/* * The MIT License (MIT) * * Copyright (c) 2018, hathach (tinyusb.org) * Copyright (c) 2021, HiFiPhile * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * * This file is part of the TinyUSB stack. */ #include "tusb_option.h" #if CFG_TUSB_MCU == OPT_MCU_SAME70 #include "device/dcd.h" #include "sam.h" //--------------------------------------------------------------------+ // MACRO TYPEDEF CONSTANT ENUM DECLARATION //--------------------------------------------------------------------+ // Since TinyUSB doesn't use SOF for now, and this interrupt too often (1ms interval) // We disable SOF for now until needed later on #ifndef USE_SOF # define USE_SOF 0 #endif // Dual bank can imporve performance, but need 2 times bigger packet buffer // As SAME70 has only 4KB packet buffer, use with caution ! // Enable in FS mode as packets are smaller #ifndef USE_DUAL_BANK # if TUD_OPT_HIGH_SPEED # define USE_DUAL_BANK 0 # else # define USE_DUAL_BANK 1 # endif #endif #define EP_MAX 10 #define USBHS_RAM_ADDR 0xA0100000u #define EP_GET_FIFO_PTR(ep, scale) (((TU_XSTRCAT(TU_STRCAT(uint, scale),_t) (*)[0x8000 / ((scale) / 8)])USBHS_RAM_ADDR)[(ep)]) // Errata: The DMA feature is not available for Pipe/Endpoint 7 #define EP_DMA_SUPPORT(epnum) (epnum >= 1 && epnum <= 6) typedef struct { uint8_t * buffer; uint16_t total_len; uint16_t queued_len; uint16_t max_packet_size; uint8_t interval; } xfer_ctl_t; xfer_ctl_t xfer_status[EP_MAX+1]; static const tusb_desc_endpoint_t ep0_desc = { .bEndpointAddress = 0x00, .wMaxPacketSize = { .size = CFG_TUD_ENDPOINT0_SIZE }, }; static tusb_speed_t get_speed(void); static void dcd_transmit_packet(xfer_ctl_t * xfer, uint8_t ep_ix); //------------------------------------------------------------------ // Device API //------------------------------------------------------------------ // Initialize controller to device mode void dcd_init (uint8_t rhport) { // Enable USBPLL PMC->CKGR_UCKR = CKGR_UCKR_UPLLEN | CKGR_UCKR_UPLLCOUNT(0x3fU); // Wait until USB UTMI stabilize while (!(PMC->PMC_SR & PMC_SR_LOCKU)); #if !TUD_OPT_HIGH_SPEED // Enable USB FS clk PMC->PMC_MCKR &= ~PMC_MCKR_UPLLDIV2; PMC->PMC_USB = PMC_USB_USBS | PMC_USB_USBDIV(10 - 1); PMC->PMC_SCER = PMC_SCER_USBCLK; #endif dcd_connect(rhport); } // Enable device interrupt void dcd_int_enable (uint8_t rhport) { (void) rhport; NVIC_EnableIRQ((IRQn_Type) ID_USBHS); } // Disable device interrupt void dcd_int_disable (uint8_t rhport) { (void) rhport; NVIC_DisableIRQ((IRQn_Type) ID_USBHS); } // Receive Set Address request, mcu port must also include status IN response void dcd_set_address (uint8_t rhport, uint8_t dev_addr) { // DCD can only set address after status for this request is complete // do it at dcd_edpt0_status_complete() // Response with zlp status dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0); } // Wake up host void dcd_remote_wakeup (uint8_t