/* * The MIT License (MIT) * * Copyright (c) 2019 Ha Thach (tinyusb.org) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #ifndef _TUSB_COMMON_H_ #define _TUSB_COMMON_H_ #ifdef __cplusplus extern "C" { #endif //--------------------------------------------------------------------+ // Macros Helper //--------------------------------------------------------------------+ #define TU_ARRAY_SIZE(_arr) ( sizeof(_arr) / sizeof(_arr[0]) ) #define TU_MIN(_x, _y) ( ( (_x) < (_y) ) ? (_x) : (_y) ) #define TU_MAX(_x, _y) ( ( (_x) > (_y) ) ? (_x) : (_y) ) #define TU_U16(_high, _low) ((uint16_t) (((_high) << 8) | (_low))) #define TU_U16_HIGH(_u16) ((uint8_t) (((_u16) >> 8) & 0x00ff)) #define TU_U16_LOW(_u16) ((uint8_t) ((_u16) & 0x00ff)) #define U16_TO_U8S_BE(_u16) TU_U16_HIGH(_u16), TU_U16_LOW(_u16) #define U16_TO_U8S_LE(_u16) TU_U16_LOW(_u16), TU_U16_HIGH(_u16) #define TU_U32_BYTE3(_u32) ((uint8_t) ((((uint32_t) _u32) >> 24) & 0x000000ff)) // MSB #define TU_U32_BYTE2(_u32) ((uint8_t) ((((uint32_t) _u32) >> 16) & 0x000000ff)) #define TU_U32_BYTE1(_u32) ((uint8_t) ((((uint32_t) _u32) >> 8) & 0x000000ff)) #define TU_U32_BYTE0(_u32) ((uint8_t) (((uint32_t) _u32) & 0x000000ff)) // LSB #define U32_TO_U8S_BE(_u32) TU_U32_BYTE3(_u32), TU_U32_BYTE2(_u32), TU_U32_BYTE1(_u32), TU_U32_BYTE0(_u32) #define U32_TO_U8S_LE(_u32) TU_U32_BYTE0(_u32), TU_U32_BYTE1(_u32), TU_U32_BYTE2(_u32), TU_U32_BYTE3(_u32) #define TU_BIT(n) (1UL << (n)) #define TU_GENMASK(h, l) ( (UINT32_MAX << (l)) & (UINT32_MAX >> (31 - (h))) ) //--------------------------------------------------------------------+ // Includes //--------------------------------------------------------------------+ // Standard Headers #include #include #include #include #include // Tinyusb Common Headers #include "tusb_option.h" #include "tusb_compiler.h" #include "tusb_verify.h" #include "tusb_types.h" #include "tusb_error.h" // TODO remove #include "tusb_timeout.h" // TODO remove //--------------------------------------------------------------------+ // Internal Helper used by Host and Device Stack //--------------------------------------------------------------------+ // Check if endpoint descriptor is valid per USB specs bool tu_edpt_validate(tusb_desc_endpoint_t const * desc_ep, tusb_speed_t speed); // Bind all endpoint of a interface descriptor to class driver void tu_edpt_bind_driver(uint8_t ep2drv[][2], tusb_desc_interface_t const* p_desc, uint16_t desc_len, uint8_t driver_id); // Calculate total length of n interfaces (depending on IAD) uint16_t tu_desc_get_interface_total_len(tusb_desc_interface_t const* desc_itf, uint8_t itf_count, uint16_t max_len); //--------------------------------------------------------------------+ // Internal Inline Functions //--------------------------------------------------------------------+ //------------- Mem -------------// #define tu_memclr(buffer, size) memset((buffer), 0, (size)) #define tu_varclr(_var) tu_memclr(_var, sizeof(*(_var))) //------------- Bytes -------------// TU_ATTR_ALWAYS_INLINE static inline uint32_t tu_u32(uint8_t b3, uint8_t b2, uint8_t