct { tusb_desc_interface_t std; tusb_desc_cs_video_stm_itf_hdr_t stm; } tusb_desc_vs_itf_t; typedef union { tusb_desc_cs_video_ctl_itf_hdr_t ctl; tusb_desc_cs_video_stm_itf_hdr_t stm; } tusb_desc_video_itf_hdr_t; typedef struct TU_ATTR_PACKED { uint8_t bLength; uint8_t bDescriptorType; uint8_t bDescriptorSubtype; uint8_t bEntityId; } tusb_desc_cs_video_entity_itf_t; /* video streaming interface */ typedef struct TU_ATTR_PACKED { uint8_t index_vc; /* index of bound video control interface */ uint8_t index_vs; /* index from the video control interface */ struct { uint16_t beg; /* Offset of the begging of video streaming interface descriptor */ uint16_t end; /* Offset of the end of video streaming interface descriptor */ uint16_t cur; /* Offset of the current settings */ uint16_t ep[2]; /* Offset of endpoint descriptors. 0: streaming, 1: still capture */ } desc; uint8_t *buffer; /* frame buffer. assume linear buffer. no support for stride access */ uint32_t bufsize; /* frame buffer size */ uint32_t offset; /* offset for the next payload transfer */ uint32_t max_payload_transfer_size; uint8_t error_code;/* error code */ /*------------- From this point, data is not cleared by bus reset -------------*/ CFG_TUSB_MEM_ALIGN uint8_t ep_buf[CFG_TUD_VIDEO_STREAMING_EP_BUFSIZE]; /* EP transfer buffer for streaming */ } videod_streaming_interface_t; /* video control interface */ typedef struct TU_ATTR_PACKED { void const *beg; /* The head of the first video control interface descriptor */ uint16_t len; /* Byte length of the descriptors */ uint16_t cur; /* offset for current video control interface */ uint8_t stm[CFG_TUD_VIDEO_STREAMING]; /* Indices of streaming interface */ uint8_t error_code; /* error code */ uint8_t power_mode; /*------------- From this point, data is not cleared by bus reset -------------*/ // CFG_TUSB_MEM_ALIGN uint8_t ctl_buf[64]; /* EP transfer buffer for interrupt transfer */ } videod_interface_t; #define ITF_STM_MEM_RESET_SIZE offsetof(videod_streaming_interface_t, ep_buf) //--------------------------------------------------------------------+ // INTERNAL OBJECT & FUNCTION DECLARATION //--------------------------------------------------------------------+ CFG_TUSB_MEM_SECTION static videod_interface_t _videod_itf[CFG_TUD_VIDEO]; CFG_TUSB_MEM_SECTION static videod_streaming_interface_t _videod_streaming_itf[CFG_TUD_VIDEO_STREAMING]; static uint8_t const _cap_get = 0x1u; /* support for GET */ static uint8_t const _cap_get_set = 0x3u; /* support for GET and SET */ /** Get interface number from the interface descriptor * * @param[in] desc interface descriptor * * @return bInterfaceNumber */ static inline uint8_t _desc_itfnum(void const *desc) { return ((uint8_t const*)desc)[2]; } /** Get endpoint address from the endpoint descriptor * * @param[in] desc endpoint descriptor * * @return bEndpointAddress */ static inline uint8_t _desc_ep_addr(void const *desc) { return ((uint8_t const*)desc)[2]; } /** Get instance of streaming interface * * @param[in] ctl_idx instance number of video control * @param[in] stm_idx index number of streaming interface * * @return instance */ static videod_streaming_interface_t* _get_instance_streaming(uint_fast8_t ctl_idx, uint_fast8_t stm_idx) { videod_interface_t *ctl = &_videod_itf[ctl_idx]; if (!ctl->beg) return NULL; videod_streaming_interface_t *stm = &_videod_streaming_itf[ctl->stm[stm_idx]]; if (!stm->desc.beg) return NULL; return stm; } static tusb_desc_vc_itf_t const* _get_desc_vc(videod_interface_t const *self) { return (tusb_desc_vc_itf_t const *)(self->beg + self->cur); } static tusb_desc_vs_itf_t const* _get_desc_vs(videod_streaming_interface_t const *self) { if (!self->desc.cur) return NULL; void const *desc = _videod_itf[self->index_vc].beg; return (tusb_desc_vs_itf_t const*)(desc + self->desc.cur); } /** Find the first descriptor of a given type * * @param[in] beg The head of descriptor byte array. * @param[in] end The tail of descriptor byte array. * @param[in] desc_type The target descriptor type. * * @return The pointer for interface descriptor. * @retval end did not found interface descriptor */ static void const* _find_desc(void const *beg, void const *end, uint_fast8_t desc_type) { void const *cur = beg; while ((cur < end) && (desc_type != tu_desc_type(cur))) { cur = tu_desc_next(cur); } return cur; } /** Find the first descriptor specified by the arguments * * @param[in] beg The head of descriptor byte array. * @param[in] end The tail of descriptor byte array. * @param[in] desc_type The target descriptor type * @param[in] element_0 The target element following the desc_type * @param[in] element_1 The target element following the element_0 * * @return The pointer for interface descriptor. * @retval end did not found interface descriptor */ static void const* _find_desc_3(void const *beg, void const *end, uint_fast8_t desc_type, uint_fast8_t element_0, uint_fast8_t element_1) { for (void const *cur = beg; cur < end; cur = _find_desc(cur, end, desc_type)) { uint8_t const *p = (uint8_t const *)cur; if ((p[2] == element_0) && (p[3] == element_1)) { return cur; } cur = tu_desc_next(cur); } return end; } /** Return the next interface descriptor which has another interface number. * * @param[in] beg The head of descriptor byte array. * @param[in] end The tail of descriptor byte array. * * @return The pointer for interface descriptor. * @retval end did not found interface descriptor */ static void const* _next_desc_itf(void const *beg, void const *end) { void const *cur = beg; uint_fast8_t itfnum = ((tusb_desc_interface_t const*)cur)->bInterfaceNumber; while ((cur < end) && (itfnum == ((tusb_desc_interface_t const*)cur)->bInterfaceNumber)) { cur = _find_desc(tu_desc_next(cur), end, TUSB_DESC_INTERFACE); } return cur; } /** Find the first interface descriptor with the specified interface number and alternate setting number. * * @param[in] beg The head of descriptor byte array. * @param[in] end The tail of descriptor byte array. * @param[in] itfnum The target interface number. * @param[in] altnum The target alternate setting number. * * @return The pointer for interface descriptor. * @retval end did not found interface descriptor */ static inline void const* _find_desc_itf(void const *beg, void const *end, uint_fast8_t itfnum, uint_fast8_t altnum) { return _find_desc_3(beg, end, TUSB_DESC_INTERFACE, itfnum, altnum); } /** Find the first endpoint descriptor belonging to the current interface descriptor. * * The search range is from `beg` to `end` or the next interface descriptor. * * @param[in] beg The head of descriptor byte array. * @param[in] end The tail of descriptor byte array. * * @return The pointer for endpoint descriptor. * @retval end did not found endpoint descriptor */ static void const* _find_desc_ep(void const *beg, void const *end) { for (void const *cur = beg; cur < end; cur = tu_desc_next(cur)) { uint_fast8_t desc_type = tu_desc_type(cur); if (TUSB_DESC_ENDPOINT == desc_type) return cur; if (TUSB_DESC_INTERFACE == desc_type) break; } return end; } /** Find the first entity descriptor with the entity ID * specified by the argument belonging to the current video control descriptor. * * @param[in] desc The video control interface descriptor. * @param[in] entityid The target entity id. * * @return The pointer for interface descriptor. * @retval end did not found interface descriptor */ static void const* _find_desc_entity(void const *desc, uint_fast8_t entityid) { tusb_desc_vc_itf_t const *vc = (tusb_desc_vc_itf_t const*)desc; void const *beg = vc; void const *end = beg + vc->std.bLength + vc->ctl.wTotalLength; for (void const *cur = beg; cur < end; cur = _find_desc(cur, end, TUSB_DESC_CS_INTERFACE)) { tusb_desc_cs_video_entity_itf_t const *itf = (tusb_desc_cs_video_entity_itf_t const *)cur; if ((VIDEO_CS_ITF_VC_INPUT_TERMINAL <= itf->bDescriptorSubtype && itf->bDescriptorSubtype < VIDEO_CS_ITF_VC_MAX) && itf->bEntityId == entityid) { return itf; } cur = tu_desc_next(cur); } return end; } /** Return the end of the video streaming descriptor. */ static inline void const* _end_of_streaming_descriptor(void const *desc) { tusb_desc_vs_itf_t const *vs = (tusb_desc_vs_itf_t const *)desc; return desc + vs->std.bLength + vs->stm.wTotalLength; } /** Find the first format descriptor with the specified format number. */ static inline tusb_desc_cs_video_fmt_uncompressed_t const *_find_desc_format(void const *beg, void const *end, uint_fast8_t fmtnum) { return (tusb_desc_cs_video_fmt_uncompressed_t const*) _find_desc_3(beg, end, TUSB_DESC_CS_INTERFACE, VIDEO_CS_ITF_VS_FORMAT_UNCOMPRESSED, fmtnum); } /** Find the first frame descriptor with the specified format number. */ static inline tusb_desc_cs_video_frm_uncompressed_t const *_find_desc_frame(void const *beg, void const *end, uint_fast8_t frmnum) { return (tusb_desc_cs_video_frm_uncompressed_t const*) _find_desc_3(beg, end, TUSB_DESC_CS_INTERFACE, VIDEO_CS_ITF_VS_FRAME_UNCOMPRESSED, frmnum); } /** Set uniquely determined values to variables that have not been set * * @param[in,out] param Target */ static bool _update_streaming_parameters(videod_streaming_interface_t const *stm, video_probe_and_commit_control_t *param) { tusb_desc_vs_itf_t const *vs = _get_desc_vs(stm); uint_fast8_t fmtnum = param->bFormatIndex; TU_ASSERT(fmtnum <= vs->stm.bNumFormats); if (!fmtnum) { if (1 < vs->stm.bNumFormats) return true; /* Need to negotiate all variables. */ fmtnum = 1; param->bFormatIndex = 1; } /* Set the parameters determined by the format */ param->wKeyFrameRate = 1; param->wPFrameRate = 0; param->wCompQuality = 1; /* 1 to 10000 */ param->wCompWindowSize = 1; /* GOP size? */ param->wDelay = 0; /* milliseconds */ param->dwClockFrequency = 27000000; /* same as MPEG-2 system time clock */ param->bmFramingInfo = 0x3; /* enables FrameID and EndOfFrame */ param->bPreferedVersion = 1; param->bMinVersion = 1; param->bMaxVersion = 1; param->bUsage = 0; param->bBitDepthLuma = 8; void const *end = _end_of_streaming_descriptor(vs); tusb_desc_cs_video_fmt_uncompressed_t const *fmt = _find_desc_format(tu_desc_next(vs), end, fmtnum); TU_ASSERT(fmt != end); uint_fast8_t frmnum = param->bFrameIndex; TU_ASSERT(frmnum <= fmt->bNumFrameDescriptors); if (!frmnum) { if (1 < fmt->bNumFrameDescriptors) return true; frmnum = 1; param->bFrameIndex = 1; } tusb_desc_cs_video_frm_uncompressed_t const *frm = _find_desc_frame(tu_desc_next(fmt), end, frmnum); TU_ASSERT(frm != end); /* Set the parameters determined by the frame */ uint_fast32_t frame_size = param->dwMaxVideoFrameSize; if (!frame_size) { frame_size = (uint_fast32_t)frm->wWidth * frm->wHeight * fmt->bBitsPerPixel / 8; param->dwMaxVideoFrameSize = frame_size; } uint_fast32_t interval = param->dwFrameInterval; if (!interval) { if ((1 < frm->bFrameIntervalType) || ((0 == frm->bFrameIntervalType) && (frm->dwFrameInterval[1] != frm->dwFrameInterval[0]))) { return true; } interval = frm->dwFrameInterval[0]; param->dwFrameInterval = interval; } uint_fast32_t interval_ms = interval / 10000; TU_ASSERT(interval_ms); uint_fast32_t payload_size = (frame_size + interval_ms - 1) / interval_ms + 2; param->dwMaxPayloadTransferSize = payload_size; return true; } /** Set the minimum, maximum, default values or resolutions to variables which need to negotiate with the host * * @param[in] request GET_MAX, GET_MIN, GET_RES or GET_DEF * @param[in,out] param Target */ static bool _negotiate_streaming_parameters(videod_streaming_interface_t const *stm, uint_fast8_t request, video_probe_and_commit_control_t *param) { uint_fast8_t const fmtnum = param->bFormatIndex; if (!fmtnum) { switch (request) { case VIDEO_REQUEST_GET_MAX: param->bFormatIndex = _get_desc_vs(stm)->stm.bNumFormats; break; case VIDEO_REQUEST_GET_MIN: case VIDEO_REQUEST_GET_DEF: param->bFormatIndex = 1; break; default: return false; } /* Set the parameters determined by the format */ param->wKeyFrameRate = 1; param->wPFrameRate = 0; param->wCompQuality = 1; /* 1 to 10000 */ param->wCompWindowSize = 1; /* GOP size? */ param->wDelay = 0; /* milliseconds */ param->dwClockFrequency = 27000000; /* same as MPEG-2 system time clock */ param->bmFramingInfo = 0x3; /* enables FrameID and EndOfFrame */ param->bPreferedVersion = 1; param->bMinVersion = 1; param->bMaxVersion = 1; param->bUsage = 0; param->bBitDepthLuma = 8; return true; } uint_fast8_t frmnum = param->bFrameIndex; if (!frmnum) { tusb_desc_vs_itf_t const *vs = _get_desc_vs(stm); void const *end = _end_of_streaming_descriptor(vs); tusb_desc_cs_video_fmt_uncompressed_t const *fmt = _find_desc_format(tu_desc_next(vs), end, fmtnum); switch (request) { case VIDEO_REQUEST_GET_MAX: frmnum = fmt->bNumFrameDescriptors; break; case VIDEO_REQUEST_GET_MIN: frmnum = 1; break; case VIDEO_REQUEST_GET_DEF: frmnum = fmt->bDefaultFrameIndex; break; default: return false; } param->bFrameIndex = frmnum; /* Set the parameters determined by the frame */ tusb_desc_cs_video_frm_uncompressed_t const *frm = _find_desc_frame(tu_desc_next(fmt), end, frmnum); param->dwMaxVideoFrameSize = frm->wWidth * frm->wHeight * fmt->bBitsPerPixel / 8; return true; } if (!param->dwFrameInterval) { tusb_desc_vs_itf_t const *vs = _get_desc_vs(stm); void const *end = _end_of_streaming_descriptor(vs); tusb_desc_cs_video_fmt_uncompressed_t const *fmt = _find_desc_format(tu_desc_next(vs), end, fmtnum); tusb_desc_cs_video_frm_uncompressed_t const *frm = _find_desc_frame(tu_desc_next(fmt), end, frmnum); uint_fast32_t interval, interval_ms; switch (request) { case VIDEO_REQUEST_GET_MAX: { uint_fast32_t min_interval, max_interval; uint_fast8_t num_intervals = frm->bFrameIntervalType; max_interval = num_intervals ? frm->dwFrameInterval[num_intervals - 1]: frm->dwFrameInterval[1]; min_interval = frm->dwFrameInterval[0]; interval = max_interval; interval_ms = min_interval / 10000; } break; case VIDEO_REQUEST_GET_MIN: { uint_fast32_t min_interval, max_interval; uint_fast8_t num_intervals = frm->bFrameIntervalType; max_interval = num_intervals ? frm->dwFrameInterval[num_intervals - 1]: frm->dwFrameInterval[1]; min_interval = frm->dwFrameInterval[0]; interval = min_interval; interval_ms = max_interval / 10000; } break; case VIDEO_REQUEST_GET_DEF: interval = frm->dwDefaultFrameInterval; interval_ms = interval / 10000; break; case VIDEO_REQUEST_GET_RES: { uint_fast8_t num_intervals = frm->bFrameIntervalType; if (num_intervals) { interval = 0; } else { interval = frm->dwFrameInterval[2]; interval_ms = interval / 10000; } } break; default: return false; } param->dwFrameInterval = interval; if (!interval) { param->dwMaxPayloadTransferSize = 0; } else { uint_fast32_t frame_size = param->dwMaxVideoFrameSize; if (!interval_ms) { param->dwMaxPayloadTransferSize = frame_size + 2; } else { param->dwMaxPayloadTransferSize = (frame_size + interval_ms - 1) / interval_ms + 2; } } return true; } return true; } /** Close current video control interface. * * @param[in,out] self Video control interface context. * @param[in] altnum The target alternate setting number. */ static bool _close_vc_itf(uint8_t rhport, videod_interface_t *self) { tusb_desc_vc_itf_t const *vc = _get_desc_vc(self); /* The next descriptor after the class-specific VC interface header descriptor. */ void const *cur = (void const*)vc + vc->std.bLength + vc->ctl.bLength; /* The end of the video control interface descriptor. */ void const *end = (void const*)vc + vc->std.bLength + vc->ctl.wTotalLength; if (vc->std.bNumEndpoints) { /* Find the notification endpoint descriptor. */ cur = _find_desc(cur, end, TUSB_DESC_ENDPOINT); TU_ASSERT(cur < end); tusb_desc_endpoint_t const *notif = (tusb_desc_endpoint_t const *)cur; usbd_edpt_close(rhport, notif->bEndpointAddress); } self->cur = 0; return true; } /** Set the alternate setting to own video control interface. * * @param[in,out] self Video control interface context. * @param[in] altnum The target alternate setting number. */ static bool _open_vc_itf(uint8_t rhport, videod_interface_t *self, uint_fast8_t altnum) { TU_LOG2(" open VC %d\n", altnum); void const *beg = self->beg; void const *end = beg + self->len; /* The first descriptor is a video control interface descriptor. */ void const *cur = _find_desc_itf(beg, end, _desc_itfnum(beg), altnum); TU_LOG2(" cur %d\n", cur - beg); TU_VERIFY(cur < end); tusb_desc_vc_itf_t const *vc = (tusb_desc_vc_itf_t const *)cur; TU_LOG2(" bInCollection %d\n", vc->ctl.bInCollection); /* Support for up to 2 streaming interfaces only. */ TU_ASSERT(vc->ctl.bInCollection <= CFG_TUD_VIDEO_STREAMING); /* Update to point the end of the video control interface descriptor. */ end = cur + vc->std.bLength + vc->ctl.wTotalLength; /* Advance to the next descriptor after the class-specific VC interface header descriptor. */ cur += vc->std.bLength + vc->ctl.bLength; TU_LOG2(" bNumEndpoints %d\n", vc->std.bNumEndpoints); /* Open the notification endpoint if it exist. */ if (vc->std.bNumEndpoints) { /* Support for 1 endpoint only. */ TU_VERIFY(1 == vc->std.bNumEndpoints); /* Find the notification endpoint descriptor. */ cur = _find_desc(cur, end, TUSB_DESC_ENDPOINT); TU_VERIFY(cur < end); tusb_desc_endpoint_t const *notif = (tusb_desc_endpoint_t const *)cur; /* Open the notification endpoint */ TU_ASSERT(usbd_edpt_open(rhport, notif)); } self->cur = (void const*)vc - beg; return true; } /** Set the alternate setting to own video streaming interface. * * @param[in,out] stm Streaming interface context. * @param[in] altnum The target alternate setting number. */ static bool _open_vs_itf(uint8_t rhport, videod_streaming_interface_t *stm, uint_fast8_t altnum) { uint_fast8_t i; TU_LOG2(" reopen VS %d\n", altnum); void const *desc = _videod_itf[stm->index_vc].beg; /* Close endpoints of previous settings. */ for (i = 0; i < TU_ARRAY_SIZE(stm->desc.ep); ++i) { uint_fast16_t ofs_ep = stm->desc.ep[i]; if (!ofs_ep) break; uint_fast8_t ep_adr = _desc_ep_addr(desc + ofs_ep); usbd_edpt_close(rhport, ep_adr); stm->desc.ep[i] = 0; TU_LOG2(" close EP%02x\n", ep_adr); } /* clear transfer management information */ stm->buffer = NULL; stm->bufsize = 0; stm->offset = 0; /* Find a alternate interface */ void const *beg = desc + stm->desc.beg; void const *end = desc + stm->desc.end; void const *cur = _find_desc_itf(beg, end, _desc_itfnum(beg), altnum); TU_VERIFY(cur < end); uint_fast8_t numeps = ((tusb_desc_interface_t const *)cur)->bNumEndpoints; TU_ASSERT(numeps <= TU_ARRAY_SIZE(stm->desc.ep)); stm->desc.cur = cur - desc; /* Save the offset of the new settings */ if (!altnum) { /* initialize streaming settings */ stm->max_payload_transfer_size = 0; video_probe_and_commit_control_t *param = (video_probe_and_commit_control_t *)&stm->ep_buf; tu_memclr(param, sizeof(*param)); return _update_streaming_parameters(stm, param); } /* Open endpoints of the new settings. */ for (i = 0, cur = tu_desc_next(cur); i < numeps; ++i, cur = tu_desc_next(cur)) { cur = _find_desc_ep(cur, end); TU_ASSERT(cur < end); tusb_desc_endpoint_t const *ep = (tusb_desc_endpoint_t const*)cur; if (!stm->max_payload_transfer_size) { video_probe_and_commit_control_t const *param = (video_probe_and_commit_control_t const*)&stm->ep_buf; uint_fast32_t max_size = param->dwMaxPayloadTransferSize; if ((TUSB_XFER_ISOCHRONOUS == ep->bmAttributes.xfer) && (tu_edpt_packet_size(ep) < max_size)) { /* FS must be less than or equal to max packet size */ return false; } /* Set the negotiated value */ stm->max_payload_transfer_size = max_size; } TU_ASSERT(usbd_edpt_open(rhport, ep)); stm->desc.ep[i] = cur - desc; TU_LOG2(" open EP%02x\n", _desc_ep_addr(cur)); } /* initialize payload header */ tusb_video_payload_header_t *hdr = (tusb_video_payload_header_t*)stm->ep_buf; hdr->bHeaderLength = sizeof(*hdr); hdr->bmHeaderInfo = 0; return true; } /** Prepare the next packet payload. */ static uint_fast16_t _prepare_in_payload(videod_streaming_interface_t *stm) { uint_fast16_t remaining = stm->bufsize - stm->offset; uint_fast16_t hdr_len = stm->ep_buf[0]; uint_fast16_t pkt_len = stm->max_payload_transfer_size; if (hdr_len + remaining < pkt_len) { pkt_len = hdr_len + remaining; } uint_fast16_t data_len = pkt_len - hdr_len; memcpy(&stm->ep_buf[hdr_len], stm->buffer + stm->offset, data_len); stm->offset += data_len; remaining -= data_len; if (!remaining) { tusb_video_payload_header_t *hdr = (tusb_video_payload_header_t*)stm->ep_buf; hdr->EndOfFrame = 1; } return hdr_len + data_len; } /** Handle a standard request to the video control interface. */ static int handle_video_ctl_std_req(uint8_t rhport, uint8_t stage, tusb_control_request_t const *request, uint_fast8_t ctl_idx) { switch (request->bRequest) { case TUSB_REQ_GET_INTERFACE: if (stage == CONTROL_STAGE_SETUP) { TU_VERIFY(1 == request->wLength, VIDEO_ERROR_UNKNOWN); tusb_desc_vc_itf_t const *vc = _get_desc_vc(&_videod_itf[ctl_idx]); TU_VERIFY(vc, VIDEO_ERROR_UNKNOWN); uint8_t alt_num = vc->std.bAlternateSetting; TU_VERIFY(tud_control_xfer(rhport, request, &alt_num, sizeof(alt_num)), VIDEO_ERROR_UNKNOWN); } return VIDEO_ERROR_NONE; case TUSB_REQ_SET_INTERFACE: if (stage == CONTROL_STAGE_SETUP) { TU_VERIFY(0 == request->wLength, VIDEO_ERROR_UNKNOWN); TU_VERIFY(_close_vc_itf(rhport, &_videod_itf[ctl_idx]), VIDEO_ERROR_UNKNOWN); TU_VERIFY(_open_vc_itf(rhport, &_videod_itf[ctl_idx], request->wValue), VIDEO_ERROR_UNKNOWN); tud_control_status(rhport, request); } return VIDEO_ERROR_NONE; default: /* Unknown/Unsupported request */ TU_BREAKPOINT(); return VIDEO_ERROR_INVALID_REQUEST; } } static int handle_video_ctl_cs_req(uint8_t rhport, uint8_t stage, tusb_control_request_t const *request, uint_fast8_t ctl_idx) { videod_interface_t *self = &_videod_itf[ctl_idx]; /* 4.2.1 Interface Control Request */ switch (TU_U16_HIGH(request->wValue)) { case VIDEO_VC_CTL_VIDEO_POWER_MODE: switch (request->bRequest) { case VIDEO_REQUEST_SET_CUR: if (stage == CONTROL_STAGE_SETUP) { TU_VERIFY(1 == request->wLength, VIDEO_ERROR_UNKNOWN); TU_VERIFY(tud_control_xfer(rhport, request, &self->power_mode, sizeof(self->power_mode)), VIDEO_ERROR_UNKNOWN); } else if (stage == CONTROL_STAGE_ACK) { if (tud_video_power_mode_cb) return tud_video_power_mode_cb(ctl_idx, self->power_mode); } return VIDEO_ERROR_NONE; case VIDEO_REQUEST_GET_CUR: if (stage == CONTROL_STAGE_SETUP) { TU_VERIFY(1 == request->wLength, VIDEO_ERROR_UNKNOWN); TU_VERIFY(tud_control_xfer(rhport, request, &self->power_mode, sizeof(self->power_mode)), VIDEO_ERROR_UNKNOWN); } return VIDEO_ERROR_NONE; case VIDEO_REQUEST_GET_INFO: if (stage == CONTROL_STAGE_SETUP) { TU_VERIFY(1 == request->wLength, VIDEO_ERROR_UNKNOWN); TU_VERIFY(tud_control_xfer(rhport, request, (uint8_t*)(uintptr_t) &_cap_get_set, sizeof(_cap_get_set)), VIDEO_ERROR_UNKNOWN); } return VIDEO_ERROR_NONE; default: break; } break; case VIDEO_VC_CTL_REQUEST_ERROR_CODE: switch (request->bRequest) { case