/* * The MIT License (MIT) * * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" #if CFG_TUD_ENABLED && (CFG_TUSB_MCU == OPT_MCU_VALENTYUSB_EPTRI) #ifndef DEBUG #define DEBUG 0 #endif #ifndef LOG_USB #define LOG_USB 0 #endif #include "device/dcd.h" #include "dcd_eptri.h" #include "csr.h" #include "irq.h" void fomu_error(uint32_t line); #if LOG_USB struct usb_log { uint8_t ep_num; uint8_t size; uint8_t data[66]; }; __attribute__((used)) struct usb_log usb_log[128]; __attribute__((used)) uint8_t usb_log_offset; struct xfer_log { uint8_t ep_num; uint16_t size; }; __attribute__((used)) struct xfer_log xfer_log[64]; __attribute__((used)) uint8_t xfer_log_offset; __attribute__((used)) struct xfer_log queue_log[64]; __attribute__((used)) uint8_t queue_log_offset; #endif //--------------------------------------------------------------------+ // SIE Command //--------------------------------------------------------------------+ #define EP_SIZE 64 uint16_t volatile rx_buffer_offset[16]; uint8_t* volatile rx_buffer[16]; uint16_t volatile rx_buffer_max[16]; volatile uint8_t tx_ep; volatile bool tx_active; volatile uint16_t tx_buffer_offset[16]; uint8_t* volatile tx_buffer[16]; volatile uint16_t tx_buffer_max[16]; volatile uint8_t reset_count; #if DEBUG __attribute__((used)) uint8_t volatile * last_tx_buffer; __attribute__((used)) volatile uint8_t last_tx_ep; uint8_t setup_packet_bfr[10]; #endif //--------------------------------------------------------------------+ // PIPE HELPER //--------------------------------------------------------------------+ static bool advance_tx_ep(void) { // Move on to the next transmit buffer in a round-robin manner uint8_t prev_tx_ep = tx_ep; for (tx_ep = (tx_ep + 1) & 0xf; tx_ep != prev_tx_ep; tx_ep = ((tx_ep + 1) & 0xf)) { if (tx_buffer[tx_ep]) return true; } if (!tx_buffer[tx_ep]) return false; return true; } #if LOG_USB void xfer_log_append(uint8_t ep_num, uint16_t sz) { xfer_log[xfer_log_offset].ep_num = ep_num; xfer_log[xfer_log_offset].size = sz; xfer_log_offset++; if (xfer_log_offset >= sizeof(xfer_log)/sizeof(*xfer_log)) xfer_log_offset = 0; } void queue_log_append(uint8_t ep_num, uint16_t sz) { queue_log[queue_log_offset].ep_num = ep_num; queue_log[queue_log_offset].size = sz; queue_log_offset++; if (queue_log_offset >= sizeof(queue_log)/sizeof(*queue_log)) queue_log_offset = 0; } #endif static void tx_more_data(void) { // Send more data uint8_t added_bytes; for (added_bytes = 0; (added_bytes < EP_SIZE) && (tx_buffer_offset[tx_ep] < tx_buffer_max[tx_ep]); added_bytes++) { #if LOG_USB usb_log[usb_log_offset].data[added_bytes] = tx_buffer[tx_ep][tx_buffer_offset[tx_ep]]; #endif usb_in_data_write(tx_buffer[tx_ep][tx_buffer_offset[tx_ep]++]); } #if LOG_USB usb_log[usb_log_offset].ep_num = tu_edpt_addr(tx_ep, TUSB_DIR_IN); usb_log[usb_log_offset].size = added_bytes; usb_log_offset++; if (usb_log_offset >= sizeof(usb_log)/sizeof(*usb_log)) usb_log_offset = 0; #endif // Updating the epno queues the data usb_in_ctrl_write(tx_ep & 0xf); } static void process_tx(void) { #if DEBUG // If the system isn't idle, then something is very wrong. uint8_t in_status = usb_in_status_read(); if (!