b1, uint8_t b0) { return ( ((uint32_t) b3) << 24) | ( ((uint32_t) b2) << 16) | ( ((uint32_t) b1) << 8) | b0; } TU_ATTR_ALWAYS_INLINE static inline uint16_t tu_u16(uint8_t high, uint8_t low) { return (uint16_t) ((((uint16_t) high) << 8) | low); } TU_ATTR_ALWAYS_INLINE static inline uint8_t tu_u32_byte3(uint32_t ui32) { return TU_U32_BYTE3(ui32); } TU_ATTR_ALWAYS_INLINE static inline uint8_t tu_u32_byte2(uint32_t ui32) { return TU_U32_BYTE2(ui32); } TU_ATTR_ALWAYS_INLINE static inline uint8_t tu_u32_byte1(uint32_t ui32) { return TU_U32_BYTE1(ui32); } TU_ATTR_ALWAYS_INLINE static inline uint8_t tu_u32_byte0(uint32_t ui32) { return TU_U32_BYTE0(ui32); } TU_ATTR_ALWAYS_INLINE static inline uint16_t tu_u32_high16(uint32_t ui32) { return (uint16_t) (ui32 >> 16); } TU_ATTR_ALWAYS_INLINE static inline uint16_t tu_u32_low16 (uint32_t ui32) { return (uint16_t) (ui32 & 0x0000ffffu); } TU_ATTR_ALWAYS_INLINE static inline uint8_t tu_u16_high(uint16_t ui16) { return TU_U16_HIGH(ui16); } TU_ATTR_ALWAYS_INLINE static inline uint8_t tu_u16_low (uint16_t ui16) { return TU_U16_LOW(ui16); } //------------- Bits -------------// TU_ATTR_ALWAYS_INLINE static inline uint32_t tu_bit_set (uint32_t value, uint8_t pos) { return value | TU_BIT(pos); } TU_ATTR_ALWAYS_INLINE static inline uint32_t tu_bit_clear(uint32_t value, uint8_t pos) { return value & (~TU_BIT(pos)); } TU_ATTR_ALWAYS_INLINE static inline bool tu_bit_test (uint32_t value, uint8_t pos) { return (value & TU_BIT(pos)) ? true : false; } //------------- Min -------------// TU_ATTR_ALWAYS_INLINE static inline uint8_t tu_min8 (uint8_t x, uint8_t y ) { return (x < y) ? x : y; } TU_ATTR_ALWAYS_INLINE static inline uint16_t tu_min16 (uint16_t x, uint16_t y) { return (x < y) ? x : y; } TU_ATTR_ALWAYS_INLINE static inline uint32_t tu_min32 (uint32_t x, uint32_t y) { return (x < y) ? x : y; } //------------- Max -------------// TU_ATTR_ALWAYS_INLINE static inline uint8_t tu_max8 (uint8_t x, uint8_t y ) { return (x > y) ? x : y; } TU_ATTR_ALWAYS_INLINE static inline uint16_t tu_max16 (uint16_t x, uint16_t y) { return (x > y) ? x : y; } TU_ATTR_ALWAYS_INLINE static inline uint32_t tu_max32 (uint32_t x, uint32_t y) { return (x > y) ? x : y; } //------------- Align -------------// TU_ATTR_ALWAYS_INLINE static inline uint32_t tu_align(uint32_t value, uint32_t alignment) { return value & ((uint32_t) ~(alignment-1)); } TU_ATTR_ALWAYS_INLINE static inline uint32_t tu_align16 (uint32_t value) { return (value & 0xFFFFFFF0UL); } TU_ATTR_ALWAYS_INLINE static inline uint32_t tu_align32 (uint32_t value) { return (value & 0xFFFFFFE0UL); } TU_ATTR_ALWAYS_INLINE static inline uint32_t tu_align4k (uint32_t value) { return (value & 0xFFFFF000UL); } TU_ATTR_ALWAYS_INLINE static inline uint32_t tu_offset4k(uint32_t value) { return (value & 0xFFFUL); } //------------- Mathematics -------------// TU_ATTR_ALWAYS_INLINE static inline uint32_t tu_div_ceil(uint32_t v, uint32_t d) { return (v + d -1)/d; } /// inclusive range checking TODO remove TU_ATTR_ALWAYS_INLINE static inline bool tu_within(uint32_t lower, uint32_t