rhport) { (void) rhport; USBHS->USBHS_DEVCTRL |= USBHS_DEVCTRL_RMWKUP; } // Connect by enabling internal pull-up resistor on D+/D- void dcd_connect(uint8_t rhport) { uint32_t irq_state = __get_PRIMASK(); __disable_irq(); // Enable USB clock PMC->PMC_PCER1 = 1 << (ID_USBHS - 32); // Enable the USB controller in device mode USBHS->USBHS_CTRL = USBHS_CTRL_UIMOD | USBHS_CTRL_USBE; while (USBHS_SR_CLKUSABLE != (USBHS->USBHS_SR & USBHS_SR_CLKUSABLE)); #if TUD_OPT_HIGH_SPEED USBHS->USBHS_DEVCTRL &= ~USBHS_DEVCTRL_SPDCONF_Msk; #else USBHS->USBHS_DEVCTRL |= USBHS_DEVCTRL_SPDCONF_LOW_POWER; #endif // Enable the End Of Reset, Suspend & Wakeup interrupts USBHS->USBHS_DEVIER = (USBHS_DEVIER_EORSTES | USBHS_DEVIER_SUSPES | USBHS_DEVIER_WAKEUPES); #if USE_SOF USBHS->USBHS_DEVIER = USBHS_DEVIER_SOFES; #endif // Clear the End Of Reset, SOF & Wakeup interrupts USBHS->USBHS_DEVICR = (USBHS_DEVICR_EORSTC | USBHS_DEVICR_SOFC | USBHS_DEVICR_WAKEUPC); // Manually set the Suspend Interrupt USBHS->USBHS_DEVIFR |= USBHS_DEVIFR_SUSPS; // Ack the Wakeup Interrupt USBHS->USBHS_DEVICR = USBHS_DEVICR_WAKEUPC; // Attach the device USBHS->USBHS_DEVCTRL &= ~USBHS_DEVCTRL_DETACH; // Freeze USB clock USBHS->USBHS_CTRL |= USBHS_CTRL_FRZCLK; __set_PRIMASK(irq_state); } // Disconnect by disabling internal pull-up resistor on D+/D- void dcd_disconnect(uint8_t rhport) { (void) rhport; uint32_t irq_state = __get_PRIMASK(); __disable_irq(); // Disable all endpoints USBHS->USBHS_DEVEPT &= ~(0x3FF << USBHS_DEVEPT_EPEN0_Pos); // Unfreeze USB clock USBHS->USBHS_CTRL &= ~USBHS_CTRL_FRZCLK; while (USBHS_SR_CLKUSABLE != (USBHS->USBHS_SR & USBHS_SR_CLKUSABLE)); // Clear all the pending interrupts USBHS->USBHS_DEVICR = USBHS_DEVICR_Msk; // Disable all interrupts USBHS->USBHS_DEVIDR = USBHS_DEVCTRL_UADD_Msk; // Detach the device USBHS->USBHS_DEVCTRL |= USBHS_DEVCTRL_DETACH; // Disable the device address USBHS->USBHS_DEVCTRL &=~(USBHS_DEVCTRL_ADDEN | USBHS_DEVCTRL_UADD_Msk); __set_PRIMASK(irq_state); } static tusb_speed_t get_speed(void) { switch ((USBHS->USBHS_SR & USBHS_SR_SPEED_Msk) >> USBHS_SR_SPEED_Pos) { case USBHS_SR_SPEED_FULL_SPEED_Val: default: return TUSB_SPEED_FULL; case USBHS_SR_SPEED_HIGH_SPEED_Val: return TUSB_SPEED_HIGH; case USBHS_SR_SPEED_LOW_SPEED_Val: return TUSB_SPEED_LOW; } } static void dcd_ep_handler(uint8_t ep_ix) { uint32_t int_status = USBHS->USBHS_DEVEPTISR[ep_ix]; int_status &= USBHS->USBHS_DEVEPTIMR[ep_ix]; uint16_t count = (USBHS->USBHS_DEVEPTISR[ep_ix] & USBHS_DEVEPTISR_BYCT_Msk) >> USBHS_DEVEPTISR_BYCT_Pos; if (ep_ix == 0U) { if (int_status & USBHS_DEVEPTISR_CTRL_RXSTPI) { // Setup packet should always be 8 bytes. If not, ignore it, and try again. if (count == 8) { uint8_t *ptr = EP_GET_FIFO_PTR(0,8); dcd_event_setup_received(0, ptr, true); } // Acknowledge the interrupt USBHS->USBHS_DEVEPTICR[0] = USBHS_DEVEPTICR_RXSTPIC; } if (int_status & USBHS_DEVEPTISR_RXOUTI) { xfer_ctl_t *xfer = &xfer_status[0]; if (count) { uint8_t *ptr = EP_GET_FIFO_PTR(0,8); for (int i = 0; i < count; i++) { xfer->buffer[xfer->queued_len + i] = ptr[i]; } xfer->queued_len = (uint16_t)(xfer->queued_len + count); } // Acknowledge the interrupt USBHS->USBHS_DEVEPTICR[0] = USBHS_DEVEPTICR_RXOUTIC; if ((count < xfer->max_packet_size) || (xfer->queued_len == xfer->total_len)) { // RX COMPLETE dcd_event_xfer_complete(0, 0, xfer->queued_len, XFER_RESULT_SUCCESS, true); // Disable the interrupt USBHS->USBHS_DEVEPTIDR[0] = USBHS_DEVEPTIDR_RXOUTEC; // Though the host could still send, we don't know. } } if (int_status & USBHS_DEVEPTISR_TXINI) { // Disable the interrupt USBHS->USBHS_DEVEPTIDR[0] = USBHS_DEVEPTIDR_TXINEC; xfer_ctl_t * xfer = &xfer_status[EP_MAX]; if ((xfer->total_len != xfer->queued_len)) { // TX not complete dcd_transmit_packet(xfer, 0); } else { // TX complete dcd_event_xfer_complete(0, 0x80 + 0, xfer->total_len, XFER_RESULT_SUCCESS, true); } } } else { if (int_status & USBHS_DEVEPTISR_RXOUTI) { xfer_ctl_t *xfer = &xfer_status[ep_ix]; if (count) { uint8_t *ptr = EP_GET_FIFO_PTR(ep_ix,8); memcpy(xfer->buffer + xfer->queued_len, ptr, count); xfer->queued_len = (uint16_t)(xfer->queued_len + count); } // Acknowledge the interrupt USBHS->USBHS_DEVEPTICR[ep_ix] = USBHS_DEVEPTICR_RXOUTIC; // Clear the FIFO control flag to receive more data. USBHS->USBHS_DEVEPTIDR[ep_ix] = USBHS_DEVEPTIDR_FIFOCONC; if ((count < xfer->max_packet_size) || (xfer->queued_len == xfer->total_len)) { // RX COMPLETE dcd_event_xfer_complete(0, ep_ix, xfer->queued_len, XFER_RESULT_SUCCESS, true); // Disable the interrupt USBHS->USBHS_DEVEPTIDR[ep_ix] = USBHS_DEVEPTIDR_RXOUTEC; // Though the host could still send, we don't know. } } if (int_status & USBHS_DEVEPTISR_TXINI) { // Acknowledge the interrupt USBHS->USBHS_DEVEPTICR[ep_ix] = USBHS_DEVEPTICR_TXINIC; xfer_ctl_t * xfer = &xfer_status[ep_ix];; if ((xfer->total_len != xfer->queued_len)) { // TX not complete dcd_transmit_packet(xfer, ep_ix); } else { // TX complete dcd_event_xfer_complete(0, 0x80 + ep_ix, xfer->total_len, XFER_RESULT_SUCCESS, true); USBHS->USBHS_DEVEPTIDR[ep_ix] = USBHS_DEVEPTIDR_TXINEC; } } } } static void dcd_dma_handler(uint8_t ep_ix) { uint32_t status = USBHS->UsbhsDevdma[ep_ix - 1].USBHS_DEVDMASTATUS; if (status & USBHS_DEVDMASTATUS_CHANN_ENB) { return; // Ignore EOT_STA interrupt } // Disable DMA interrupt USBHS->USBHS_DEVIDR = USBHS_DEVIDR_DMA_1 << (ep_ix - 1); xfer_ctl_t *xfer = &xfer_status[ep_ix]; uint16_t count = xfer->total_len - ((status & USBHS_DEVDMASTATUS_BUFF_COUNT_Msk) >> USBHS_DEVDMASTATUS_BUFF_COUNT_Pos); if(USBHS->USBHS_DEVEPTCFG[ep_ix] & USBHS_DEVEPTCFG_EPDIR) { dcd_event_xfer_complete(0, 0x80 + ep_ix, count, XFER_RESULT_SUCCESS, true); } else { dcd_event_xfer_complete(0, ep_ix, count, XFER_RESULT_SUCCESS, true); } } void dcd_int_handler(uint8_t rhport) { (void) rhport; uint32_t