(in_status & (1 << CSR_USB_IN_STATUS_IDLE_OFFSET))) fomu_error(__LINE__); #endif // If the buffer is now empty, search for the next buffer to fill. if (!tx_buffer[tx_ep]) { if (advance_tx_ep()) tx_more_data(); else tx_active = false; return; } if (tx_buffer_offset[tx_ep] >= tx_buffer_max[tx_ep]) { #if DEBUG last_tx_buffer = tx_buffer[tx_ep]; last_tx_ep = tx_ep; #endif tx_buffer[tx_ep] = NULL; uint16_t xferred_bytes = tx_buffer_max[tx_ep]; uint8_t xferred_ep = tx_ep; if (!advance_tx_ep()) tx_active = false; #if LOG_USB xfer_log_append(tu_edpt_addr(xferred_ep, TUSB_DIR_IN), xferred_bytes); #endif dcd_event_xfer_complete(0, tu_edpt_addr(xferred_ep, TUSB_DIR_IN), xferred_bytes, XFER_RESULT_SUCCESS, true); if (!tx_active) return; } tx_more_data(); return; } static void process_rx(void) { uint8_t out_status = usb_out_status_read(); #if DEBUG // If the OUT handler is still waiting to send, don't do anything. if (!(out_status & (1 << CSR_USB_OUT_STATUS_HAVE_OFFSET))) fomu_error(__LINE__); // return; #endif uint8_t rx_ep = (out_status >> CSR_USB_OUT_STATUS_EPNO_OFFSET) & 0xf; // If the destination buffer doesn't exist, don't drain the hardware // fifo. Note that this can cause deadlocks if the host is waiting // on some other endpoint's data! #if DEBUG if (rx_buffer[rx_ep] == NULL) { fomu_error(__LINE__); return; } #endif // Drain the FIFO into the destination buffer uint32_t total_read = 0; uint32_t current_offset = rx_buffer_offset[rx_ep]; #if DEBUG uint8_t test_buffer[256]; memset(test_buffer, 0, sizeof(test_buffer)); if (current_offset > rx_buffer_max[rx_ep]) fomu_error(__LINE__); #endif #if LOG_USB usb_log[usb_log_offset].ep_num = tu_edpt_addr(rx_ep, TUSB_DIR_OUT); usb_log[usb_log_offset].size = 0; #endif while (usb_out_status_read() & (1 << CSR_USB_OUT_STATUS_HAVE_OFFSET)) { uint8_t c = usb_out_data_read(); #if DEBUG test_buffer[total_read] = c; #endif total_read++; if (current_offset < rx_buffer_max[rx_ep]) { #if LOG_USB usb_log[usb_log_offset].data[usb_log[usb_log_offset].size++] = c; #endif if (rx_buffer[rx_ep] != (volatile uint8_t *)0xffffffff) rx_buffer[rx_ep][current_offset++] = c; } } #if LOG_USB usb_log_offset++; if (usb_log_offset >= sizeof(usb_log)/sizeof(*usb_log)) usb_log_offset = 0; #endif #if DEBUG if (total_read > 66) fomu_error(__LINE__); if (total_read < 2) total_read = 2; // fomu_error(__LINE__); #endif // Strip off the CRC16 rx_buffer_offset[rx_ep] += (total_read - 2); if (rx_buffer_offset[rx_ep] > rx_buffer_max[rx_ep]) rx_buffer_offset[rx_ep] = rx_buffer_max[rx_ep]; // If there's no more data, complete the transfer to tinyusb if ((rx_buffer_max[rx_ep] == rx_buffer_offset[rx_ep]) // ZLP with less than the total amount of data || ((total_read == 2) && ((rx_buffer_offset[rx_ep] & 63) == 0)) // Short read, but not a full packet || (((rx_buffer_offset[rx_ep] & 63) != 0) && (total_read < 66))) { #if DEBUG if (rx_buffer[rx_ep] == NULL) fomu_error(__LINE__); #endif // Free up this buffer. rx_buffer[rx_ep] = NULL; uint16_t len = rx_buffer_offset[rx_ep]; #if DEBUG // Validate that all enabled endpoints have buffers, // and no disabled endpoints have buffers. uint16_t ep_en_mask = usb_out_enable_status_read(); int i; for (i = 0; i < 16; i++) { if ((!!