VIDEO_REQUEST_GET_CUR: if (stage == CONTROL_STAGE_SETUP) { TU_VERIFY(tud_control_xfer(rhport, request, &self->error_code, sizeof(uint8_t)), VIDEO_ERROR_UNKNOWN); } return VIDEO_ERROR_NONE; case VIDEO_REQUEST_GET_INFO: if (stage == CONTROL_STAGE_SETUP) { TU_VERIFY(tud_control_xfer(rhport, request, (uint8_t*)(uintptr_t) &_cap_get, sizeof(_cap_get)), VIDEO_ERROR_UNKNOWN); } return VIDEO_ERROR_NONE; default: break; } break; default: break; } /* Unknown/Unsupported request */ TU_BREAKPOINT(); return VIDEO_ERROR_INVALID_REQUEST; } static int handle_video_ctl_req(uint8_t rhport, uint8_t stage, tusb_control_request_t const *request, uint_fast8_t ctl_idx) { uint_fast8_t entity_id; switch (request->bmRequestType_bit.type) { case TUSB_REQ_TYPE_STANDARD: return handle_video_ctl_std_req(rhport, stage, request, ctl_idx); case TUSB_REQ_TYPE_CLASS: entity_id = TU_U16_HIGH(request->wIndex); if (!entity_id) { return handle_video_ctl_cs_req(rhport, stage, request, ctl_idx); } else { TU_VERIFY(_find_desc_entity(_get_desc_vc(&_videod_itf[ctl_idx]), entity_id), VIDEO_ERROR_INVALID_REQUEST); return VIDEO_ERROR_NONE; } default: return VIDEO_ERROR_INVALID_REQUEST; } } static int handle_video_stm_std_req(uint8_t rhport, uint8_t stage, tusb_control_request_t const *request, uint_fast8_t stm_idx) { videod_streaming_interface_t *self = &_videod_streaming_itf[stm_idx]; switch (request->bRequest) { case TUSB_REQ_GET_INTERFACE: if (stage == CONTROL_STAGE_SETUP) { TU_VERIFY(1 == request->wLength, VIDEO_ERROR_UNKNOWN); tusb_desc_vs_itf_t const *vs = _get_desc_vs(self); TU_VERIFY(vs, VIDEO_ERROR_UNKNOWN); uint8_t alt_num = vs->std.bAlternateSetting; TU_VERIFY(tud_control_xfer(rhport, request, &alt_num, sizeof(alt_num)), VIDEO_ERROR_UNKNOWN); } return VIDEO_ERROR_NONE; case TUSB_REQ_SET_INTERFACE: if (stage == CONTROL_STAGE_SETUP) { TU_VERIFY(_open_vs_itf(rhport, self, request->wValue), VIDEO_ERROR_UNKNOWN); tud_control_status(rhport, request); } return VIDEO_ERROR_NONE; default: /* Unknown/Unsupported request */ TU_BREAKPOINT(); return VIDEO_ERROR_INVALID_REQUEST; } } static int handle_video_stm_cs_req(uint8_t rhport, uint8_t stage, tusb_control_request_t const *request, uint_fast8_t stm_idx) { (void)rhport; videod_streaming_interface_t *self = &_videod_streaming_itf[stm_idx]; /* 4.2.1 Interface Control Request */ switch (TU_U16_HIGH(request->wValue)) { case VIDEO_VS_CTL_STREAM_ERROR_CODE: switch (request->bRequest) { case VIDEO_REQUEST_GET_CUR: if (stage == CONTROL_STAGE_SETUP) { /* TODO */ TU_VERIFY(tud_control_xfer(rhport, request, &self->error_code, sizeof(uint8_t)), VIDEO_ERROR_UNKNOWN); } return VIDEO_ERROR_NONE; case VIDEO_REQUEST_GET_INFO: if (stage == CONTROL_STAGE_SETUP) { TU_VERIFY(tud_control_xfer(rhport, request, (uint8_t*)(uintptr_t) &_cap_get, sizeof(_cap_get)), VIDEO_ERROR_UNKNOWN); } return VIDEO_ERROR_NONE; default: break; } break; case VIDEO_VS_CTL_PROBE: switch (request->bRequest) { case VIDEO_REQUEST_SET_CUR: if (stage == CONTROL_STAGE_SETUP) { TU_VERIFY(sizeof(video_probe_and_commit_control_t) == request->wLength, VIDEO_ERROR_UNKNOWN); TU_VERIFY(tud_control_xfer(rhport, request, self->ep_buf, sizeof(video_probe_and_commit_control_t)), VIDEO_ERROR_UNKNOWN); } else if (stage == CONTROL_STAGE_ACK) { TU_VERIFY(_update_streaming_parameters(self, (video_probe_and_commit_control_t*)self->ep_buf), VIDEO_ERROR_INVALID_VALUE_WITHIN_RANGE); } return VIDEO_ERROR_NONE; case VIDEO_REQUEST_GET_CUR: if (stage == CONTROL_STAGE_SETUP) { TU_VERIFY(request->wLength, VIDEO_ERROR_UNKNOWN); TU_VERIFY(tud_control_xfer(rhport, request, self->ep_buf, sizeof(video_probe_and_commit_control_t)), VIDEO_ERROR_UNKNOWN); } return VIDEO_ERROR_NONE; case VIDEO_REQUEST_GET_MIN: case VIDEO_REQUEST_GET_MAX: case VIDEO_REQUEST_GET_RES: case VIDEO_REQUEST_GET_DEF: if (stage == CONTROL_STAGE_SETUP) { TU_VERIFY(request->wLength, VIDEO_ERROR_UNKNOWN); video_probe_and_commit_control_t tmp; tmp = *(video_probe_and_commit_control_t*)&self->ep_buf; TU_VERIFY(_negotiate_streaming_parameters(self, request->bRequest, &tmp), VIDEO_ERROR_INVALID_VALUE_WITHIN_RANGE); TU_VERIFY(tud_control_xfer(rhport, request, self->ep_buf, sizeof(video_probe_and_commit_control_t)), VIDEO_ERROR_UNKNOWN); } return VIDEO_ERROR_NONE; case VIDEO_REQUEST_GET_LEN: if (stage == CONTROL_STAGE_SETUP) { TU_VERIFY(2 == request->wLength, VIDEO_ERROR_UNKNOWN); uint16_t len = sizeof(video_probe_and_commit_control_t); TU_VERIFY(tud_control_xfer(rhport, request, (uint8_t*)&len, sizeof(len)), VIDEO_ERROR_UNKNOWN); } return VIDEO_ERROR_NONE; case