int_status = USBHS->USBHS_DEVISR; // End of reset interrupt if (int_status & USBHS_DEVISR_EORST) { // Unfreeze USB clock USBHS->USBHS_CTRL &= ~USBHS_CTRL_FRZCLK; while(USBHS_SR_CLKUSABLE != (USBHS->USBHS_SR & USBHS_SR_CLKUSABLE)); // Reset all endpoints for (int ep_ix = 1; ep_ix < EP_MAX; ep_ix++) { USBHS->USBHS_DEVEPT |= 1 << (USBHS_DEVEPT_EPRST0_Pos + ep_ix); USBHS->USBHS_DEVEPT &=~(1 << (USBHS_DEVEPT_EPRST0_Pos + ep_ix)); } dcd_edpt_open (0, &ep0_desc); // Acknowledge the End of Reset interrupt USBHS->USBHS_DEVICR = USBHS_DEVICR_EORSTC; // Acknowledge the Wakeup interrupt USBHS->USBHS_DEVICR = USBHS_DEVICR_WAKEUPC; // Acknowledge the suspend interrupt USBHS->USBHS_DEVICR = USBHS_DEVICR_SUSPC; // Enable Suspend Interrupt USBHS->USBHS_DEVIER = USBHS_DEVIER_SUSPES; dcd_event_bus_reset(rhport, get_speed(), true); } // End of Wakeup interrupt if (int_status & USBHS_DEVISR_WAKEUP) { // Unfreeze USB clock USBHS->USBHS_CTRL &= ~USBHS_CTRL_FRZCLK; // Wait to unfreeze clock while (USBHS_SR_CLKUSABLE != (USBHS->USBHS_SR & USBHS_SR_CLKUSABLE)); // Acknowledge the Wakeup interrupt USBHS->USBHS_DEVICR = USBHS_DEVICR_WAKEUPC; // Disable Wakeup Interrupt USBHS->USBHS_DEVIDR = USBHS_DEVIDR_WAKEUPEC; // Enable Suspend Interrupt USBHS->USBHS_DEVIER = USBHS_DEVIER_SUSPES; dcd_event_bus_signal(0, DCD_EVENT_RESUME, true); } // Suspend interrupt if (int_status & USBHS_DEVISR_SUSP) { // Unfreeze USB clock USBHS->USBHS_CTRL &= ~USBHS_CTRL_FRZCLK; // Wait to unfreeze clock while (USBHS_SR_CLKUSABLE != (USBHS->USBHS_SR & USBHS_SR_CLKUSABLE)); // Acknowledge the suspend interrupt USBHS->USBHS_DEVICR = USBHS_DEVICR_SUSPC; // Disable Suspend Interrupt USBHS->USBHS_DEVIDR = USBHS_DEVIDR_SUSPEC; // Enable Wakeup Interrupt USBHS->USBHS_DEVIER = USBHS_DEVIER_WAKEUPES; // Freeze USB clock USBHS->USBHS_CTRL |= USBHS_CTRL_FRZCLK; dcd_event_bus_signal(0, DCD_EVENT_SUSPEND, true); } #if USE_SOF if(int_status & USBHS_DEVISR_SOF) { USBHS->USBHS_DEVICR = USBHS_DEVICR_SOFC; dcd_event_bus_signal(0, DCD_EVENT_SOF, true); } #endif // Endpoints interrupt for (int ep_ix = 0; ep_ix < EP_MAX; ep_ix++) { if (int_status & (USBHS_DEVISR_PEP_0 << ep_ix)) { dcd_ep_handler(ep_ix); } } // Endpoints DMA interrupt for (int ep_ix = 0; ep_ix < EP_MAX; ep_ix++) { if (EP_DMA_SUPPORT(ep_ix)) { if (int_status & (USBHS_DEVISR_DMA_1 << (ep_ix - 1))) { dcd_dma_handler(ep_ix); } } } } //--------------------------------------------------------------------+ // Endpoint API //--------------------------------------------------------------------+ // Invoked when a control transfer's status stage is complete. // May help DCD to prepare for next control transfer, this API is optional. void dcd_edpt0_status_complete(uint8_t rhport, tusb_control_request_t const * request) { (void) rhport; if (request->bmRequestType_bit.recipient == TUSB_REQ_RCPT_DEVICE && request->bmRequestType_bit.type == TUSB_REQ_TYPE_STANDARD && request->bRequest == TUSB_REQ_SET_ADDRESS ) { uint8_t const dev_addr = (uint8_t) request->wValue; USBHS->USBHS_DEVCTRL |= dev_addr | USBHS_DEVCTRL_ADDEN; } } // Configure endpoint's registers according to descriptor bool dcd_edpt_open (uint8_t rhport, tusb_desc_endpoint_t const * ep_desc) { (void) rhport; uint8_t const epnum = tu_edpt_number(ep_desc->bEndpointAddress); uint8_t const dir = tu_edpt_dir(ep_desc->bEndpointAddress); uint16_t const epMaxPktSize = ep_desc->wMaxPacketSize.size; tusb_xfer_type_t const eptype = (tusb_xfer_type_t)ep_desc->bmAttributes.xfer; uint8_t fifoSize = 0; // FIFO size uint16_t defaultEndpointSize = 8; // Default size of Endpoint // Find upper 2 power number of epMaxPktSize if (epMaxPktSize) { while (defaultEndpointSize < epMaxPktSize) { fifoSize++; defaultEndpointSize <<= 1; } } xfer_status[epnum].max_packet_size = epMaxPktSize; USBHS->USBHS_DEVEPT |= 1 << (USBHS_DEVEPT_EPRST0_Pos + epnum); USBHS->USBHS_DEVEPT &=~(1 << (USBHS_DEVEPT_EPRST0_Pos + epnum)); if (epnum == 0) { xfer_status[EP_MAX].max_packet_size = epMaxPktSize; // Enable the control endpoint - Endpoint 0 USBHS->USBHS_DEVEPT |= USBHS_DEVEPT_EPEN0; // Configure the Endpoint 0 configuration register USBHS->USBHS_DEVEPTCFG[0] = ( USBHS_DEVEPTCFG_EPSIZE(fifoSize) | USBHS_DEVEPTCFG_EPTYPE(TUSB_XFER_CONTROL) | USBHS_DEVEPTCFG_EPBK(USBHS_DEVEPTCFG_EPBK_1_BANK) | USBHS_DEVEPTCFG_ALLOC ); USBHS->USBHS_DEVEPTIER[0] = USBHS_DEVEPTIER_RSTDTS; USBHS->USBHS_DEVEPTIDR[0] = USBHS_DEVEPTIDR_STALLRQC; if (USBHS_DEVEPTISR_CFGOK == (USBHS->USBHS_DEVEPTISR[0] & USBHS_DEVEPTISR_CFGOK)) { // Endpoint configuration is successful USBHS->USBHS_DEVEPTIER[0] = USBHS_DEVEPTIER_RXSTPES; // Enable Endpoint 0 Interrupts USBHS->USBHS_DEVIER = USBHS_DEVIER_PEP_0; return true; } else { // Endpoint configuration is not successful return false; } } else { // Enable the endpoint USBHS->USBHS_DEVEPT |= ((0x01 << epnum) << USBHS_DEVEPT_EPEN0_Pos); // Set up the maxpacket size, fifo start address fifosize // and enable the interrupt. CLear the data toggle. // AUTOSW is needed for DMA ack ! USBHS->USBHS_DEVEPTCFG[epnum] = ( USBHS_DEVEPTCFG_EPSIZE(fifoSize) | USBHS_DEVEPTCFG_EPTYPE(eptype) | USBHS_DEVEPTCFG_EPBK(USBHS_DEVEPTCFG_EPBK_1_BANK) | USBHS_DEVEPTCFG_AUTOSW | ((dir & 0x01) << USBHS_DEVEPTCFG_EPDIR_Pos) ); if (eptype == TUSB_XFER_ISOCHRONOUS) { USBHS->USBHS_DEVEPTCFG[epnum] |= USBHS_DEVEPTCFG_NBTRANS(1); } #if USE_DUAL_BANK if (eptype == TUSB_XFER_ISOCHRONOUS || eptype == TUSB_XFER_BULK) { USBHS->USBHS_DEVEPTCFG[epnum] |= USBHS_DEVEPTCFG_EPBK_2_BANK; } #endif USBHS->USBHS_DEVEPTCFG[epnum] |= USBHS_DEVEPTCFG_ALLOC; USBHS->USBHS_DEVEPTIER[epnum] = USBHS_DEVEPTIER_RSTDTS; USBHS->USBHS_DEVEPTIDR[epnum] = USBHS_DEVEPTIDR_STALLRQC; if (USBHS_DEVEPTISR_CFGOK == (USBHS->USBHS_DEVEPTISR[epnum] & USBHS_DEVEPTISR_CFGOK)) { USBHS->USBHS_DEVIER = ((0x01 << epnum) << USBHS_DEVIER_PEP_0_Pos); return