(ep_en_mask & (1 << i))) ^ (!!(rx_buffer[i]))) { uint8_t new_status = usb_out_status_read(); // Another IRQ came in while we were processing, so ignore this endpoint. if ((new_status & 0x20) && ((new_status & 0xf) == i)) continue; fomu_error(__LINE__); } } #endif #if LOG_USB xfer_log_append(tu_edpt_addr(rx_ep, TUSB_DIR_OUT), len); #endif dcd_event_xfer_complete(0, tu_edpt_addr(rx_ep, TUSB_DIR_OUT), len, XFER_RESULT_SUCCESS, true); } else { // If there's more data, re-enable data reception on this endpoint usb_out_ctrl_write((1 << CSR_USB_OUT_CTRL_ENABLE_OFFSET) | rx_ep); } // Now that the buffer is drained, clear the pending IRQ. usb_out_ev_pending_write(usb_out_ev_pending_read()); } //--------------------------------------------------------------------+ // CONTROLLER API //--------------------------------------------------------------------+ static void dcd_reset(void) { reset_count++; usb_setup_ev_enable_write(0); usb_in_ev_enable_write(0); usb_out_ev_enable_write(0); usb_address_write(0); // Reset all three FIFO handlers usb_setup_ctrl_write(1 << CSR_USB_SETUP_CTRL_RESET_OFFSET); usb_in_ctrl_write(1 << CSR_USB_IN_CTRL_RESET_OFFSET); usb_out_ctrl_write(1 << CSR_USB_OUT_CTRL_RESET_OFFSET); memset((void *)(uintptr_t) rx_buffer, 0, sizeof(rx_buffer)); memset((void *)(uintptr_t) rx_buffer_max, 0, sizeof(rx_buffer_max)); memset((void *)(uintptr_t) rx_buffer_offset, 0, sizeof(rx_buffer_offset)); memset((void *)(uintptr_t) tx_buffer, 0, sizeof(tx_buffer)); memset((void *)(uintptr_t) tx_buffer_max, 0, sizeof(tx_buffer_max)); memset((void *)(uintptr_t) tx_buffer_offset, 0, sizeof(tx_buffer_offset)); tx_ep = 0; tx_active = false; // Enable all event handlers and clear their contents usb_setup_ev_pending_write(0xff); usb_in_ev_pending_write(0xff); usb_out_ev_pending_write(0xff); usb_in_ev_enable_write(1); usb_out_ev_enable_write(1); usb_setup_ev_enable_write(3); dcd_event_bus_reset(0, TUSB_SPEED_FULL, true); } // Initializes the USB peripheral for device mode and enables it. void dcd_init(uint8_t rhport) { (void) rhport; usb_pullup_out_write(0); // Enable all event handlers and clear their contents usb_setup_ev_pending_write(usb_setup_ev_pending_read()); usb_in_ev_pending_write(usb_in_ev_pending_read()); usb_out_ev_pending_write(usb_out_ev_pending_read()); usb_in_ev_enable_write(1); usb_out_ev_enable_write(1); usb_setup_ev_enable_write(3); // Turn on the external pullup usb_pullup_out_write(1); } // Enables or disables the USB device interrupt(s). May be used to // prevent concurrency issues when mutating data structures shared // between main code and the interrupt handler. void dcd_int_enable(uint8_t rhport) { (void) rhport; irq_setmask(irq_getmask() | (1 << USB_INTERRUPT)); } void dcd_int_disable(uint8_t rhport) { (void) rhport; irq_setmask(irq_getmask() & ~(1 << USB_INTERRUPT)); } // Called when the device is given a new bus address. void dcd_set_address(uint8_t rhport, uint8_t dev_addr) { // Respond with ACK status first before changing device address dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0); // Wait for the response packet to get sent while (tx_active) ; // Activate