VIDEO_REQUEST_GET_INFO: if (stage == CONTROL_STAGE_SETUP) { TU_VERIFY(1 == request->wLength, VIDEO_ERROR_UNKNOWN); TU_VERIFY(tud_control_xfer(rhport, request, (uint8_t*)(uintptr_t) &_cap_get_set, sizeof(_cap_get_set)), VIDEO_ERROR_UNKNOWN); } return VIDEO_ERROR_NONE; default: break; } break; case VIDEO_VS_CTL_COMMIT: switch (request->bRequest) { case VIDEO_REQUEST_SET_CUR: if (stage == CONTROL_STAGE_SETUP) { TU_VERIFY(sizeof(video_probe_and_commit_control_t) == request->wLength, VIDEO_ERROR_UNKNOWN); TU_VERIFY(tud_control_xfer(rhport, request, self->ep_buf, sizeof(video_probe_and_commit_control_t)), VIDEO_ERROR_UNKNOWN); } else if (stage == CONTROL_STAGE_ACK) { TU_VERIFY(_update_streaming_parameters(self, (video_probe_and_commit_control_t*)self->ep_buf), VIDEO_ERROR_INVALID_VALUE_WITHIN_RANGE); if (tud_video_commit_cb) { return tud_video_commit_cb(self->index_vc, self->index_vs, (video_probe_and_commit_control_t*)self->ep_buf); } } return VIDEO_ERROR_NONE; case VIDEO_REQUEST_GET_CUR: if (stage == CONTROL_STAGE_SETUP) { TU_VERIFY(request->wLength, VIDEO_ERROR_UNKNOWN); TU_VERIFY(tud_control_xfer(rhport, request, self->ep_buf, sizeof(video_probe_and_commit_control_t)), VIDEO_ERROR_UNKNOWN); } return VIDEO_ERROR_NONE; case VIDEO_REQUEST_GET_LEN: if (stage == CONTROL_STAGE_SETUP) { TU_VERIFY(2 == request->wLength, VIDEO_ERROR_UNKNOWN); uint16_t len = sizeof(video_probe_and_commit_control_t); TU_VERIFY(tud_control_xfer(rhport, request, (uint8_t*)&len, sizeof(len)), VIDEO_ERROR_UNKNOWN); } return VIDEO_ERROR_NONE; case VIDEO_REQUEST_GET_INFO: if (stage == CONTROL_STAGE_SETUP) { TU_VERIFY(1 == request->wLength, VIDEO_ERROR_UNKNOWN); TU_VERIFY(tud_control_xfer(rhport, request, (uint8_t*)(uintptr_t) &_cap_get_set, sizeof(_cap_get_set)), VIDEO_ERROR_UNKNOWN); } return VIDEO_ERROR_NONE; default: break; } break; case VIDEO_VS_CTL_STILL_PROBE: case VIDEO_VS_CTL_STILL_COMMIT: case VIDEO_VS_CTL_STILL_IMAGE_TRIGGER: case VIDEO_VS_CTL_GENERATE_KEY_FRAME: case VIDEO_VS_CTL_UPDATE_FRAME_SEGMENT: case VIDEO_VS_CTL_SYNCH_DELAY_CONTROL: /* TODO */ break; default: break; } /* Unknown/Unsupported request */ TU_BREAKPOINT(); return VIDEO_ERROR_INVALID_REQUEST; } static int handle_video_stm_req(uint8_t rhport, uint8_t stage, tusb_control_request_t const *request, uint_fast8_t stm_idx) { switch (request->bmRequestType_bit.type) { case TUSB_REQ_TYPE_STANDARD: return handle_video_stm_std_req(rhport, stage, request, stm_idx); case TUSB_REQ_TYPE_CLASS: if (TU_U16_HIGH(request->wIndex)) return VIDEO_ERROR_INVALID_REQUEST; return handle_video_stm_cs_req(rhport, stage, request, stm_idx); default: return VIDEO_ERROR_INVALID_REQUEST; } return VIDEO_ERROR_UNKNOWN; } //--------------------------------------------------------------------+ // APPLICATION API //--------------------------------------------------------------------+ bool tud_video_n_connected(uint_fast8_t ctl_idx) { TU_ASSERT(ctl_idx < CFG_TUD_VIDEO); videod_streaming_interface_t *stm = _get_instance_streaming(ctl_idx, 0); if (stm) return true; return false; } bool tud_video_n_streaming(uint_fast8_t ctl_idx, uint_fast8_t stm_idx) { TU_ASSERT(ctl_idx < CFG_TUD_VIDEO); TU_ASSERT(stm_idx < CFG_TUD_VIDEO_STREAMING); videod_streaming_interface_t *stm = _get_instance_streaming(ctl_idx, stm_idx); if (!stm || !stm->desc.ep[0]) return false; return true; } bool tud_video_n_frame_xfer(uint_fast8_t ctl_idx, uint_fast8_t stm_idx, void *buffer, size_t bufsize) { TU_ASSERT(ctl_idx < CFG_TUD_VIDEO); TU_ASSERT(stm_idx < CFG_TUD_VIDEO_STREAMING); if (!buffer || !bufsize) return false; videod_streaming_interface_t *stm = _get_instance_streaming(ctl_idx, stm_idx); if (!stm || !stm->desc.ep[0] || stm->buffer) return false; /* Find EP address */ void const *desc = _videod_itf[stm->index_vc].beg; uint_fast8_t ep_addr = 0; for (uint_fast8_t i = 0; i < CFG_TUD_VIDEO_STREAMING; ++i) { uint_fast16_t ofs_ep = stm->desc.ep[i]; if (!ofs_ep) continue; ep_addr = _desc_ep_addr(desc + ofs_ep); break; } if (!ep_addr) return false; TU_VERIFY( usbd_edpt_claim(0, ep_addr)); /* update the packet header */ tusb_video_payload_header_t *hdr = (tusb_video_payload_header_t*)stm->ep_buf; hdr->FrameID ^= 1; hdr->EndOfFrame = 0; /* update the packet data */ stm->buffer = (uint8_t*)buffer; stm->bufsize = bufsize; uint_fast16_t pkt_len = _prepare_in_payload(stm); TU_ASSERT( usbd_edpt_xfer(0, ep_addr, stm->ep_buf, pkt_len), 0); return true; } //--------------------------------------------------------------------+ // USBD Driver API //--------------------------------------------------------------------+ void videod_init(void) { for (uint_fast8_t i = 0; i < CFG_TUD_VIDEO; ++i) { videod_interface_t* ctl = &_videod_itf[i]; tu_memclr(ctl, sizeof(*ctl)); } for (uint_fast8_t i = 0; i < CFG_TUD_VIDEO_STREAMING; ++i) { videod_streaming_interface_t *stm = &_videod_streaming_itf[i]; tu_memclr(stm, ITF_STM_MEM_RESET_SIZE); } } void videod_reset(uint8_t rhport) { (void) rhport; for (uint_fast8_t i = 0; i < CFG_TUD_VIDEO; ++i) { videod_interface_t* ctl = &_videod_itf[i]; tu_memclr(ctl, sizeof(*ctl)); } for (uint_fast8_t i = 0; i < CFG_TUD_VIDEO_STREAMING; ++i) { videod_streaming_interface_t *stm = &_videod_streaming_itf[i]; tu_memclr(stm, ITF_STM_MEM_RESET_SIZE); } } uint16_t videod_open(uint8_t rhport, tusb_desc_interface_t const * itf_desc, uint16_t max_len) { TU_VERIFY((TUSB_CLASS_VIDEO == itf_desc->bInterfaceClass) && (VIDEO_SUBCLASS_CONTROL == itf_desc->bInterfaceSubClass) && (VIDEO_ITF_PROTOCOL_15 == itf_desc->bInterfaceProtocol), 0); /* Find available interface */ videod_interface_t *self = NULL; uint_fast8_t ctl_idx; for (ctl_idx = 0; ctl_idx < CFG_TUD_VIDEO; ++ctl_idx) { if (_videod_itf[ctl_idx].beg) continue; self = &_videod_itf[ctl_idx]; break; } TU_ASSERT(ctl_idx < CFG_TUD_VIDEO, 0); void const *end = (void const*)itf_desc + max_len; self->beg = itf_desc; self->len = max_len; /*------------- Video Control Interface -------------*/ TU_VERIFY(_open_vc_itf(rhport, self, 0), 0); tusb_desc_vc_itf_t const *vc = _get_desc_vc(self); uint_fast8_t bInCollection = vc->ctl.bInCollection; /* Find the end of the video interface descriptor */ void const *cur = _next_desc_itf(itf_desc, end); for (uint_fast8_t stm_idx = 0; stm_idx < bInCollection; ++stm_idx) { videod_streaming_interface_t *stm = NULL; /* find free streaming interface handle */ for (uint_fast8_t i = 0; i < CFG_TUD_VIDEO_STREAMING; ++i) { if (_videod_streaming_itf[i].desc.beg) continue; stm = &_videod_streaming_itf[i]; self->stm[stm_idx] = i; break; } TU_ASSERT(stm, 0); stm->index_vc = ctl_idx; stm->index_vs = stm_idx; stm->desc.beg = (uintptr_t)cur - (uintptr_t)itf_desc; cur = _next_desc_itf(cur, end); stm->desc.end = (uintptr_t)cur - (uintptr_t)itf_desc; } self->len = (uintptr_t)cur - (uintptr_t)itf_desc; return (uintptr_t)cur - (uintptr_t)itf_desc; } // Invoked when a control transfer occurred on an interface of this class // Driver response accordingly to the request and the transfer stage (setup/data/ack) // return false to stall control endpoint (e.g unsupported request) bool videod_control_xfer_cb(uint8_t rhport, uint8_t stage, tusb_control_request_t const * request) { int err; TU_VERIFY(request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_INTERFACE); uint_fast8_t itfnum = tu_u16_low(request->wIndex); /* Identify which control interface to use */ uint_fast8_t itf; for (itf = 0; itf < CFG_TUD_VIDEO; ++itf) { void const *desc = _videod_itf[itf].beg; if (!desc) continue; if (itfnum == _desc_itfnum(desc)) break; } if (itf < CFG_TUD_VIDEO) { err = handle_video_ctl_req(rhport, stage, request, itf); _videod_itf[itf].error_code = (uint8_t)err; if (err) return false; return true; } /* Identify which streaming interface to use */ for (itf = 0; itf < CFG_TUD_VIDEO_STREAMING; ++itf) { videod_streaming_interface_t *stm = &_videod_streaming_itf[itf]; if (!stm->desc.beg) continue; void const *desc = _videod_itf[stm->index_vc].beg; if (itfnum == _desc_itfnum(desc + stm->desc.beg)) break; } if (itf < CFG_TUD_VIDEO_STREAMING) { err = handle_video_stm_req(rhport, stage, request, itf); _videod_streaming_itf[itf].error_code = (uint8_t)err; if (err) return false; return true; } return false; } bool videod_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes) { (void)result; (void)xferred_bytes; /* find streaming handle */ uint_fast8_t itf; videod_interface_t *ctl; videod_streaming_interface_t *stm; for (itf = 0; itf < CFG_TUD_VIDEO_STREAMING; ++itf) { stm = &_videod_streaming_itf[itf]; uint_fast16_t const ep_ofs = stm->desc.ep[0]; if (!ep_ofs) continue; ctl = &_videod_itf[stm->index_vc]; void const *desc = ctl->beg; if (ep_addr == _desc_ep_addr(desc + ep_ofs)) break; } TU_ASSERT(itf < CFG_TUD_VIDEO_STREAMING); if (stm->offset < stm->bufsize) { /* Claim the endpoint */ TU_VERIFY( usbd_edpt_claim(rhport, ep_addr), 0); uint_fast16_t pkt_len = _prepare_in_payload(stm); TU_ASSERT( usbd_edpt_xfer(rhport, ep_addr, stm->ep_buf, pkt_len), 0); } else { stm->buffer = NULL; stm->bufsize = 0; stm->offset = 0; if (tud_video_frame_xfer_complete_cb) { tud_video_frame_xfer_complete_cb(stm->index_vc, stm->index_vs); } } return true; } #endif