value, uint32_t upper) { return (lower <= value) && (value <= upper); } // log2 of a value is its MSB's position // TODO use clz TODO remove static inline uint8_t tu_log2(uint32_t value) { uint8_t result = 0; while (value >>= 1) { result++; } return result; } //------------- Unaligned Access -------------// #if TUP_ARCH_STRICT_ALIGN // Rely on compiler to generate correct code for unaligned access typedef struct { uint16_t val; } TU_ATTR_PACKED tu_unaligned_uint16_t; typedef struct { uint32_t val; } TU_ATTR_PACKED tu_unaligned_uint32_t; TU_ATTR_ALWAYS_INLINE static inline uint32_t tu_unaligned_read32(const void* mem) { tu_unaligned_uint32_t const* ua32 = (tu_unaligned_uint32_t const*) mem; return ua32->val; } TU_ATTR_ALWAYS_INLINE static inline void tu_unaligned_write32(void* mem, uint32_t value) { tu_unaligned_uint32_t* ua32 = (tu_unaligned_uint32_t*) mem; ua32->val = value; } TU_ATTR_ALWAYS_INLINE static inline uint16_t tu_unaligned_read16(const void* mem) { tu_unaligned_uint16_t const* ua16 = (tu_unaligned_uint16_t const*) mem; return ua16->val; } TU_ATTR_ALWAYS_INLINE static inline void tu_unaligned_write16(void* mem, uint16_t value) { tu_unaligned_uint16_t* ua16 = (tu_unaligned_uint16_t*) mem; ua16->val = value; } #elif TUP_MCU_STRICT_ALIGN // MCU such as LPC_IP3511 Highspeed cannot access unaligned memory on USB_RAM although it is ARM M4. // We have to manually pick up bytes since tu_unaligned_uint32_t will still generate unaligned code // NOTE: volatile cast to memory to prevent compiler to optimize and generate unaligned code // TODO Big Endian may need minor changes TU_ATTR_ALWAYS_INLINE static inline uint32_t tu_unaligned_read32(const void* mem) { volatile uint8_t const* buf8 = (uint8_t const*) mem; return tu_u32(buf8[3], buf8[2], buf8[1], buf8[0]); } TU_ATTR_ALWAYS_INLINE static inline void tu_unaligned_write32(void* mem, uint32_t value) { volatile uint8_t* buf8 = (uint8_t*) mem; buf8[0] = tu_u32_byte0(value); buf8[1] = tu_u32_byte1(value); buf8[2] = tu_u32_byte2(value); buf8[3] = tu_u32_byte3(value); } TU_ATTR_ALWAYS_INLINE static inline uint16_t tu_unaligned_read16(const void* mem) { volatile uint8_t const* buf8 = (uint8_t const*) mem; return tu_u16(buf8[1], buf8[0]); } TU_ATTR_ALWAYS_INLINE static inline void tu_unaligned_write16(void* mem, uint16_t value) { volatile uint8_t* buf8 = (uint8_t*) mem; buf8[0] = tu_u16_low(value); buf8[1] = tu_u16_high(value); } #else // MCU that could access unaligned memory natively TU_ATTR_ALWAYS_INLINE static inline uint32_t tu_unaligned_read32 (const void* mem) { return *((uint32_t const *) mem); } TU_ATTR_ALWAYS_INLINE static inline uint16_t tu_unaligned_read16 (const void* mem) { return *((uint16_t const *) mem); } TU_ATTR_ALWAYS_INLINE static inline void tu_unaligned_write32 (void* mem, uint32_t value ) { *((uint32_t*) mem) = value; } TU_ATTR_ALWAYS_INLINE static inline void tu_unaligned_write16 (void* mem, uint16_t value ) { *((uint16_t*) mem) = value; } #endif // To be removed //------------- Binary constant -------------// #if defined(__GNUC__) && !defined(__CC_ARM) #define