true; } else { // Endpoint configuration is not successful return false; } } } static void dcd_transmit_packet(xfer_ctl_t * xfer, uint8_t ep_ix) { uint16_t len = (uint16_t)(xfer->total_len - xfer->queued_len); if (len > xfer->max_packet_size) { len = xfer->max_packet_size; } uint8_t *ptr = EP_GET_FIFO_PTR(ep_ix,8); memcpy(ptr, xfer->buffer + xfer->queued_len, len); xfer->queued_len = (uint16_t)(xfer->queued_len + len); if (ep_ix == 0U) { // Control endpoint: clear the interrupt flag to send the data USBHS->USBHS_DEVEPTICR[0] = USBHS_DEVEPTICR_TXINIC; } else { // Other endpoint types: clear the FIFO control flag to send the data USBHS->USBHS_DEVEPTIDR[ep_ix] = USBHS_DEVEPTIDR_FIFOCONC; } USBHS->USBHS_DEVEPTIER[ep_ix] = USBHS_DEVEPTIER_TXINES; } // Submit a transfer, When complete dcd_event_xfer_complete() is invoked to notify the stack bool dcd_edpt_xfer (uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes) { (void) rhport; uint8_t const epnum = tu_edpt_number(ep_addr); uint8_t const dir = tu_edpt_dir(ep_addr); xfer_ctl_t * xfer = &xfer_status[epnum]; if(ep_addr == 0x80) xfer = &xfer_status[EP_MAX]; xfer->buffer = buffer; xfer->total_len = total_bytes; xfer->queued_len = 0; if(EP_DMA_SUPPORT(epnum) && total_bytes != 0) { uint32_t udd_dma_ctrl = 0; udd_dma_ctrl = USBHS_DEVDMACONTROL_BUFF_LENGTH(total_bytes); if (dir == TUSB_DIR_OUT) { udd_dma_ctrl |= USBHS_DEVDMACONTROL_END_TR_IT | USBHS_DEVDMACONTROL_END_TR_EN; } else { udd_dma_ctrl |= USBHS_DEVDMACONTROL_END_B_EN; } // Start USB DMA to fill or read fifo of the selected endpoint USBHS->UsbhsDevdma[epnum - 1].USBHS_DEVDMAADDRESS = (uint32_t)buffer; udd_dma_ctrl |= USBHS_DEVDMACONTROL_END_BUFFIT | USBHS_DEVDMACONTROL_CHANN_ENB; // Disable IRQs to have a short sequence // between read of EOT_STA and DMA enable uint32_t irq_state = __get_PRIMASK(); __disable_irq(); if (!(USBHS->UsbhsDevdma[epnum - 1].USBHS_DEVDMASTATUS & USBHS_DEVDMASTATUS_END_TR_ST)) { USBHS->UsbhsDevdma[epnum - 1].USBHS_DEVDMACONTROL = udd_dma_ctrl; USBHS->USBHS_DEVIER = USBHS_DEVIER_DMA_1 << (epnum - 1); __set_PRIMASK(irq_state); return true; } __set_PRIMASK(irq_state); // Here a ZLP has been recieved // and the DMA transfer must be not started. // It is the end of transfer return false; } else { if (dir == TUSB_DIR_OUT) { USBHS->USBHS_DEVEPTIER[epnum] = USBHS_DEVEPTIER_RXOUTES; } else { dcd_transmit_packet(xfer,epnum); } } return true; } // Stall endpoint void dcd_edpt_stall (uint8_t rhport, uint8_t ep_addr) { (void) rhport; uint8_t const epnum = tu_edpt_number(ep_addr); USBHS->USBHS_DEVEPTIER[epnum] = USBHS_DEVEPTIER_STALLRQS; } // clear stall, data toggle is also reset to DATA0 void dcd_edpt_clear_stall (uint8_t rhport, uint8_t ep_addr) { (void) rhport; uint8_t const epnum = tu_edpt_number(ep_addr); USBHS->USBHS_DEVEPTIDR[epnum] = USBHS_DEVEPTIDR_STALLRQC; USBHS->USBHS_DEVEPTIER[epnum] = USBHS_HSTPIPIER_RSTDTS; } #endif