the new address usb_address_write(dev_addr); } // Called to remote wake up host when suspended (e.g hid keyboard) void dcd_remote_wakeup(uint8_t rhport) { (void) rhport; } void dcd_connect(uint8_t rhport) { (void) rhport; usb_pullup_out_write(1); } void dcd_disconnect(uint8_t rhport) { (void) rhport; usb_pullup_out_write(0); } void dcd_sof_enable(uint8_t rhport, bool en) { (void) rhport; (void) en; // TODO implement later } //--------------------------------------------------------------------+ // DCD Endpoint Port //--------------------------------------------------------------------+ bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc) { (void) rhport; uint8_t ep_num = tu_edpt_number(p_endpoint_desc->bEndpointAddress); uint8_t ep_dir = tu_edpt_dir(p_endpoint_desc->bEndpointAddress); if (p_endpoint_desc->bmAttributes.xfer == TUSB_XFER_ISOCHRONOUS) return false; // Not supported if (ep_dir == TUSB_DIR_OUT) { rx_buffer_offset[ep_num] = 0; rx_buffer_max[ep_num] = 0; rx_buffer[ep_num] = NULL; } else if (ep_dir == TUSB_DIR_IN) { tx_buffer_offset[ep_num] = 0; tx_buffer_max[ep_num] = 0; tx_buffer[ep_num] = NULL; } return true; } void dcd_edpt_close_all (uint8_t rhport) { (void) rhport; // TODO implement dcd_edpt_close_all() } void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr) { (void) rhport; if (tu_edpt_dir(ep_addr) == TUSB_DIR_OUT) { uint8_t enable = 0; if (rx_buffer[ep_addr]) enable = 1; usb_out_ctrl_write((1 << CSR_USB_OUT_CTRL_STALL_OFFSET) | (enable << CSR_USB_OUT_CTRL_ENABLE_OFFSET) | tu_edpt_number(ep_addr)); } else usb_in_ctrl_write((1 << CSR_USB_IN_CTRL_STALL_OFFSET) | tu_edpt_number(ep_addr)); } void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) { (void) rhport; if (tu_edpt_dir(ep_addr) == TUSB_DIR_OUT) { uint8_t enable = 0; if (rx_buffer[ep_addr]) enable = 1; usb_out_ctrl_write((0 << CSR_USB_OUT_CTRL_STALL_OFFSET) | (enable << CSR_USB_OUT_CTRL_ENABLE_OFFSET) | tu_edpt_number(ep_addr)); } // IN endpoints will get un-stalled when more data is written. } bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes) { (void)rhport; uint8_t ep_num = tu_edpt_number(ep_addr); uint8_t ep_dir = tu_edpt_dir(ep_addr); TU_ASSERT(ep_num < 16); // Give a nonzero buffer when we transmit 0 bytes, so that the // system doesn't think the endpoint is idle. if ((buffer == NULL) && (total_bytes == 0)) { buffer = (uint8_t *)0xffffffff; } TU_ASSERT(buffer != NULL); if (ep_dir == TUSB_DIR_IN) { // Wait for the tx pipe to free up uint8_t previous_reset_count = reset_count; // Continue until the buffer is empty, the system is idle, and the fifo is empty. while (tx_buffer[ep_num] != NULL) ; dcd_int_disable(0); #if LOG_USB queue_log_append(ep_addr, total_bytes); #endif // If a reset happens while we're waiting, abort the transfer if (previous_reset_count != reset_count) return true; TU_ASSERT(tx_buffer[ep_num] == NULL); tx_buffer_offset[ep_num] = 0; tx_buffer_max[ep_num] = total_bytes; tx_buffer[ep_num] = buffer; // If the current buffer is NULL, then that means the tx logic is idle. // Update the tx_ep to point to our endpoint number and queue the data. // Otherwise, let it be and it'll get picked up after the