TU_BIN8(x) ((uint8_t) (0b##x)) #define TU_BIN16(b1, b2) ((uint16_t) (0b##b1##b2)) #define TU_BIN32(b1, b2, b3, b4) ((uint32_t) (0b##b1##b2##b3##b4)) #else // internal macro of B8, B16, B32 #define _B8__(x) (((x&0x0000000FUL)?1:0) \ +((x&0x000000F0UL)?2:0) \ +((x&0x00000F00UL)?4:0) \ +((x&0x0000F000UL)?8:0) \ +((x&0x000F0000UL)?16:0) \ +((x&0x00F00000UL)?32:0) \ +((x&0x0F000000UL)?64:0) \ +((x&0xF0000000UL)?128:0)) #define TU_BIN8(d) ((uint8_t) _B8__(0x##d##UL)) #define TU_BIN16(dmsb,dlsb) (((uint16_t)TU_BIN8(dmsb)<<8) + TU_BIN8(dlsb)) #define TU_BIN32(dmsb,db2,db3,dlsb) \ (((uint32_t)TU_BIN8(dmsb)<<24) \ + ((uint32_t)TU_BIN8(db2)<<16) \ + ((uint32_t)TU_BIN8(db3)<<8) \ + TU_BIN8(dlsb)) #endif //--------------------------------------------------------------------+ // Debug Function //--------------------------------------------------------------------+ // CFG_TUSB_DEBUG for debugging // 0 : no debug // 1 : print error // 2 : print warning // 3 : print info #if CFG_TUSB_DEBUG void tu_print_mem(void const *buf, uint32_t count, uint8_t indent); #ifdef CFG_TUSB_DEBUG_PRINTF extern int CFG_TUSB_DEBUG_PRINTF(const char *format, ...); #define tu_printf CFG_TUSB_DEBUG_PRINTF #else #define tu_printf printf #endif static inline void tu_print_var(uint8_t const* buf, uint32_t bufsize) { for(uint32_t i=0; i= 2 #define TU_LOG2 TU_LOG1 #define TU_LOG2_MEM TU_LOG1_MEM #define TU_LOG2_VAR TU_LOG1_VAR #define TU_LOG2_INT TU_LOG1_INT #define TU_LOG2_HEX TU_LOG1_HEX #endif // Log Level 3: Info #if CFG_TUSB_DEBUG >= 3 #define TU_LOG3 TU_LOG1 #define TU_LOG3_MEM TU_LOG1_MEM #define TU_LOG3_VAR TU_LOG1_VAR #define TU_LOG3_INT TU_LOG1_INT #define TU_LOG3_HEX TU_LOG1_HEX #endif typedef struct { uint32_t key; const char* data; } tu_lookup_entry_t; typedef struct { uint16_t count; tu_lookup_entry_t const* items; } tu_lookup_table_t; static inline const char* tu_lookup_find(tu_lookup_table_t const* p_table, uint32_t key) { static char not_found[11]; for(uint16_t i=0; icount; i++) { if (p_table->items[i].key == key) return p_table->items[i].data; } // not found return the key value in hex snprintf(not_found, sizeof(not_found), "0x%08lX", (unsigned long) key); return not_found; } #endif // CFG_TUSB_DEBUG #ifndef TU_LOG #define TU_LOG(n, ...) #define TU_LOG_MEM(n, ...) #define TU_LOG_VAR(n, ...) #define TU_LOG_INT(n, ...) #define TU_LOG_HEX(n, ...) #define TU_LOG_LOCATION() #define TU_LOG_FAILED() #endif // TODO replace all TU_LOGn with TU_LOG(n) #define TU_LOG0(...) #define TU_LOG0_MEM(...) #define TU_LOG0_VAR(...) #define TU_LOG0_INT(...) #define TU_LOG0_HEX(...) #ifndef TU_LOG1 #define TU_LOG1(...) #define TU_LOG1_MEM(...) #define TU_LOG1_VAR(...) #define TU_LOG1_INT(...) #define TU_LOG1_HEX(...) #endif #ifndef TU_LOG2 #define TU_LOG2(...) #define TU_LOG2_MEM(...) #define TU_LOG2_VAR(...) #define TU_LOG2_INT(...) #define TU_LOG2_HEX(...) #endif #ifndef TU_LOG3 #define TU_LOG3(...) #define TU_LOG3_MEM(...) #define TU_LOG3_VAR(...) #define TU_LOG3_INT(...) #define TU_LOG3_HEX(...) #endif #ifdef __cplusplus } #endif #endif /* _TUSB_COMMON_H_ */