next transfer // finishes. if (!tx_active) { tx_ep = ep_num; tx_active = true; tx_more_data(); } dcd_int_enable(0); } else if (ep_dir == TUSB_DIR_OUT) { while (rx_buffer[ep_num] != NULL) ; TU_ASSERT(rx_buffer[ep_num] == NULL); dcd_int_disable(0); #if LOG_USB queue_log_append(ep_addr, total_bytes); #endif rx_buffer[ep_num] = buffer; rx_buffer_offset[ep_num] = 0; rx_buffer_max[ep_num] = total_bytes; // Enable receiving on this particular endpoint usb_out_ctrl_write((1 << CSR_USB_OUT_CTRL_ENABLE_OFFSET) | ep_num); #if DEBUG uint16_t ep_en_mask = usb_out_enable_status_read(); int i; for (i = 0; i < 16; i++) { if ((!!(ep_en_mask & (1 << i))) ^ (!!(rx_buffer[i]))) { if (rx_buffer[i] && usb_out_ev_pending_read() && (usb_out_status_read() & 0xf) == i) continue; fomu_error(__LINE__); } } #endif dcd_int_enable(0); } return true; } //--------------------------------------------------------------------+ // ISR //--------------------------------------------------------------------+ static void handle_out(void) { // An "OUT" transaction just completed so we have new data. // (But only if we can accept the data) #if DEBUG if (!usb_out_ev_pending_read()) fomu_error(__LINE__); if (!usb_out_ev_enable_read()) fomu_error(__LINE__); #endif process_rx(); } static void handle_in(void) { #if DEBUG if (!usb_in_ev_pending_read()) fomu_error(__LINE__); if (!usb_in_ev_enable_read()) fomu_error(__LINE__); #endif usb_in_ev_pending_write(usb_in_ev_pending_read()); process_tx(); } static void handle_reset(void) { #if DEBUG uint8_t setup_pending = usb_setup_ev_pending_read() & usb_setup_ev_enable_read(); if (!(setup_pending & 2)) fomu_error(__LINE__); #endif usb_setup_ev_pending_write(2); // This event means a bus reset occurred. Reset everything, and // abandon any further processing. dcd_reset(); } static void handle_setup(void) { #if !DEBUG uint8_t setup_packet_bfr[10]; #endif #if DEBUG uint8_t setup_pending = usb_setup_ev_pending_read() & usb_setup_ev_enable_read(); if (!(setup_pending & 1)) fomu_error(__LINE__); #endif // We got a SETUP packet. Copy it to the setup buffer and clear // the "pending" bit. // Setup packets are always 8 bytes, plus two bytes of crc16. uint32_t setup_length = 0; #if DEBUG if (!(usb_setup_status_read() & (1 << CSR_USB_SETUP_STATUS_HAVE_OFFSET))) fomu_error(__LINE__); #endif while (usb_setup_status_read() & (1 << CSR_USB_SETUP_STATUS_HAVE_OFFSET)) { uint8_t c = usb_setup_data_read(); if (setup_length < sizeof(setup_packet_bfr)) setup_packet_bfr[setup_length] = c; setup_length++; } // If we have 10 bytes, that's a full SETUP packet plus CRC16. // Otherwise, it was an RX error. if (setup_length == 10) { dcd_event_setup_received(0, setup_packet_bfr, true); } #if DEBUG else { fomu_error(__LINE__); } #endif usb_setup_ev_pending_write(1); } void dcd_int_handler(uint8_t rhport) { (void)rhport; uint8_t next_ev; while ((next_ev = usb_next_ev_read())) { switch (next_ev) { case 1 << CSR_USB_NEXT_EV_IN_OFFSET: handle_in(); break; case 1 << CSR_USB_NEXT_EV_OUT_OFFSET: handle_out(); break; case 1 << CSR_USB_NEXT_EV_SETUP_OFFSET: handle_setup(); break; case 1 << CSR_USB_NEXT_EV_RESET_OFFSET: handle_reset(); break; } } } #endif